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An introduction to formal orthogonality and some of its
applications

C. Brezinski

Abstract. This paper is an introduction to formal orthogonal polynomials and their applications to
Padé approximation, Krylov subspace methods for the solution of systems of linear equations, and con-
vergence acceleration methods. Some more general formal orthogonal polynomials, and the concept of
biorthogonality and their applications are also discussed.

Introduccidn a la ortogonalidad formal y a algunas de sus aplicaciones

Resumen. Presentamos una introduccién a los polinomios ortogonales formales y a sus aplicaciones
a la aproximacién de Padé, al método de subespacios de Krylov para la resolucién de sistemas de ecua-
ciones lineales y a los métodos de aceleracién de la convergencia. Se estudian también polinomios ortog-
onales formales mas generales, el concepto de biortogonalidad y sus aplicaciones.

1. Introduction

Orthogonal polynomials are well-known and they are widely used in numerical analysis. In particular,
they have applications in interpolation, approximation (including least squares and moment preserving
splines), quadrature, acceleration of slowly convergent series, linear algebra, wavelets, methods for ordinary
differential equations, Toda lattices, etc.; see [57].

In this paper, we will review some of the formal generalizations of orthogonal polynomials and discuss
their applications to Padé approximation, Krylov subspace methods for the solution of systems of linear
equations, and convergence acceleration methods.

A paper as this one could either be a survey, as complete and detailed as possible, or serve only as an
introduction to the subject and a pointer to the literature. We chose this second option and tried to give an
overview of the theory and its applications without entering into too many technical details. Citations to
the literature have been kept to a minimum, that is to references which have an historical interest, to those
which are not so well known, and to those where other references could be found. So, citations are not
necessarily given to original works. For more references, see [13].

The reader is assumed to have some knowledge of usual orthogonal polynomials. For an introduction
to the topic, see [57]. A more complete treatment is given in [44] and [92]. Chebyshev polynomials are
studied in [82]. Orthogonal polynomials of a discrete variable are discussed in [76].
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2. Formal orthogonal polynomials

In this Section, formal orthogonal polynomials will be introduced and some of their properties will be
presented.
For more results on formal orthogonal polynomials, see [9, Chap. 2].

2.1. Basic definitions

Let ¢ be a linear functional on the vector space of complex polynomials. It is completely defined by its
noments ‘
c=c(z"), i=0,1,...

The polynomials { P} are said to form the family of formal orthogonal polynomials with respect to ¢ if,
for all k, the degree of Py, is at most k, and if it satisfies the orthogonality conditions

c(x'P(2)) =0, i=0,....k—1. )

Their name comes out from the orthogonality property with respect to a linear form. For a rigorous justi-
fication of this notation and an extensive study of the algebra of linear functionals on the vector space of
polynomials, see [69, 70, 71, 72]; see also [83].
Setting Py, (z) = ag + ap_12z + - - - + apx® (where the coefficients depend on k), these conditions are
equivalent to
arc; + ar_1¢iy1 + - +aociyry =0, 1=0,...,k—1, 2

which is a system of k equations in £ + 1 unknowns. Its solution is completely determined once a sup-
plementary condition has been added (assuming that the determinant of the augmented system is different
from zero).

From (2), we have the determinantal representation

CO PR Ck
Py(x) = Dy | - : (3
Ck—1 - C2k-1
1 2k

where Dy, # 0 is the normalization factor since, as explained above, the conditions (1) (or (2)) define P,
apart a multiplying factor. This normalization factor is determined by the supplementary condition added
to the system (2), see [27].

We see that P, has exact degree k if and only if the Hankel determinant H},(co) is different from zero,
where, for an arbitrary sequence (u,,), we set (a notation useful in the sequel)

Uy, Tt Up+k—1
Hk(un) =

Uptk—1 - Unp42k-2

If Dy, = 1/H(co), the polynomial Py is called monic, which means that the coefficient of z* equals
1. Once Dy, has been chosen (or defined by the supplementary condition added to the system (2)), Pj is
uniquely determined by (2) or (3). However, P, may not exist for some choices of D, (for example, the
monic polynomial P, does not exist if Hy(co) = 0). If not stated differently, we will assume in the sequel
that Vk, Hy(co) # 0. In that case, we say that c is definite, and we have ¢(pPy) # 0 for any polynomial p
of degree k.

