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Abstract. We consider a class of optimization problems arising from statistical density estimation of
high dimensional data from projections on lower dimensional subspaces. Two criteria are used for opti-
mal model selection, namely, maximum entropy and maximum likelihood estimation. In each case, our
approach requires univariate density estimators and in this regard we explore the use of mixture models
of gaussian densities as well as Parzen estimators, for the projected data. An expectation maximization
strategy is used to update means and covariances as described in Dempster et al. [7]. However, the
computation of best directions leads to a challenging class of nonlinear optimization problems which is
the focus of our study here. Special cases of this optimization problem are studied analytically and an
algorithm to numerically solve the general case is proposed. We provide numerical evidence, on data
coming from speech recognition as well as on synthetically generated data, that validates the efficacy of
the proposed method.

Sobre un problema de optimizacién surgido en estimacion de la densidad
de probabilidad

Resumen. Consideramos una clase de problemas de optimizacién que surgen en estimaciones de
la densidad de datos en dimensién elevada a partir de proyecciones en subespacios de dimensién mas
baja. Los criterios que se usan para la seleccién éptima del modelo son mixima entropfa y méixima
verosimilitud.En cada caso nuestro planteamiento requiere estimadores de la densidad univariados y a
este respecto exploramos el uso de modelos mezcla de densidades gaussianas y de estimadores de Parzen
para los datos proyectados. Se usa una estrategia de maximizacién de la esperanza para actualizar medias
y covarianzas como en Dempster et al. [7]. Sin embargo el célculo de las direcciones Gptimas conduce
a interesantes problemas de optimizacién no lineal que son el nicleo del presente trabajo. Se estudian
analiticamente algunos casos particulares de este problema de optimizacién y se propone un algoritmo
para resolver numéricamente el caso general. Se presenta evidencia numérica, sobre datos procedentes
de reconocimiento del lenguaje y sobre datos generados sintéticamente, que avala la eficacia del método
propuesto.

1. Introduction

Our motivation comes from the problem of classifying high dimensional feature vectors arising in a num-
ber of statistical machine learning problems in the domains of speech, image and video processing. The
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problems of automatic machine recognition of speech, or a specific object in an image, or an event in a
video sequence often involve estimation of probability density of feature vectors in the feature space. The
dimension of these feature spaces can be a hundred or more. We attempt to deal with the problem resulting
from this curse of dimensionality in estimation of probability densities, which is further aggravated in some
of the above situations by paucity of available data.

In more concrete terms, we are given vectors 2!, 2%, ..., 2N € R? where d is large. From this data
we must compute a probability density function which represents a random variable from which the sam-
ples z', 22, ..., 2"V are drawn. The approach taken here is based on the fact that there are many methods
available for estimating univariate probability densities. Thus, we propose to project the multivariate data
on chosen directions, reconstruct the univariate probability density from this projected data for each choice
of directions and then use these univariate probability densities to reconstruct the unknown multivariate
density by a maximum entropy or maximum likelihood estimation criterion. We only treat here the case
of this important problem when the number of directions is the same as the dimension of the samples. In
this case, we can identify explicitly the multivariate density which maximizes entropy subject to d marginal
constraints and can then address both analytically and computationally the task of finding the optimal di-
rections. We choose directions by either further increasing entropy or alternatively, the likelihood. In this
regard, the essential computational problem is a class of numerically challenging nonlinear optimization
problems for which we provide algorithms to solve numerically. Examples are provided to demonstrate the
efficacy of our method. In this section, we shall review some of the observations made in [5] and [3].

2. Maximum entropy from marginals

In this section we briefly review the method proposed in [5], see also [3] for high dimensional density es-
timation. Let (column) vectors, y',y2,...,y? € R? be given and denote by Y the d x d matrix whose
columns are these vectors. We are given univariate probability density functions, p1, ps, . . ., pq and con-
sider all multivariate probability density functions P : R¢ — R such that for all continuous functions f of
compact support on R there holds the equations

S a)Pade = [ fopd, =120 m
23 23

We denote the class of all densities P satisfying the above equations by C(p). Recall that the entropy of P
is given by

H(P):=— . P(z)log P(x)dx.

