

Rev. R. Acad. Cien. Serie A. Mat. VOL. **96** (1), 2002, pp. 129–134 Matemática Aplicada / Applied Mathematics Comunicación Preliminar / Preliminary Communication

Interfaces in solutions of diffusion-absorption equations

S. Shmarev

Abstract. We study the properties of interfaces in solutions of the Cauchy problem for the nonlinear degenerate parabolic equation $u_t = \Delta u^m - u^p$ in $\mathbb{R}^n \times (0, T]$ with the parameters m > 1, p > 0 satisfying the condition $m + p \ge 2$. We show that the velocity of the interface $\Gamma(t) = \partial \overline{\{\text{supp } u(x,t)\}}$ is given by the formula $\mathbf{v} = \left[-\frac{m}{m-1}\nabla u^{m-1} + \nabla \Pi\right]\Big|_{\Gamma(t)}$ where Π is the solution of the degenerate elliptic equation div $(u\nabla \Pi) + u^p = 0, \Pi = 0$ on $\Gamma(t)$. We give explicit formulas which represent the interface $\Gamma(t)$ as a bijection from $\Gamma(0)$. It is proved that the solution u and its interface $\Gamma(t)$ are analytic functions of time t and that they preserve the initial regularity in the spatial variables.

Interfaces en soluciones de las ecuaciones de absorción-difusión

Resumen. Se estudian las propiedades de las interfaces de las soluciones del problema de Cauchy para ecuaciones parabólicas no lineales degeneradas $u_t = \Delta u^m - u^p$ en $\mathbb{R}^n \times (0, T]$ con parámetros m > 1, p > 0 que satisfagan la condición $m + p \ge 2$. Se demuestra que la velocidad de la interface $\Gamma(t) = \partial \overline{\{\text{supp } u(x,t)\}}$ viene dada por la fórmula $\mathbf{v} = \left[-\frac{m}{m-1}\nabla u^{m-1} + \nabla \Pi\right]\Big|_{\Gamma(t)}$, donde Π es la solución de la ecuación elíptica degenerada div $(u\nabla \Pi) + u^p = 0, \Pi = 0$ sobre $\Gamma(t)$. Se deducen las formulas que representan explícitamente la interface $\Gamma(t)$ como una biyeción de $\Gamma(0)$. Se demuestra que la solución u y su interface $\Gamma(t)$ son analíticas como funciones del tiempo t y que conservan la regularidad inicial respecto de las variables espaciales.

1. Lagrangian coordinates

We study the Cauchy problem

$$u_t = \Delta u^m - u^p \quad \text{in } S = \mathbb{R}^n \times (0, T), \qquad u(x, 0) = u_0(x) \ge 0 \qquad \text{in } \mathbb{R}^n \tag{1}$$

with the parameters m > 1, p > 0 subject to the condition $m + p \ge 2$. It is known that in the case m > 1, $p \in (0, 1)$ the initially compact support can split into several components and that the solution vanishes in a finite time. We refer to [1, Ch.3] for the background information on the behavior of interfaces in solutions of problem (1).

We are concerned with the study of the interface dynamics and regularity. In the one-dimensional case, the study of the interface regularity was performed in [3, 4] but the method proposed and developed in these papers does not directly apply to the multidimensional case.

Presentado por Jesús Ildefonso Díaz.

Recibido: 5 de Marzo de 2002. *Aceptado*: 8 de Mayo de 2002.

Palabras clave / Keywords: diffusion-reaction equation, interfaces, regularity of solutions and interfaces, Lagrangian coordinates Mathematics Subject Classifications: 35K55, 35K57, 35K65, 35B65, 35B35

^{© 2002} Real Academia de Ciencias, España.

Let u(x, t) be a continuous solution of problem (1) and $\Omega(t) = \{x \in \mathbb{R}^n : u(x, t) > 0\}$. For the sake of presentation we assume that the set $\Omega(0)$ is one-connected in \mathbb{R}^n , which means that the solution only has the outer interface. Our arguments extend without any change to the case when the set $\partial \{\Omega(0)\}$ consists of a finite number of simple-connected components.