Obviously, from (1), the orthogonality conditions can also be written as ¢(pP;) = 0 where p is any
polynomial of degree at most k — 1, or as ¢(P,, Py) = 0 for n # k.
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If the linear functional c is defined by

b
c(x’) :/ 2t da(z), 1=0,1,... )

where « is bounded and nondecreasing in [a, b], the usual orthogonal polynomials with respect to « are
recovered and Vk, Py, exists and has exact degree k. Moreover, for all k, Hy(co) > 0.
We will also consider the associated polynomials defined by

Py (z) — Pk(2)> 7

r— =z

Qr(z) =c <

where ¢ acts on x, and z is a parameter. The polynomial (), has degree k — 1 at most and it is given by

k(2) = (coag—1 + crag—o + -+ cg—1a0) + - -+ + (coa1 + c1a0)z™ ~ + cpagz™ ~, S
Qr(z) = ( + +o 4 )+ -+ (com +cra0)2" % + et (5)

and it has the representation

Co C1 Co R Ck
Qr(x) = Dy,
Ck—1 Cg Ck+1 Cok—1
0 co coxr+c1 oo corFTV 4 cpox + cpon

2.2. Properties

When they exist, formal orthogonal polynomials have the same algebraic properties as the usual orthogonal
polynomials except some properties concerning their zeros [9, Chap. 2]. In particular, from the computa-
tional point of view, the most interesting property is their three—term recurrence relationship

Property 1
If, for all k, Py, exists and has exact degree k, then

Piy1(2) = (Ak412 + Biy1) Pr(@) — Cry1 Pe—a(z), k=0,1....
with P_y(xz) = 0, Py(z) = Ag # 0 and

_ trga agtryl o tpatgyr hg

Apy1=——, Bpp=-— k1 =
+ tkv + k’ + ti hk—17

where ty, is the coefficient of x* in Py, and
_ 2 _ 2
ar = c(xPy;), hy = c(Py).

The associated polynomials Q. satisfy the same recurrence relationship with the initializations ) _1 (xz) =
—1,Qo0(z) =0, and with C; = Ayc(P).

The coefficient ¢4 is determined once the normalization factor has been chosen.

The case where some of the polynomials do not exist was extensively treated in [48]; see also [27].

A reciprocal of the preceding result is the Shohat—Favard theorem which says that if a family of poly-
nomials satisfies a three—term recurrence of the form of that of Property 1, then they are orthogonal with
respect to a linear functional whose moments can be computed. Moreover, if V&, Cj11 > 0, this functional
can be represented as in (4).

A consequence of the three—term recurrence relationship is the Christoffel-Darboux identity
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Property 2
If, for all k, Py, exists and has exact degree k, then

i
hitrya

k
[Prt1 (2) P(t) = Pera () Pr(@)] = (@ =) Y by ' Pila) Pi(t).
i=0

This identity is usually proved from the recurrence relationship satisfied by the family {P,}. However,
a direct proof was given in [11]. It follows that the converse of this identity is also true: if a family
of polynomials satisfies a relation of the form of the Christoffel-Darboux identity, then it also satisfies a
three—term relationship and, so, it is a family of formal orthogonal polynomials [11]. The Christoffel—
Darboux identity also holds for the polynomials (), and there exists a variant mixing the polynomials and
their associated ones.

We also have the

Property 3
If, for all k, Py, exists and has exact degree k, then

Py(2)Qry1(z) — Qr(2) Pryr () = Apy1hy.
This relation shows that, if ¢ is definite, then P}, and Py, have no common zero, and similarly for @)} and

Qk+1, and for Py, and Q. This is the only property that can be proved on the zeros in this general context.