Theorem 1 Given any probability density functions py,pa,...,pq on R such that fori = 1,2,...,d,
pilogp; € L(R) we have that

d
max {H(P) : PeC(p)} = —%log det G(V)+ 3" H(py) . @

where G := YTY is the Gram matrix

Moreover,

P*(x) = /det GYV) [ [ pi ((v',2)),  weRY, 3)

i=1

is the unique probability density function in C(p) at which the maximum in (2) is achieved. O
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The proof of this result appears in [5] and it can be used to isolate desirable features of multivariate data
2t 22, ... 2" in R? in the following manner. Suppose a univariate family p(-; ), z € RY of probability
densities on R, which provide a good estimator for a random variable from which the components of x are
drawn, is specified. For a given y € R?, we form the vector X7y € RN where X is the d x N matrix
whose columns are the multivariate data 2!, 22, ..., 2 and use p(-; XTy) as an estimate for the marginal
probability density function of P in the direction y. Given d directions y', 42, ...,y?, Theorem 1 states

that the maximum entropy estimator is

d
Pr(x) =\/det GX) [[ p (W 2); XTy7),  zeRY, (4)

Jj=1
and

d
J(Y) = H(P*) = —% log det G(Y') + ZH(yJ’) : (5)

where we define
H(y) == H (p(+:X"y)) , y € RY.

We desire to make the entropy (5) as large as possible by varying our choice of vectors over an orthonormal
basis. In this case, (5) becomes

where Y is an orthogonal matrix.
This philosophy is similar to projectional pursuit where even more than d dimensions can be considered
[8]. Nonparametric versions of same ideas appear in [14, 17].

Gaussian model for projections: We recall the special case of this problem connsidered in [5].
Letz = (v1,79,...,25)7 € RY be the vector of univariate' data obtained by considering the projec-
tions of the multivariate data z',22,...,2"V. The univariate data are modeled by the gaussian density
N (+; (), o(x)), where

1 _e-w?

N(t;p,0) = e 22 [ teR,
V2o
with
1 XN
S P30 ®
and

1 N
':NZ . ©)

The function to be optimized in this case is
1 d
In(Y) = ~3 logdet N(Y') + log (2me) Zlog J Vy (8)

where V is the d x d matrix V = UUT and U is the d x N matrix, whose columns are the vectors
1 —_—
7 (a7 —7),

ISuperscripted variables denote data in d dimensional space, whereas subscripted variables denote data projected in one-dimension

W = j=1,2,....N,
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where

1 N

Let A1, Ao, ..., Aq be the eigenvalues of the matrix V. It was shown in [5] that

d
min {Jx(Y) : Y is orthogonal} = — log (2me) Z log ;.

where equality occurs above if and only if

(y'.Vy') =0, i#J,4,j=12,....d ©)
which, in turn, is satisfied when y’s are orthonormal eigenvectors of V. Moreover, we have that
. d 2 d
max {Jn(Y) : Y is orthogonal} = 3 log % + ) log trace V.

where equality occurs if and only if forall j = 1,2,...,d,

d
2 (10)

&.Il—‘

(y?, Vyl)

Gaussian mixture model for projections: 1In practice it is not desirable to estimate univariate den-
sities by a single gaussian. As in [5] we consider the possibility of modeling univariate density by using a
mixture model of m gaussians which has the form

p(ts pw,o)=> wj N(tp,05)  teR, (1)
where the mixture weights satisfy the constraints
m
dwi=1, w20, i=12....m (12)

For any choice of parameters p, w and o, we recommend computing the entropy of the probability density
in (11) by a Monte Carlo method using random samples drawn from this density.

To choose the parameters of the probability density in (11) as a function of the data vector (x1, 22, ..., 2N
€ RN we use a fixed number of iterations of the update formulas for the EM algorithm, see Dempster
et. al. [7]

)T

1 N
Aj—ﬁz G i=1,2,...,m

N
P;
[ = M’ i=1,2,...,m
i =
Zz 1PZ-7
Y Piia; — 15)?
0¢j222221 ’J-z](xz ’u]) , j:172,...,m,
Ei:lpij

where for j =1,2,....,m,i=1,2,..., N we define

wiN (zi 5 pj,05)
p(xi; pw,o)

Pij =

142



On an optimization problem arising from probability density estimation

These formulas enhance likelihood and set the values w, ¢ and ¢ as a function of the vector 2. We denote
by p(-; ) the resulting univariate estimate for the data vector z € RV by mixture models of gaussians.