Since $\Omega(0)$ is one-connected in \mathbb{R}^n and the solution is continuous, $\Omega(t)$ is also one-connected for $t \in \Omega(0)$ $(0,T_+)$ with some T_+ . The solution u(x,t) is strictly positive inside $\bigcup_{t \in (0,T_+]} \Omega(t)$, which allows us to take a set $\mathcal{D} \subset \Omega(0)$ with the smooth boundary γ such that $\mathcal{D} \times (0, T_+] \subset \bigcup_{t \in (0, T_+]}^{\infty} \Omega(t)$ and $u \ge \delta$ on $\Sigma = \gamma \times [0, T_+]$ with some $\delta > 0$. Adopt the notation $D = \mathbb{R}^n \setminus \mathcal{D}, \omega(t) = \Omega(t) \setminus \mathcal{D}, \omega = \omega(0)$. The weak solution to the Cauchy problem (1) solves the initial-and-boundary value problem

$$u_t = \Delta u^m - u^p \text{ in } E = D \times (0, T_+], \quad u(x, 0) = u_0 \text{ in } D, \quad (\nabla u^m, \mathbf{n})|_{\Sigma} = \phi(x, t)$$
(2)

with a prescribed function ϕ ; n denotes the unit vector of outer normal to Σ . Notice that since the solution u of the Cauchy problem (1) is smooth inside its support, we have $\phi \in C^{\infty}(\Sigma)$.

Definition 1 A function u(x,t) is said to be a weak solution of problem (2) if u is bounded, nonnegative and continuous in \overline{E} , $\nabla u^m \in L_2(E)$, and for every test-function $\eta \in C^1(\overline{E})$, vanishing for $t = T_+$ and all x large enough

$$\int_{E} \left(u \eta_t - \nabla \eta \cdot \nabla u^m - \eta u^p \right) \, dx \, dt + \int_{D} u_0 \, \eta(x, 0) \, dx + \int_{\Sigma} \eta \, \phi \, dS = 0. \tag{3}$$

Let us consider the following auxiliary mechanical problem: the flow of the politropic gas with density u, pressure $p = m/(m-1)u^{m-1}$, and velocity v through the porous medium that occupies the region D. It is assumed that the surface Σ is immobile and that the total mass of the gas is constant. We will describe the gas flow using Lagrangian coordinates [6]. In this description all characteristics of the motion are considered as functions of the initial positions of the particles and time t. Let us denote by $X(\xi, t)$ the position of the particle that initially occupied the position $\xi \in \omega$, and by $U(\xi, t)$ the density at this particle. The flow is described by the following relations:

$$X_t(\xi, t) = \mathbf{v}[X(\xi, t), t] \quad \text{in } Q = \omega \times (0, T], \ T \le T_+, \quad \text{(equation of the trajectories)} \tag{4}$$
$$U \det [\partial X / \partial \xi] = u_0 \qquad \text{in } Q \qquad \text{(the mass conservation law)}. \tag{5}$$

$$U \det [\partial X/\partial \xi] = u_0$$
 in Q (the mass conservation law). (5)

These equations are endowed with the initial and boundary conditions: $X(\xi,0) = \xi, U(\xi,0) = u_0(\xi)$ in ω (the initial data), $\mathbf{v}|_{\Sigma} = 0$ (the surface Σ is immobile), $U(\xi, t) = 0$ on $\Gamma = \partial \omega \times [0, T]$ (the free boundary). Let us assume that for a prescribed vector-field $\mathbf{v}(X,t) \in L_2(Q)$ and a given set of the initial and boundary data we can construct a solution (X, t), U of problem (4)–(5). This solution generates the map $\xi \mapsto x = X(\xi, t)$, which we assume to be such that $|J| = \det \left[\frac{\partial X}{\partial \xi} \right]$ is separated away from zero and infinity. Consider the function

$$u(x,t) = \begin{cases} U(\xi,t) & \text{for } x = X(\xi,t), \, (\xi,t) \in \overline{Q}, \\ 0 & \text{elsewhere.} \end{cases}$$
(6)