The sum in the right hand side of the Christoffel-Darboux identity is called the reproducing kernel of
order k of the family of formal orthogonal polynomials

k
Ki(z.t) = h; 'Pi(x)Pi(t).

It is a symmetric function in x and ¢, and the following property justifies its name

Property 4
For any polynomial p of degree at most k

c(p(z) Ky (2, 1)) = p(t).
If the degree of p is strictly less that k, then c(p(x)(x — t) Ky (x,t)) = 0.

It follows that

c(Ki(z,t)P,(x)) = P,(t), n=0,...,k,
c(Ki(x, ) Kp(x,u)) = Kp(t,u), n=20,...,k,
c(K2(z,t)) = Kg(t,t

We also have

Co C1 Ck

C1 Co e Ck+1 t
Hy iy (co)Ky(z,t) = :

ck Chy1 - cop  tF

1 T e xk 0

On reproducing kernel and their applications, see [97].
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An introduction to formal orthogonality and some of its applications

2.3. Adjacent families

We consider the linear functionals ¢(™), n = 0,1, . . ., defined by
() =g, i=0,1,. ..

We assume that, for all n, (") is definite. Let {P,S")} be the family of formal orthogonal polynomials with
respect to ¢, that is such that

(@ P (2) =0, i=0,... k-1
Thus the polynomials P,SO) are identical to the polynomials P, defined above. These families of polynomials
are called adjacent families of formal orthogonal polynomials. The polynomials of each of these families
satisfy a three—term recurrence relationship similar to that of Property 1 (assuming that, for all n, ¢(™) is
definite). Moreover, there exists recurrence relations between polynomials belonging to adjacent families.
For example, we have, for monic polynomials,

PV @) = P @) — e P (),
PP (@) = aP{" (@) - g P ()
with
(o _ Heoalew)Hn(e) _ @R (@)
i Hy.(cn)Hi(cny1) cn 1) (zk-1 P ()7
S _ (o) Hilen)  _ OERT @)
k+1 Hk+1(c )Hk(cn+1) C(n)(xkplg )(I))
These quantities are related by the gd—algorithm
n n+1 n+1
i . 5(”11 _ q,}++11§ Ti%) |
n n n
€ Utr = € 4y
with Vn, q(") (()") = 0 and q£n) = ¢pt1/cn. Moreover, by elimination, the three—term recurrence

relation of Property 1 can be recovered, and it can be written as

P,E:L_)l (z) = (z — q,(g_)l — egen))Plgn) (z) — q,(en)egcn)Plgﬁ)l (), k=0,1,...

with Pfq) () =0and PO(") (z) = 1. A similar relation is satisfied by the associated polynomials

QL () = e <P£”> @ =P <z>>

r—Zz

with Q™ (z) = —1and Q{™ (2) = 0.

The gd—algorithm was introduced by Rutishauser [84] and it gave rise to the L R-algorithm for the
computation of the eigenvalues of a matrix [85]. It is strongly connected to Padé approximants, continued
fractions and the e—algorithm that will be studied in Section 3., see [61, pp. 608—621], [9, pp. 83-84,94-97,
148-151, 161, 166-167].

3. Applications

We will now have a look at some topics in numerical analysis where formal orthogonal polynomials play a
central role. Another application, which is not discussed in this paper, concerns methods for computing all
zeros of analytic functions [64].
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3.1. Padé approximation
We consider the formal power series
f(z)=cot+erz+ez®+---

A Padé approximant of f is a rational function whose expansion in ascending powers of z agrees with f
as far as possible. More precisely, the Padé approximant denoted by [p/q]¢(2) is a rational function with a
numerator N of degree at most p and a denominator D of degree at most ¢ such that

N(z) = f(z)D(2) = O(PT1T1), (2 = 0). ©)

These approximants are put into a double entry array called the Padé table.
The coefficients of the polynomials N and D can be obtained by identification of the coefficients of the
powers of z in both sides of (6). Let us consider, for simplicity, the Padé approximant [k — 1/k]. We set

N(z) = bo +biz+ - +by_12*!
D(z) = ap+ a1z + -+ apz”.
By identification of the coefficients, we obtain
degree 0 = by = cCpag
degree 1 = b = Coay + ciag
degree k—1 = by 1 = coGp-1 + R + Ck_1Qq
degree k == 0 = coag + - 4+ crao
degree2k—1 — 0 = Cgp_1ar + -+ + C2p-10Q0.