We iteratively update the orthogonal matrix Y by using planar rotations. In other words, we choose
any two consecutive vectors ¢/, y7 1 and form the new vectors

y(O) =y (£5+1
v () = (cosh) y/ —(sinf) y’*!
yTL(H) = (sin®) 3 + (cosh) y/tL.

We choose § € [0, 27] to the maximize the univariate function
F(8) = H(y' () + Hy' ()

and replace the vectors y*, 42, ... y% by y'(8),y2(8), ... y%(8). The procedure is repeated cycling through
the columns of Y until a desired outcome is achieved.

Maximum Likelihood criterion: For the remainder of this section we use a maximum likelihood cri-
terion to select our model parameters. We start by considering a Parzen estimator for the date vector
x = (1,22, -. ,xN)T of the form

1 & t—x;
o) — - J
p(t,x)—Nd]E:lA( A >, teR

where the kernel is chosen to be ' = N (+;0, 1). The choice of the bin width h is discussed in [16].
Given d orthonormal vectors y',y?,...,y? and corresponding marginals p (; X”y), the maximum
entropy estimator given by Theorem 1 is

3

O

]
—.

p((y/z) ;s XTy?),  zeR,
and the log—likelihood function of the data has the form

N d 1 N ) )
1) = 33t (7 ()
i=1 j=1 k=1

where

gk =2 i k=1,2,...,N.

We resort to an EM strategy to develop an iterative update formula that increases the function L. To
this end, we let the matrix Y be our initial guess for the desired orthogonal matrix Y and seek another

A

orthogonal matrix Y such that L(Y") > L(Y). To find a suitable Y, we set

K((§7, g™ h))
i = — . (13)
TSN K (9, ghy)

and recall by the concavity of the log function and the form of the kernel K" there holds the inequality
L(Y) - L(V) > Q(V) — Q(Y) where

d
QYY) = (v, A;9") (14)

j=1
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andforj =1,2,...,d
TR
=5 Z chij(x’ — P (xt — 2T,
i=1 k=1
To update Y we diminish the function @) by considering the function

F(0) = (y' (0), A1y (0)) + (y*(0), A2y°(6))
which can be expressed as

F(0) = asin26 + B cos26 +
where 1 1
:§(A1—A2), CZE(Al—FAQ)
and
8=("By') —(v*,By?), a=-20"By’), = Cy")+{yCy).

The minimun of the function F occurs at § = kr + % where £ is an integer and

B
a? + ()
We now use planar rotations as before to diminish the function ) and hence enhance L.
We consider improving the MLE estimator introduced above for our multivariate data 2, 22, ..., 2"V €

R? by using a univariate mixture model of gaussians mixtures for the marginals. Therefore, given d or-
thonormal vectors y', 32, ..., y¢ € RY, the log-likelihood function of interest to us here is

LY, w,pu,0)= ZZlog (ng] xl> : pgj,agj)> , (15)

i=1 j=1

cosy = —

where the mixture weights satisfy
m
we; >0, Y wy =1,  j=12....d

Our goal is now to describe a strategy to iteratively increase L. As before, we suppose we start with an
orthogonal matrix Y and first explain how we update w, p and o to increase L. We let w, 1 and & be our
initial guess for these parameters and shall identify w, u and o such that L(Y, W, o) > L(Y, w, f1,6). To
this end, we observe by the concavity of the log function that

L(Yawaplva) - L(Y,d),ﬂ,ﬁ') > Q(Yawapﬂa) - Q(Yva)ap‘v&)a

where o o
iy - GG ({99, %) 5 fuej, 6¢;)
Y Zk L0k G (97, 2% 5 g, Okj)

and

N d m
Q(Yawapﬁa) = Zzzamé IOg wf] (<y]7xl> ; N(Zjafféj) ) . (16)

i=1 j=1 (=1

The maximum of the function Q (Y, w, u, o) with respect to w, u, o occurs when
T
CL)[]‘ = N 2; aijf )
=
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N . .
Z aije (97, 2")
=1

e = —x
> aije
i—1
and N o
Dimy @ije (7, 2*) = pe)?
N .
Zizl Qije

U[j =

These formulas update w, ji and &.