For any test-function $\eta(x,t)$ satisfying the conditions of Definition 1 the following equality holds:

$$-\int_{D}\eta(x,0)u_{0}\,dx = \int_{0}^{T}\frac{d}{dt}\left(\int_{\omega(t)}\eta\,u\,dx\right)dt = \int_{0}^{T}\int_{D}\left(\eta_{t}u + u\,\nabla_{x}\eta\cdot\mathbf{v}\right)\,dxdt.$$
(7)

Comparing (7) with (3) we see that the function u(x, t) is a weak solution of problem (2) if $\mathbf{v} = -m/(m-1)\nabla_x u^{m-1} + \nabla_x \Pi$, where Π is a weak solution of the degenerate elliptic problem

$$\operatorname{div}_{x}\left(u\,\nabla_{x}\Pi\right) = -u^{p} \quad \operatorname{in}\omega(t), \quad \Pi|_{\partial\omega(t)} = 0, \quad u(\nabla\,\Pi,\mathbf{n})|_{\Sigma} = -\phi.$$
(8)

Gathering conditions (4)–(5) with (8), and writing the latter in Lagrangian coordinates, we arrive at the the Lagrangian counterpart of problem (2): it is requested to find a solution X = I+Y, $P = m/(m-1)U^{m-1}$, and $\pi(\xi, t) = \Pi(x, t)$ of the system of nonlinear equations

$$\begin{cases} (I + \nabla^* Y)Y_t + \nabla (P - \pi) = 0, \quad P|J|^{m-1} - P_0 = 0 \quad \text{in } Q, \\ \operatorname{div} \left(u_0 J^{-1} \left(J^{-1} \right)^* \nabla \pi \right) + u_0^p |J|^{1-p} = 0 \quad \text{in } \omega \end{cases}$$
(9)

under the initial and boundary conditions $Y(\xi, 0) = 0$, $P(\xi, 0) = P_0 \equiv m/(m-1)u_0^{m-1}$ in ω , P = 0, $\pi = 0$ on Γ , $P^{1/(m-1)}(\nabla \pi, \mathbf{n}) = -\phi (m/(m-1))^{1/(m-1)}$, $Y(\xi, t) = 0$ on Σ .

Theorem 1 Let (Y, P, π) be a solution of problem (9) such that ∇P , $\nabla \pi \in L_2(Q)$ and |J| is separated away from zero and infinity. If for every $t \in (0,T]$ the map $\xi \mapsto I + Y(\xi,t)$ is a bijection between ω and $\omega(t)$, then formula (6) defines a weak solution of problem (2). The interface of this solution is given by (4).

2. The function spaces

 $\|$

Adopt the notation $d \equiv d_{\xi} = \operatorname{dist}(\xi, \partial \omega)$, $d_{\xi,\eta} = \min(d_{\xi}, d_{\eta})$, $|D^k v| = \sum_{|\beta|=k} |D^{\beta} v|$, $(\beta \text{ is a multi-index.})$ Given a set $G \subseteq Q$ and a number $\alpha \in (0, 1)$, we define the seminorms and norms: $|u|_G^{(0)} = \sup_G |u|$,

$$\begin{split} \{u\}_{G}^{(\alpha)} &= \sup_{G,\,\xi\neq\eta} \left\{ d_{\xi,\eta}^{\alpha} \frac{|u(\xi,t) - u(\eta,t)|}{|\xi - \eta|^{\alpha}} \right\} + \sup_{G,\,t\neq\tau} \left\{ d^{\alpha/2} \frac{|u(\xi,t) - u(\xi,\tau)|}{|t - \tau|^{\alpha/2}} \right\}, \\ \langle u\rangle_{0,G} &= |u|_{G}^{(0)} + \{u\}_{G}^{(\alpha)}, \quad \langle u\rangle_{1,G} = |u|_{G}^{(0)} + |Du|_{G}^{(0)} + \{Du\}_{G}^{(\alpha)}, \quad \langle u\rangle_{2k+1,G} = \\ &= \sum_{2r+|\beta|=0}^{k} \left| D_{t}^{r} D^{\beta} u \right|_{G}^{(0)} + \sum_{2r+|\beta|=k+1}^{2k+1} \left| d^{|\beta|-k+r} D_{t}^{r} D^{\beta} u \right|_{G}^{(0)} + \sum_{2r+|\beta|=2k+1}^{(\alpha)} \{d^{k+1} D_{t}^{r} D^{\beta} u\}_{G}^{(\alpha)}. \end{split}$$