So, comparing the last k equations with (2), we see that D(z) = Py(z) = 2*P(z~') where Py is
the monic formal orthogonal polynomial of degree at most k with respect to the linear functional ¢ defined
by c¢(2') = ¢; fori = 0,1,.... Moreover, the first k preceding equations show that N (z) = Qx(z) =
2k=1Q(271) where Qy is the associated polynomial given by (5). From the determinantal expressions of
Py, and @, we see that [k — 1/k] can be written as the ratio of two determinants and, more generally, we
have

qupfq(z) Zqilfpqurl(Z) fp(Z) 24 qul 1
Cp—q+1 Cp—q+2 s Cp+1 Cp—g+1 Cp—gt+2 “**  Cpti
s =] 7 | YIRS a |
Cp Cp+1 - Cp+q Cp Cpt1 o Cpig

with ¢; = c(2¥) = 0 fori <0, fr.(2) = co + -+ + cpz® fork > 0, and fi(z) = 0 for k < 0.

This determinantal expression shows that the other Padé approximants [p/q] are related to the adjacent
families of formal orthogonal polynomials. The relations between these polynomials can be used for the
recursive computation of any sequence of Padé approximants as described in [9, pp. 135-147]. When
some of the Hankel determinants Hy(c,,) are zero, some adjacent approximants in the Padé table become
identical by cancellation of a common factor between the numerator and the denominator. This phenomenon
is known as the block structure of the Padé table [79]. In that case, the recurrence relationships have to be
replaced by more complicated ones. This problem was completely solved in [48].

Formal orthogonal polynomials allow to answer several other questions related to Padé approximants.
An expression for the relative error (f(z) — [k — 1/k](2))/ f(z) was given in [24]. However, in practice, it
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is often necessary to estimate the error. Such estimates are based on the interpretation of Padé approximants
as formal Gaussian quadratures. Indeed, it formally holds (c acts on x)

f<z):c<1—1:cz>'

As in a Gaussian quadrature method, let us replace the function 1/(1 — zz) by its Hermite interpolation
polynomial Ry, at the zeros of P, given by

Rie) = 7= (1 - Pffy)l)) '

Then, it holds [38, 39]
[k — 1/K]5(=) = e(Ry).

So, Padé approximants can be seen as formal Gaussian quadratures. For usual definite integrals, the error
of a Gaussian quadrature method can be estimated by Kronrod procedure (see [74] for a review). It consists
in comparing the results obtained by the Gaussian quadrature with another one, built on the same nodes
(the k zeros of Py) plus k + 1 additional nodes chosen in an optimal way (that is so that the new quadrature
formula be exact for polynomials of highest possible degree). These additional nodes are the zeros of the
Stieltjes polynomial Vi, 11 which is defined by

(' Pp(2)Vigp1(2)) =0, i=0,...,k

Kronrod’s idea can be extended to Padé approximants since they are Gaussian quadratures. Several pro-
cedures for estimating the error in Padé approximation are based on this remark [38]. Formal Stieltjes
polynomials are studied in [81].

The most important and difficult problem about Padé approximants is the convergence, in some sense,
of a given sequence of approximants to the function f. This problem strongly depends on the asymptotic
behavior of formal orthogonal polynomials, a question mostly studied in the case where a representation of
the form (4) holds [92, 90]. An overview can be found in [38, pp. 93—129]. Let us mention that counterex-
amples to the Baker—-Gammel-Wills conjecture [3] (see also [4, p. 332]) on the uniform convergence of
a subsequence of diagonal approximants for a function meromorphic in the unit disc [68] or holomorphic
[43] were recently obtained. In some cases, Padé approximants can be used for the analytic continuation of
divergent series, see [6, pp. 383—410] and [98].