We shall now update the orthogonal matrix Y. To this end, we use the new parameters w, p and o for
this step and reformulate the log-likelihood function in terms of unique vectors y‘, ¢ = 1,2, ..., m, defined
by the equation ¢ = (y7, ut)

N d m
L(Y,w,p,0) = Zzlog <sz,~N (7 2") 5 (o, ") ,Uzj)> .

(=1

Suppose that Y is our initial choice. We seek an orthogonal matrix Y such that L(Y,w, p, o) > L(: ,W, [, ).
Similar to the argument used before we have that L(Y,w, u,0) — L(Y,w, u,0) > V(Y) = V(Y), where
Vi=u—Q,

_ _ wle (<g]7x2> ; <Z)J7:u£> 70Zj)
Qijt = =m P NN e )
Yohey Wi N (g7, %) 5 (97, puk)  og)

d
QYY) = (v, Aj9’) (17
j=1
1 Nom Qg
Aj 2522 (s — ) (i — )™
— = Ot
=1 (=1
and
N d m Wi
U= Q¢ log — .
;;; ’ <\/2’Wi>

J l
Since the vector u is independent of Y, we can use the methods described earlier to diminish the function
@ and thereby enhance L.
All of the methods we have described above start out from the perspective of nonparametric density
estimation. For parameter estimation techniques based on nongaussian mixture components, see [1, 4, 2].

3. Optimizing the Function @

In view of the discussion of the previous section (see equations (14) and (17)), an essential computational
problem for the selection of model parameters in the methods described above is to minimize the function

d
QY) = (v, Aw')
i1
where Ay, As, ..., Aq are real symmetric matrices and Y = [y',52,...,99 € R¥*? is an orthogonal

matrix, that is, YTY = I. In the present section we gather together some observations about this problem
including two algorithms for minimizing () and our computational experience with them.We first start with
aresult pointed out to us by Alan Hoffman that identifies an orthogonal matrix which minimizes the function
@ under some special conditions on the matrices A;,7 = 1,2,...,d . We state this interesting fact next.
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Proposition 1 If there exist an orthogonal matrix M € R**¢ and diagonal matrices D; € R¥*?, § =
1,2,...,dsuchthat A; = MD;MT,i=1,2,...,d then there is a permutation matrix P € R*® with the
property that for any orthogonal matrix Y € R4*4, Q(T) < Q(Y) where T := M P.

PROOF. For any orthogonal matrix Y = [y*,y?,...,y4] welet ' = M7y’ i = 1,2,...,d and observe
that these vectors are also mutually orthogonal and satisfy for i = 1,2, ..., d the equations (y*, A;y") =
(2%, D;z") . Hence the proof boils down to showing that the function F(Y') := trace{SA} where S is the
matrix whose elements are defined by the equations S;; := (yf )2i,5=1,2,...,dand the matrix A is built
from the diagonal matrices D; = diag [a;1, a;a, . .-aql, 3,j = 1,2,...,d is bounded below by F(P) for
some permutation matrix P.

Recall that a d x d matrix, W = [wy;] .i,7 = 1,2,...,d is called doubly stochastic if ZZ:1 Wy =
Zﬁ wjr = land w;; > 0,4,5 = 1,2,...,d. Note that since Y is an orthogonal matrix the matrix .S
defined above is doubly stochastic. Moreover, since the function F' is linear in S we can appeal to a
theorem attributed to Birkhoff [6, 11] which states: The set S of all n x n doubly stochastic matrices is the
convex hull of the set P of n X n permutation matrices to prove the result. W

Another fact of some utility is a simple lower bound on the function (). We state this result next.

Proposition 2 If A, A,, ..., Ay € R¥*%are real symmetric matrices andY is a R**¢ orthogonal matrix
then
d
QY) >N,
i=1

where \; is the minimum eigenvalue of A;.