Let $P_0 \in C^1(\overline{\omega})$, $P_0 = 0$ on $\partial \omega$, and $|\nabla P_0| + P_0 \ge \kappa > 0$ in $\overline{\omega}$. Then the (n-1)-dimensional manifold $\partial \omega$ can be parametrized as follows: 1) given an arbitrary point $\xi_0 \in \partial \omega$ we may introduce a local coordinates in \mathbb{R}^n with the origin ξ_0 so that the axis ξ_n coincides with the inner normal to $\partial \omega$ at ξ_0 ; 2) there exists $\rho > 0$ such that for every $\xi_0 \in \partial \omega$ the set $B_\rho(\xi_0) \cap \partial \omega$ is defined by the formulas $\xi_i = y_i$ if $i \neq n$, $y_n = P_0(y', \xi_n), y' = (y_1, \dots, y_{n-1}) \in B_\rho(\xi_0) \cap \{\xi_n = 0\}$. We set $\omega_\rho = \omega \setminus \bigcup_{\xi_0 \in \partial \omega} B_\rho(\xi_0)$, denote $D = B_\rho(\xi_0) \times (0, T]$, and define

$$\begin{split} u\|_{W_{2k+1}(D)} &= \left\langle u \right\rangle_{2k+1,D} + \sum_{0 \le 2r+|\beta| \le k-1} \sum_{i \ne N} \left| d^{-\alpha/2} D_t^r D_{\xi_i} \left(D^{\beta} u \right) \right|_D^{(0)} \\ &+ \sum_{0 \le 2r+|\beta| \le k-2} \sum_{i,j \ne N} \left| d^{-\alpha} D_t^r D_{\xi_i \xi_j}^2 \left(D^{\beta} u \right) \right|_D^{(0)} \\ &+ \sum_{k \le 2r+|\beta| \le 2k} \sum_{i \ne N} \left| d^{-\alpha/2+r+|\beta|-k+1} D_t^r D_{\xi_i} \left(D^{\beta} u \right) \right|_D^{(0)} \\ &+ \sum_{k-1 \le 2r+|\beta| \le 2k-1} \sum_{i,j \ne N} \left| d^{-\alpha+r+|\beta|-k+2} D_t^r D_{\xi_i \xi_j}^2 \left(D^{\beta} u \right) \right|_D^{(0)} \qquad k \ge 1. \end{split}$$

131

S. Shmarev

The Banach spaces V(k, Q) are defined as completion of the space $C^{\infty}(\overline{Q})$ in the norms $\|u\|_{V(k,Q)} = \sup_{\xi_0 \in \partial\Omega} \|u\|_{W(k,B_p(\xi_0) \times (0,T))} + \|u\|_{H^{k+\alpha,(k+\alpha)/2}(Q \setminus \{\omega_p \times (0,T]\})}$, where $\|\cdot\|_{H^{k+\alpha,(k+\alpha)/2}}$ denotes the standard Hölder norm. If a function w does not depend on t, we consider the function $\widetilde{w}(\xi, t) \equiv w(\xi)$ with the dummy variable t and use the notation $\|w\|_{V(2k+1,\omega)} = \|\widetilde{w}\|_{W(2k+1,Q)}$. The Banach spaces Λ_i are defined as completion of $C^{\infty}(\overline{Q})$ with respect to the norms $\|u\|_{\Lambda_i} = \sum_{k=0}^{\infty} \frac{1}{k!M^k} \|t^k D_t^k u\|_{V(i,Q)}$. In this definition M is a finite number which will be specified later. The elements of Λ_i , viewed as functions defined on the surface $\Sigma \subset Q$ are given by $\|g\|_{V(2k,\Sigma)} = \inf \{\|G\|_{V(2k+1,Q)} : (\nabla G, \mathbf{n})|_{\Sigma} = g\}$, $\|g\|_{\Lambda_{2k}(\Sigma)} = \inf \{\|G\|_{\Lambda_{2k+1}} : (\nabla G, \mathbf{n})|_{\Sigma} = g\}$.