On Padé approximants and their connections to formal orthogonal polynomials, see [4, 9, 23, 38, 39].
Padé approximants are related to continued fractions (see [63, 67]), one of the oldest topics in mathematics
[12]. Padé approximants have many applications in numerical analysis, special functions, number theory,
applied mathematics, physics, chemistry, etc. Some of them are described in [4, 38, 39].

3.2. Krylov subspace methods
We consider the system of (real, for simplicity) linear equations
Az =b.

Lanczos method [66] for solving this system consists in constructing a sequence of vectors (xy) defined by
the two conditions

Tr —To € Kk(A7T0) = Span(T07AT07 .. 7Ak71740)7
"k = b~ Axk 1 Kk(AT7y) = SPan(yvATi% ey (AT)k_ly)a

where 1z is arbitrarily chosen, 1o = b — Az, and y # 0 is a given vector. A subspace of the form K, is
called a Krylov subspace and Lanczos method belongs to the class of Krylov subspace methods, a particular
case of projection methods [17, 56, 60].
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The vectors xj, are completely determined by the two preceding conditions. Indeed, the first condition
writes

Tp — Lo = —Ag_170 — Ap_2Arg — - - — agA¥ g,
Multiplying both sides by A, adding and subtracting b, leads to
e =70+ ap 1Arg + - + agA¥rg = Pp(A)rg
with Py () = 1+ ag_12 + - - - + apz®. The second condition gives
(ri, (AT) ) = (Pp(A)ro, (AT)y) = (A'Pp(A)ro,y) =0, i=0,....,k—1,

that is
(AZTU + akflAlJrl'rO + -+ aOAZJrkrOvy) = 07 i= 07 e 'ak -1

Let ¢ be the linear functional defined by
c(z') = (A'ro,y).

Thus, since ¢ is linear, ¢(p) = (y, p(A)rg) for any polynomial p, and the preceding conditions are equivalent
to

¢+ ag_1¢i41+ -+ apciyr =0, 1=0,...,k—1,
which is exactly (2). So, these conditions can be written as
c(x'Py(z)) =0, i=0,....k—1,

which shows that, if it exists (that is, if Hi(c1) # 0), Py, is the formal orthogonal polynomial of degree at
most k& with respect to ¢, normalized by the condition Py (0) = 1. Thus, it follows

To ATO e Ak’l‘g
CO cl ... Ck
Ty = . . ) /Hk(61),
Ck—1 Ck ot C2k—1

where the determinant in the numerator is the linear combination of the vectors in its first row, obtained by
the usual rules for expanding a determinant.

Thanks to the recurrence relationships between adjacent families of formal orthogonal polynomials,
the residuals r; and the iterates x;, can be recursively computed, thus leading to several algorithms for
implementing Lanczos method [36]. Among these procedures is the well-known biconjugate gradient
algorithm [55] which reduces to the conjugate gradient algorithm when A is symmetric and y = rg [62],
see also [53]. New algorithms can also be deduced [36].

Due to the normalization of the formal orthogonal polynomials involved in Lanczos method, some
underlying Hankel determinants can be zero. Moreover, some recurrence relations may be impossible to
use. In these cases, a division by zero, called a breakdown, arises in the algorithms. Such breakdowns can be
avoided by jumping over the polynomials which do not exist and/or over those that cannot be computed by
the recurrence relationship under consideration. In this case, more complicated recurrences, based on those
given in [48], have to be used. The problem of near—breakdown, due to division by a quantity close to zero
(which amplifies rounding errors), can be treated by similar techniques; see [33] and the references quoted
there. Of course, a linear algebra problem can be studied by purely linear algebra techniques. However, as
shown in [34], the theory of formal orthogonal polynomials greatly simplifies the treatment of breakdowns
and near—breakdowns. Breakdowns can also be cured using the connection between Lanczos method and
Padé approximants [59].
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Other Krylov subspace methods can be related to formal orthogonality [23, pp. 164—168], for example,
the CGS [88] and the BiCGSTAB [93]. These two methods, and others, were created to avoid matrix—
vector products by AT, a nontrivial task due to the indirect addressing used for storing large sparse matrices
[31]. A multiparameter generalization of Lanczos method [20], which can be implemented by an algorithm
similar to the block conjugate gradient algorithm [78], can also be interpreted in terms of formal orthogonal
polynomials [21]. Breakdowns and near—breakdowns in the corresponding algorithms can be handled by
techniques issued from formal orthogonal polynomials [35].