PROOF. Since the matrices A;’s are real symmetric we have for any vector y

(y, Aiy) > Xi (y,y)

We use this inequality to bound each summand that appears in the definition of () to prove the result. W

We now turn to the the description of two algorithms which we have used to minimize the function
Q. The first was described earlier and uses planar rotations. We note that all orthogonal matrices of size
d can be written as a product of d(d — 1)/2 planar rotations (see [18, section 14.6]), each of which is in
turn parameterized by a rotation angle, say 6. Our strategy in this section is to successively use these planar
rotations in such a way that () is minimized at each step as a function of the rotation angle §. We achieve
this goal by using the following algorithm:

Algorithm 1

e For each vector pair y/ and y*, form vectors:

{ y7(0) = (cos @)y’ — (sin B)y"
y*(0) = (sin)y’ + (cosO)y*

Find§s. t. F(8) = min {F(8) = (y7(9), A;47(8)) + (y*(8), Axy*(9)) : 6 € [0, 27]}

Replace 6 with 4 in 47 (A) and y*(6).

Repeat until convergence occurs.

Note that the orthogonality of the vectors 37 (#) and y*(#) in the algorithm above is preserved, since these
merely represent ¢/ and y* in a rotated coordinate system. Furthermore, note that this algorithm in fact
performs d(d — 1)/2 planar rotations in each loop. We can simplify F'(#) by writing

F(0) = asin(26) + [ cos(26) + v,
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where
a=-2(y.By*)y, B={(y,Byy—(y" By*), ~v=(y,Cy") + (y*,Cy")

and

1 1
B=3(4— A, O=3(4+A0).

We locate the stationary points of F(6) with the formulas

A 1 a
0= 5(k7r+¢); 1) = arctan <E> , keZ.

and are interested in those which minimize of F'. For this purpose, we observe that F' can be rewritten as

FO =[50l Goap |

cos 26
sin 26
of [ B,a ]. Thatis, if f + ia = exp(ithy) then § = —tpo/2 + km is a minimizes F.

As an alternative to the strategy of using planar rotations discussed, we consider the possibility of using
conjugate gradient to search for local maxima of the function ). We attack this problem by parameterizing
orthogonal matrices by skew-symmetric matrices. This frees the variables of any constraint equations, thus
enabling the use of gradient ascent methods.

Recall that a complex matrix is skew hermitian symmetric whenever S = —S*T and we have the
following fact.

so that the minimum of F' is —(3? + a?) 2 and is achieved when [ } points in the opposite direction

Lemma1 A matrix Y € C™ ™ with detY = 1 is unitary if and only if there exists a skew-Hermitian

matrix S such that
Y =e5.

Furthermore, if Y € R"™*™ then S € R™*™,

Note that the representation of Y in terms of S is not unique.Indeed for any k € Z and

2wk 0
S_[ 0 27rk}'

we have that exp .S = I. Let us briefly present the proof of this result for the convenience of the reader.
PROOF. We write Y in the form

Y = PAP™;
where P is a unitary matrix and A = diag{\1, \a,..., \,,} is the diagonal matrix of eigenvalues of Y.
Certainly, fori = 1,2,...,d, \; = exp(46;) for some 6; € R. Thus, we obtain the desired representation

Y = e, where S := Pdiag[f;,6s,- - , 0, P*.

Additional effort is needed to show that S can be chosen to be real when Y € R™*™ . In this case,
complex eigenvalues (and the associated eigenvectors) of Y occur in conjugate pairs. Thus, we may choose
an ordering of the eigenvalues (and the corresponding eigenvectors in P) such that \; = \j; fori =
1,3,....2n—1),\; = —1fori=2n+1,2n+2...,2¢,and \; = 1 fori =2+ 1,2(+ 2 ..., m. Note
that since det Y = 1, the number of \;’s that equals —1 is even and therefore we can write the matrix A in
block form