3. Assumptions and results

Let

$$\begin{cases} P_0, u_0^{m+p-2} \in V(2k+1,\omega) \text{ with some } k \ge 2, \alpha \in (0,1), \quad P_0 \in C^1(\overline{\omega}), \\ P_0 + |\nabla P_0| \ge \kappa > 0 \text{ in } \overline{\omega}, \quad P_0 > 0 \text{ in } \omega, \quad P_0 = 0 \text{ on } \partial \omega. \end{cases}$$
(10)

Theorem 2 Let n = 1, 2, 3 and conditions (10) be fulfilled. There exists $\epsilon^* < 1$, M and T^* such that for every $||P_0||_{V(2k+1,\omega)} < \epsilon^*$ problem (9) has in the cylinder Q with $T < T^*$ a unique solution (X, P, π) . The function P is strictly positive inside ω and P = 0 on $\partial \omega$. The vector $X(\xi, t)$ is represented in the form $X = \xi + \nabla v + \mathbf{rot s}$, $(X = \xi + v_{\xi} \text{ if } n = 1)$. The solution (X, P, π) satisfies the estimate

$$\|\pi\|_{\Lambda_{2k+1}} + \|v\|_{\Lambda_{2k+3}} + \sum_{i=1}^{n} \|s_i\|_{\Lambda_{2k+3}} + \|P\|_{\Lambda_{2k+1}} \le C \left(\|P_0\|_{V(2k+1,\omega)} + \|\phi\|_{\Lambda_{2k}(\Sigma)}\right)$$

with a finite constant C independent of X, π , and P.

Theorem 3 Under the conditions of Theorem 2, there exists T^* such that

1. for every $t \in [0, T^*]$ *mapping*

$$X(\xi,t) = \xi - \int_0^t (J^{-1})^* \nabla_{\xi} (P - \pi)(\xi,\tau) \, d\tau \tag{11}$$

is a bijection of $\overline{\omega}$ onto $\overline{\omega(t)}$ and the set $X(\partial \omega, t)$ is a (n-1)-dimensional manifold in \mathbb{R}^n ;

- 2. the weak solution u(x,t) of problem (2) is defined by formulas (6) and (11) and is continuous in $\mathbb{R}^n \times [0,T^*]$; moreover, for every $t \in [0,T^*]$ we have $\partial(\operatorname{supp} u(x,t)) = X(\partial \omega, t)$;
- 3. the set supp u(x,t) is defined by formula (11), where $\nabla \Pi|_{\Gamma(t)} = 0$ if m + p > 2.

Theorem 4 Under the conditions of Theorem 2, the function p(x,t) satisfies conditions (10) in $\omega(t)$, and $p-\Pi \in V(2k+3, \omega(t))$, $p, \Pi \in V(2k+1, \omega(t))$. Moreover, for every fixed $\xi \in \overline{\omega}$ the functions $x = X(\xi, t)$, $P(\xi, t) = p(x, t)$, $\pi(\xi, t) = \Pi(x, t)$ are real analytic function of the variable t and $\|P\|_{\Lambda_{2k+1}} + \|\pi\|_{\Lambda_{2k+1}} \leq K \|P_0\|_{V(2k+1,\omega)}$.

Remark 1 It is easy to show that the regularity results stated in Theorem 4 remain true until the moment when the surface $\partial \omega(t)$ changes the topology i.e when $\partial \overline{\{\text{supp } p(x,t)\}}$ ceases to be a (n-1)-dimensional manifold and there appears a point of auto-intersection.

Corollary 1 The Cauchy problem for the porous medium equation $u_t = \Delta u^m$ with m > 1 can be viewed as a partial case of problem (1). Passing to the Lagrangian coordinates we arrive at problem (9) with $\Pi \equiv 0$. It follows from Theorems 3, 4 that the interface velocity is defined by the Darcy law, $\mathbf{v} = -\nabla p$, and that the inclusion $p(x, 0) \in V(2k + 1, \omega)$ implies the inclusion $p(x, t) \in V(2k + 3, \omega(t))$. By iteration we have that the solution p(x, t) and its interface are infinitely differentiable with respect to the spatial variables and analytic in t. This recovers recent results of [2, 5].