Formal orthogonal polynomials are also involved in Lanczos tridiagonalization (or biorthogonalization)
method [65] for the computation of eigenvalues of a matrix [32]. This method, which is related to Padé
approximants, has applications for model reduction in linear control theory [2, 52].

3.3. Convergence acceleration

In numerical analysis, many algorithms produce sequences converging to a limit. When the convergence
is too slow, the sequence can be transformed, by a sequence transformation, into another one converging
faster to the same limit (under some conditions). The most well-known sequence transformation is Aitken
A? process. It was generalized by Shanks [87]. Shanks transformation consists in transforming a sequence
(Sy) into a set of sequences (indexed either by k or by n) defined by

ex(Sn) = Hiy1(Sn)/Hr(A?S,),  k,n=0,1,... (7

n) _

These quantities can be recursively computed by the e—algorithm of Wynn [100]. We set 5(_1 =
0, 6(()”) = S,p,n =20,1,... The rules of the e—algorithm are

(n) _ _(n+1) 1 -
6k+1_5k—1 +m, k,n—O,l,...
€k Iy
and it holds
5;’;) =er(Sn), k,n=0,1,...

When k£ = 1, Aitken process is recovered.

An important concept about a sequence transformation is its kernel. It is the set of sequences (S,,)
which are transformed into a constant sequence (S). The kernel of Shanks transformation is the set of
sequences satisfying, for all n,

aO(Sn — S) + - +ak(Sn+k — S) = 0,

with agay, # 0 and ag + -- - + ax # 0. It is a necessary and sufficient condition for having e (S,) = S,
n=20,1,...,[26, pp. 79-80].

Shanks transformation and the e—algorithm are related to Padé approximants and, thus, to formal or-
thogonal polynomials. Indeed, if S,, = ¢ + ¢12 + - - + ¢, 2™ is the nth partial sum of a series f, then
e = e1(Sn) = [n + k/K](2).

More generally, let PIS"H)(:E) = xklglgnﬂ)(x*l) be the orthogonal polynomial with respect to the
linear functional ¢("*1) defined from the sequence of moments ¢q = Sg and ¢; = AS; 1 fori > 1, and
QS:H'I) (z) = a:k*@é"*'l) (2~1) be its associated polynomial. Then

e =8, + QU (1) /B (1),

An error formula can be derived from this interpretation, and Kronrod procedure can be applied for esti-
mating the error Eé? —S[9, pp. 171-176].
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Shanks transformation can also be related to the formal orthogonal polynomials with respect to the
functional defined by ¢; = AS;, and normalized by the condition P,g") (1) = 1. Indeed, from (7), we have

Su o Sum PR
AS, - ASnuuk / AS, - ASnk

ASpir-1 -+ ASpiop ASnip—1 -+ ASppor

er(Sn) = ®)

If we define the linear functional s by s(2?) = S;, then we see that
ex(Sn) = s(a" B (2)),

where {P,E”) } is the family of formal orthogonal polynomials with respect to the linear functional e (2%) =
Cn+ti = ASp+;. This point of view allows to obtain several algorithms for the implementation of Shanks
transformation and the computation of Padé approximants [8].

The G—algorithm, another convergence acceleration method, is also related to formal orthogonal poly-
nomials. This method consists in replacing AS,,1; in (8) by gp,4; fori = 0,...,2k — 1, where (g,,) is a
given auxiliary sequence of parameters, see [9, p. 169], [26, pp. 95-101, 224, 264] and [28].