A=expl

where
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I :=diag[[§,..., TS, T7, ..., T7, TP .. T7],

with
e | ;i 0 _— 0 = p
I‘i.—[ 0 —zei]’ Fi—[_ﬂ_ 0}, and I} =[0].
We set S = PI'P* so that we have }
Y = PetPr.
Moreover, fori = 1,2, ...,n we introduce matrices
r{=Jr;J*
1 — 0 6; .
— 1 T 2
where .J = 7 [ 1 . ] and I'] := [ VI }.Thus,wemaywnte
S=Qr'Q",
where
" :=diag[l],...,[0.07,...,I7T. TV ... 2]
Q=PrJ
and

J =diag[J,...,J, 1,...,1 ]
N—— ——
n copies (2s+r) copies

Since I'" € R™*™  the proof that S € R™*™ will be complete when we show that ) € R™*™ . For this
purpose,let the eigenvectors of Y be
P = [plap2a .. 7pm]

and by choice we have that p; = p;11 fori = 1,3,...,(2n — 1), and p;’s are real for i = 2n + 1,2n +
2...,m. Invoking this fact we conclude that

Q = [2%(]31), 2%(]71)’ ey 2§R(p2’n—l)a 2%(p2n—l)ap2’n+17 .. 7pm] € ]Rme7

Now since Q € R™*™_ we have ST = Q(A")TQT = —QA"QT = —S which shows that S is skew-
symmetric, thus, completing the proof. M

For matrices of small size e can be explicitly computed by using the Cayley-Hamilton theorem. For

example, when m = 2, 3,4 we have that

in6
€2 = cosbsl, + i 252
0,
iné 0; —1
653 = _[3 + S 353 + €0 32 S«g
63 03
BS4 = 040[4 +O£154 +OLQSZ +0£352,
where
0 c c c
0 a 0 biz iz —c (1)2 013 014
Sy = ol S5 = —bis 0 by |, Sg= 12 23 24
—aia 0O —c13 —ca3 0 c3y
—biz —byz 0

—cig —cC4 —c34 0
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and 02 = 12, 03 - \/b%Q + b%i} + b%g’
ag = ——— [r—cos(y/—ry) — 4 cos(y/—r2)]

o =

ay = ———— [cos(y/—r=) — cos(y/—r4)]
in(

as

where 7y = (=% £ /0)/2, § = \/c}y + cfs + ¢y + ¢33 + 3, + 5, and
0= ((012 + c34)” + (c13 — €24)? + (c1a + 023)2) X ((012 —c34)” + (c13 + c24)? + (14 — 023)2) .

These formulas allow for the direct use of numerical optimization packages, however, for m > 5
this procedure impractical. As an alternative, we discuss numerical procedures for computing e and its
derivatives by using the following result, see [13, 12, 15]:

Proposition 3 If S = [s;;], i, = 1,2, ..., d is a skew-symmetric matrix andp = 1,2, ... then

oSs? o8p—1
-z Q9= E..— E..)SP 1
8s,~j S Bsij + ( 4 ]Z)S

where all the elements of the matrix E;; are zero except for the i-th, j-th element, which is equal to one.

PRrROOF. The proposition follows as a simple application of the product rule for matrix differentiation
[4,13,15,12]. W

If the eigenvalues of S are small the Taylor series for e® converges rapidly and this can be exploited to
compute approximations to e and its derivatives. When the eigenvalues of S are large, or simply in order
to accelerate convergence, we use the relation

1 (o3
s = (%)

where a is chosen to be some power of two for rapid computation of e and for its derivatives use the
product rule for matrix differentiation.

We associate with every skew-symmetric S = [s;;], 4,5 = 1,2,...,d a vector v € RH@=1)/2 ( and
visa - versa) by the formula

v = [512, e, 81d]823, 0y S2d] |5(d—1)d]
and transform () into the unconstrained optimization problem of finding v* so that
U(v*) = min{U(v) : v € RH4~1D/2}
where U (v) := Q(exp S).

By using results of Proposition 3 we may now compute the gradient of the function U follow the
algorithm:
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Algorithm 2
o Initialize S = log Y and form the vector v.
o Compute the desired derivatives of exp .S and therefore obtain VU.

e Find the optimal v* by using a conjugate gradient update strategy such as: v = 0 — pV;U (0), where
the constant p is chosen appropriately.

o Finally, rearrange elements of v* to get S* and compute Y* = 5",

Other optimization routines can be used which are better suited for large scale problems. This algorithm
was implemented in Matlab using the function ’fminunc’ from the Optimization Toolbox, which uses a
method involving preconditioned conjugate gradients [9].