The topological e—algorithm is a vector generalization of the e—algorithm. It is related to formal or-
thogonal polynomials, see [9, pp. 178-184] and [26, pp. 220-227]. It also has connections with Lanczos
method for a system of linear equations [9, pp. 184-189].

On convergence acceleration methods, consult [26, 98, 99]. The recent history of the domain is reported
in [22].

4. Biorthogonal polynomials

If we define the linear functionals L; by L;(2’) = ¢;44, 4,5 = 0,1, .., then the orthogonality conditions
(1) for the polynomial Py, write L;(P;) = 0 fori = 0,...,k — 1. In that case, the linear functionals L; are
related by the condition L;(2771) = L1 (27).

Let us now consider the more general case where the functionals L; are defined by

Li(xj)zcijv 7”]:0’17
where the ¢;;’s are given complex numbers. Let { P;, } be the family of polynomials such that
Li(P,)=0, i=0,...,k—1.

These polynomials are called biorthogonal with respect to the family of linear functionals {L;} [14, 104—
113]. We have

Coo Cok
Pi(z) = Dy
Ck=1,0 *** Ch—1k
1 xk

The recursive computation of these polynomials was considered in [45, 46], and properties of their
zeros were discussed in [30]. Particular cases are orthogonal polynomials on an algebraic variety [16], and
orthogonal polynomials involving a Sobolev—type inner product [51].

The concept of biorthogonality was introduced by Banach [5, Chap. VII]. Let E be a vector space and
E* its dual (the vector space of linear functionals on E). The families {«;} of linearly independent elements
of E, and {L;} of linearly independent elements of E* are said to be biorthogonal (or forming dual basis)
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Biorthogonality

lattice

Figure 1. Biorthogonality and its applications.

if Li(z;) =< Ly, x; >= 0if i # j. Biorthogonality is connected to many topics in numerical analysis and
it has many applications as shown in Figure 1 (updated from [17, p. 63]) . Let us comment on it.

The general interpolation problem, as stated in [47, pp. 26—45], enters into this framework. For ra-
tional interpolation, see [50, 58]. The E—algorithm, which is the most general convergence acceleration
algorithm known so far, and other scalar and vector sequence transformations are related to biorthogonal
polynomials [14, pp. 79-92]. Vector and matrix sequence transformations can be defined from biorthogo-
nality [18, 29], in particular the RPA and the H-algorithm [26, pp. 233-244] which have applications in
the solution of systems of linear and nonlinear equations. The connection to the method of moments of
Vorobyev [96] is explained in [17, pp. 154ff.]. Biorthogonality have applications to multistep methods for
ordinary differential equations [14, pp. 92-97], and to some topics in statistics and least squares [14, pp.
114-126]. Biorthogonal polynomials lead to a unified framework for the derivation of conjugate—gradient
type algorithms for the solution of systems of linear equations [17, Chap. 4]. Their connection to subspace
methods and Padé approximants was described in [19], see also [42]. They also have applications in the
solution of linear systems by the bordering method for matrices with a special structure [17, pp. 70-81].
Biorthogonal polynomials are instrumental in the definition of Padé approximants for series of functions
[14, pp. 97-104], and other generalizations [77]. Finally, biorthogonal polynomials were recently con-
nected to the relativistic Toda molecule equation [73]. Integrable lattices and discrete soliton equations also
have intriguing relationships with convergence acceleration methods [75, 80].

The concept of biorthogonality was extensively studied in [14]. References to the related domains of
Figure 1 can be traced back from those given at the end of this paper. Obviously, it is not possible, in this
paper, to enter into the details of these topics. However, let us mention some particular cases related to the
applications described in Section 3.
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Vector orthogonal polynomials of dimension d > 0 were introduced in [95]. They correspond to the
case where the linear functionals L; are related by

Li(@™™) = Liya(a?),

that is ' '
Li (xﬁ'") = Li_,_nd(:vj).

Such polynomials satisfy a d 4+ 2 term recurrence relationship of the form

Prey1(2) = (Agr17 + Brgr) Pr(2 ch(c:)_lpk i( k=0,1,....

They also satisfy a Shohat-Favard type theorem, an identity similar to Christoffel-Darboux’s, and their
reciprocals. They have applications in vector Padé approximation for approximating simultaneously a series
with vector coefficients by several rational functions with a common denominator [94], see also [38, pp.
169-176] and [39, pp. 81-87]. When d = 1, the formal orthogonal polynomials discussed above are
recovered.

Vector orthogonal polynomials of dimension —d < 0 can also be defined [15, 37]. In that case, the
linear functionals L; are related by

Li(e*h) = Li—a(2?),

and the polynomials satisfy a d 4+ 2 term recurrence relationship of the form

Pii1(2) = (Ag+12 + Biy1) Pr( —:EZCHIPk i(x), k=0,1,....

i=1

They also satisfy a Shohat—Favard type theorem. Formal orthogonal polynomials of dimension —1 can be
considered as a generalization of orthogonal polynomials on the unit circle, and they have applications in
Padé approximation of Laurent series [40, 41]. The case of multipoint Padé approximants is also of interest
[38].

Orthogonal polynomials with (rectangular) matrix coefficients were also studied. They have applica-
tions in matrix Padé approximation and matrix continued fractions [89].

Orthogonal polynomials in several variables, and their applications to Padé approximation for multi-
variate series, are discussed, for example, in [7]. On these polynomials, see [49, 91].

Formal orthogonal polynomials in the least squares sense can be defined as the solution in the least
squares sense of the system (2) fori = 0,...,m — 1 with m > k [25]. These polynomials are used to
construct least—squares Padé approximants which are less sensitive than Padé approximants to perturbations
in the coefficients of the series to be approximated.

Many projection methods for the solution of systems of linear equations are related to biorthogonal
polynomials as explained in [17, pp. 141-154]. Among them, are generalizations of L.anczos method [17,
pp- 171-180], the method of Arnoldi (FOM) [1], and GMRES of Saad and Schultz [86]; see [19].

As mentioned above, the E—algorithm is the most general sequence transformation known so far. Its
kernel is the set of sequences of the form

Sp=S4+ag1(n)+---+arge(n), n=0,1,...,

where the (g;(n)) are auxiliary known sequences. The new sequences obtained by this transformation are
defined by

S, .. S 1 ... 1

o et o aerm | am) - gk

B =1 /] :
g o gk | | am) o am+r)
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Let s be the linear functional defined by s(z?) = S;. We see that E,(cn) = s(x”P,gn) (x)), where P,S") is the
formal biorthogonal polynomial, normalized by the condition P,Sn) (1) = 1, such that Li(x”PISn) (x))=0
fori =0,...,k—1, where L;j(27) = g;11(j).

The preceding ratios of determinants can be recursively computed by the E—algorithm

n+1 n
A S

E](ﬁr)l = El(cn) - (7]:+1) (n) Ie-1,k
k-1 — -1,k
n+1 n
(n) () !J/(c,i /- gl(c,i) (n)
Ie+1i = Iki T (g1 ) Ik-1.k

k—1,k — Jk—1,k

with E(()") =S, and g[()fli) = g;(n). Shanks transformation is recovered for the choice g;(n) = AS,4;_1,
and the G—transformation corresponds to g;(n) = gp+i—1. On the E—algorithm, see [26, pp. 55-72].

As seen above, ratios of determinants play an important role in biorthogonality where they often appear.
Such ratios are related to Schur complements, as explained in [10]. It has been proved that quantities com-
puted by a triangular recursive scheme as those used above can be expressed as ratios of determinants, and
vice versa, and as a contour integral [26, pp. 21-26]. This framework also includes B—splines, Bernstein
polynomials, generalized divided differences, etc., which opens new territories for biorthogonality.

Formal orthogonality may have other applications, for example, in wavelets [54].

Acknowledgement. I would like to thank Michela Redivo Zaglia for several pertinent comments, and
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