4. Numerical Results

The two algorithms presented in the previous section for minimizing the function () were implemented in
Matlab, using the d x d identity matrix as initial value for Y and utilizing the Matlab function *fminunc’ in
the second algorithm. We consider their performance on the following three examples. First we consider
an example where the algorithms should reach the lower bound presented in Proposition 2.

Example 1 We consider the following 3 orthogonal matrices:

100 010 0 %
Q=01 0], Q= vz 0 vz and @3 = \% % ﬁ
L =1 —1 1 1
0 01 7 0 7 = 5 U
and the diagonal matrices (with ascending values on the diagonal):
1 00 2 00 300
Di=|10 2 0|, Dy=]0 40 and D3=|0 6 O
0 0 3 0 0 5 0 0 8

Next, we construct matrices 4; = Q;D;Q7 fori = 1,2,3. Note that this corresponds to the eigenvalue-
decomposition of the matrices Ay, A> and A3. Moreover, the eigenvectors corresponding to the minimal
eigenvalue for each A; are chosen so that they are mutually orthogonal. Hence, the global minimum of @
is achieved by the orthogonal matrix

1 0 O
* 1 1
=10 7

0 7% ©#

Algorithm 1 yielded the following solution after twelve iterations:

X [1 0 0 ]
V=10 07071 —0.7071 |,
[0 0.7071  0.7071 J

whereas Algorithm 2 converged after six iterations yielding the solution:

) 10 0
Y5 =|0 07072 —0.7071
0 07071 0.7072
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The small inaccuracy in the last solution can be attributed to round-off errors resulting from the computation
of matrix logarithms and exponentials. Also, it is easily verified that Q(Y7*) = Q(Yy) = 6 (within a
precision of 10~%), thus, confirming that both algorithms achieve the global minimum in this case. The
next example concerns the diagonal case discussed in Proposition 1.

Example 2 Consider the 5 x 5 diagonal matrices consisting of random numbers:

D, = diag{[0.0178,0.2477,0.3662,0.0510, 0.5587]}
D, = diag{[0.5223,0.1489,0.2709,0.3607, 0.0850]}
D; = diag{[0.6148,0.8254,0.9150,0.1290, 0.2233]}
D, = diag{[0.8930,0.2746,0.6009,0.4612, 0.6609]}
Ds = diag{[0.7574,0.2787,0.9980,0.7245, 0.7056] }

Algorithm 1 converges after two iterations for this example and yields the following minimizer:

1 0 0 00
00 0 01
Yy={0 0 0 10
0 0 -1 0 0
0 -1 0 0 0

However, the unconstrained optimization method of Algorithm 2 converged to the identity matrix Y; ,in one
iteration this being the case because the identity matrix is a local extremum, which we chose as an initial
starting point. Since F’ (171*) < F (172*), in this case, SA/Q* is a local minimizer. Interestingly, we note that
both of the Y’s are permutation matrices. This is consistent with Proposition 1 which asserts that in the
case when all A;’s are diagonal the local minima of () are permutation matrices.

Example 3 Consider the matrices A; = M D; M7 fori = 1, 2,3 with
D, = diag[1,5,3]; Do = diag[2,7,1]; D3 = diag[6,4.9],

and the orthogonal matrix M

M =

[

V2
In this case, Algorithm 1 converged to the following matrix after four iterations:

Shshsl
shshalt
s o

—0.5774 0 0.8615
Y= -0.5774 0.7071 —0.4082 |,
—-0.5774 -0.7071 —0.4082

and we obtain

A X -1 0 0
Zy=MTyy=| 0 0 -1,
0 1 0

which is a permutation matrix. Moreover, Q(Y*) = 6, which by Proposition 1, is the global minimum.
Thus, Algorithm 1 gives us the global minimum in this case as well. Although Algorithm 2 used sixty five
iterations to stop at the following solution

. 0.5753 0.0006 —0.8179
Y =1 05770 0.7085  0.4063 |,
0.5798 —0.7057 0.4073
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which gives
1.0000  0.0020 —0.0025
Z:=MTYy = | 00025 0.0007 1.0000 |,
—0.0020 1.0000 —0.0006

which is a close approximation to a permutation matrix. Taking further into consideration the fact that
Q(Y*) = 6.0001 ~ Q(Y*) one concludes that the unconstrained optimization based Algorithm 2 con-
verges to the correct solution as well.

We remark that the above examples and other experiments we conducted indicate that in terms of com-
putation time Algorithm 1 generally is more efficient than Algorithm 2. Furthermore, the point to which the
convergence algorithm converged depended on the starting point chosen, which indicates that the function
() has multiple local (and possibly also global) minima.

We now turn our attention to density estimation using our maximum entropy method for estimation for
multivariate probability densities corresponding to equation (15). where the parameters are determined by
the following two-step algorithm:

e Update wyj, yi¢; and o7; by using the EM algorithm
e Update the orthogonal projection directions Y by minimizing F'(Y").

This algorithm was implemented using Algorithm 1 and compared to the gaussian mixture model [10] for
the two dimensional examples described below.

Example 4 1In this case, five thousand random samples were drawn from a two-dimensional gaussian

1
distribution, with mean and variance y = ; and ¥ = i % . The maximum entropy model

2
and the mixture gaussian models were trained using this data, and the estimated probability densities were
plotted using the same grid for comparison. The results shown in figure 1, illustrates that both models
estimate the true distribution fairly well.

Example 5 In order to examine the behavior of our models in a somewhat more involved scenario,
we considered data used in speech recognition experiments. We used two-dimensional projections of 60
dimensional acoustic feature vectors from a sub-phonetic speech unit. The two models under investigation
were trained using a set of 10248 of two-dimensional vectors so obtained, and the estimated distributions
were plotted.

Figure 2 displays the plots of the densities obtained via the two methods together with the histogram of
the data. Here, an inherent weakness of the maximum entropy model is revealed, namely, when dealing with
spherically non-symmetric distributions, the model smooths out the structure. This is due to the way the
model is built, projecting the data into optimal orthogonal directions and estimating the distribution from
the marginals in these directions. In comparison, the gaussian mixture model is more of a multidimensional
kernel estimator, and has, therefore, more advantage in estimating such distributions. In particular, the
histogram indicates a lump in the structure, which is captured by the gaussian mixture model, whereas
it is smoothed out by the maximum entropy model. Furthermore, it seems that the former emphasizes
bimodality in this case, where the latter does not. This is better observed in the three-dimensional graphs
displayed in figure 3.

5. Conclusion

We have considered problems associated with estimation of probability densities from projection of data on
lower dimensional subspaces. We have indicated how maximum entropy and maximum likelihood criteria
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Gaussian Mixture Distribution

Maximum Entropy Distribution

Bigaussian Distribution

4 I I I I I | I I
-3 -2 -1 0 1 2 3 4 5

Figure 1. These two dimensional graphs illustrate the good performances of both the Gaussian Mixture
Model and the Maximum Entropy Model for estimating the Bigaussian distribution shown on the bottom.
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Maximum Entropy Distribution

Gaussian Mixture Distribution
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Figure 2. The Maximum Entropy and the Gaussian Mixture estimates of the distribution of the most corre-
lated dimensions (9 and 22) of leaf 1. The bottom left graph shows the histogram of the data, and the bottom
right graph illustrates the absolute difference between the two models.

Maximum Entropy Distribution Gaussian Mixture Distribution

dim 22 R -0 dim 22 0

Figure 3. The estimates of the distribution of leaf 1's dimensions 9 and 22, viewed in three dimensions.
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can be used to exploit the nonuniqueness of the problem of reconstruction. Estimates of densities in the
lower dimensional subspace can be obtained from a variety of models including e.g., the gaussian mixture
model. A nonlinear optimization problem of specific nature appears to play a central role in our discussion.
Algorithms for solving this optimization problem for estimating these densities are discussed. Simple
numerical examples are worked out to demonstrate the method. The present research could be pursued
in several other directions. An issue that we have not addresses would be to consider reconstruction of
d-dimensional densities from projections along more than d directions.
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