4. Solution of problem (9). The linear model

Problem (9) is considered as the nonlinear equation $\mathcal{F}(v, \mathbf{s}, P, \pi) = 0$, where $Y = \nabla v + \mathbf{rot s}$. Denote by \mathcal{G} the Fréchet derivative of \mathcal{F} at the initial state v = 0, $\mathbf{rot s} = 0$, P_0 , and π_0 , where π_0 is the solution of the degenerate elliptic problem

$$\operatorname{div}\left(u_0 \nabla \pi_0\right) + u_0^p = 0 \quad \text{in } \omega, \quad \left(\nabla \left(\pi_0 + P_0\right), \mathbf{n}\right)|_{\Sigma \cap \{t=0\}} = 0, \quad \pi = 0 \text{ on } \Gamma \cap \{t=0\}.$$
(12)

The solution of the equation $\mathcal{F}(v, \mathbf{s}, P, \pi) = 0$ is obtained as the limit of the sequence of solutions of the linear problems $x_{n+1} = x_n - \mathcal{G}^{-1} \langle \mathcal{F}(x_n) \rangle$, n = 0, 1, 2, ..., with $x_n = (v_n, \mathbf{s}_n, P_n, \pi_n)$, $x_0 = (0, 0, P_0, \pi_0)$ (the modified Newton method). Construction of the operator \mathcal{G}^{-1} reduces to solving the following problem: given the functions Φ , Ψ , H, one has to find a solution (Y, P, π) , $Y = \nabla v + \mathbf{rot s}$, of the linear system

$$\begin{cases} Y_t + \nabla (P - \pi) = \Phi, \quad P + (m - 1)P_0 \operatorname{div} Y = \Psi \quad \text{in } Q, \\ \operatorname{div} (u_0 \nabla \pi - u_0 \mathbf{D}(v) \cdot \nabla \pi_0) + (1 - p)u_0^p \Delta v = H \quad \text{in } Q, \quad [\mathbf{D}(v)]_{ij} = 2D_{\xi_i \xi_j}^2 v, \end{cases}$$
(13)

under the initial and boundary conditions $Y(\xi, 0) = 0$, $P(\xi, 0) = 0$, $\pi(\xi, 0) = \pi_0$ in ω , P = 0, $\pi = 0$ on Γ , Y = 0, $u_0 \left[(\nabla \pi, \mathbf{n}) + P/((m-1)P_0)(\nabla \pi_0, \mathbf{n}) \right] = \psi (m/m-1)^{1/(m-1)}$ on Σ . Separating the potential and divergence-free parts of the prescribed vector $\Phi = \nabla f + \operatorname{rot} \sigma$ we may split problem (13) into separate problems for defining v, π, P , and s. The vector s is found from the first equation in (13) by integration in t, P is defined from the second equation in (13). The scalar functions v and π are defined as the solutions of the parabolic and elliptic equations, coupled in the right-hand sides:

$$v_t - (m-1)P_0\Delta v = \pi + f - \Psi \quad \text{in } Q, \qquad (\nabla v, \mathbf{n}) = 0 \text{ on } \Sigma, \qquad v = 0 \text{ on } \Gamma \text{ and for } t = 0,$$

$$\operatorname{div}(u_0\nabla\pi) = \operatorname{div}(u_0\mathbf{D}(v)\cdot\nabla\pi_0) + (p-1)u_0^p\Delta v + H \quad \text{in } \omega,$$

$$u_0\left[(\nabla\pi, \partial\mathbf{n}) - (\Delta v - \Psi/((m-1)P_0))(\nabla\pi_0, \partial\mathbf{n})\right]|_{\Sigma} = \psi, \quad \pi = 0 \text{ on } \Gamma, \quad \pi = \pi_0 \text{ for } t = 0.$$
(14)

Existence of a solution to the linear parabolic-elliptic system (14) is proved by application of the Contraction Mapping Principle. To this end, we separately study the degenerate elliptic and parabolic problems:

(1)
$$\begin{cases} \operatorname{div}(u_0 \nabla \pi) = h \operatorname{in} \omega, \\ \pi = 0 \operatorname{on} \Gamma, (\nabla \pi, \mathbf{n}) = g \operatorname{on} \Sigma, \end{cases} (2) \begin{cases} v_t - (m-1)P_0 \Delta v = F \operatorname{in} Q, \\ (\nabla v, \mathbf{n}) = 0 \operatorname{on} \Sigma, v = 0 \operatorname{on} \Gamma, v(\xi, 0) = 0. \end{cases} (15)$$

Lemma 1 1) Let $u_0^{m-2}h \in \Lambda_{2k+1}$, $g \in \Lambda_{2k,\Sigma}$ with $k \ge 1$. Then problem $(15)_1$ has a unique classical solution that satisfies the estimate $\|\pi\|_{\Lambda_{2k+1}} \le K(1+\|P_0\|)(\|w\|+\|g\|+\|u_0^{m-2}h\|)$.

2) If $F \in \Lambda_{2k+1}$ with a sufficiently large constant M and $P_0 \in V(2k+1, \omega)$ with $k \ge 1$, then problem $(15)_2$ has a unique classical solution v satisfying the estimate $\|v\|_{\Lambda_{2k+3}} \le L \|F\|_{\Lambda_{2k+1}}$.

3) Let $m + p \ge 2$ and P_0 , f, $u_0^{p-1}\Psi$, $u_0^{m-2}H \in \Lambda_{2k+1}$, $\psi \in \Lambda_{2k,\Sigma}$ with $k \ge 2$. Then there exists $\overline{T} > 0$ such that for every $T \in (0,\overline{T})$ problem (14) has a unique solution $(v,\pi) \in \Lambda_{2k+3} \times \Lambda_{2k+1}$.

Once problem (9) is solved, the regularity of the solution to problem (2) easily follows provided that the bijectivity of the mapping $\omega \mapsto \omega(t)$ is established. In the one-dimensional case, the last condition is a byproduct of the second equation in (9) (the function $X(\xi, t)$ is bounded and monotone in ξ). The situation is not that simple in the multidimensional case where the topology of the set $\omega(t)$ may change with time. To establish bijectivity of the mapping $\omega \mapsto \omega(t)$ amounts to proving that $X(\partial \omega, t) = \partial \omega(t)$ for every t > 0. The inclusion $X(\partial \omega, t) \subset \partial \omega(t)$ follows from the second equation in (9). To prove the inverse inclusion we take two arbitrary points $\xi, \eta \in \partial \omega, \xi \neq \eta$, the point $\xi_0 \in \mathbb{R}^n$ such that $|\eta - \xi_0| = 1$ and $\cos(\xi - \eta, \eta - \xi_0) = 0$. We consider the function $\cos(X(\xi, t) - X(\eta, t), X(\eta, t)) = \frac{(X(\xi, t) - X(\eta, t), X(\eta, t))}{|X(\xi, t) - X(\eta, t)||X(\eta, t)|}$. Using representation (11) and the estimates on the solution (v, π) of the problem posed in Lagrangian coordinates we check that there exists T^* , independent of the choice of ξ and η , such that $\cos(X(\xi, t) - X(\eta, t), X(\eta, t)) < 1/2$ for $t < T^*$, which means that the particles initially located at the points ξ and η do not belong to the same ray and, thus, their trajectories cannot hit one another within the time interval $[0, T^*]$.

Acknowledgement. The author was partially supported by the grant BFM2000-1324, MCYT, Spain

References

- Antontsev, S., Díaz, J. I. and Shmarev, S. (2002). Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Birkhäuser, Boston.
- [2] Daskalopoulos, P. and Hamilton, R. (1998). Regularity of the free boundary for the porous medium equation, J. *Amer. Math. Soc.*, **11**, 899–965.
- [3] Galaktionov, V. A., Shmarev, S. I. and Vazquez, J. L. (1999). Regularity of interfaces in diffusion processes under the influence of strong absorption, *Arch. Ration. Mech. Anal.*, 149, 183–212.
- [4] Galaktionov, V. A., Shmarev, S. I. and Vazquez, J. L. (2000). Behaviour of interfaces in a diffusion-absorption equation with critical exponents, *Interfaces Free Bound.*, 2, 425–448.
- [5] Koch, H. (1999). Non-euclidean singular integrals and the porous medium equation. Habilitation Thesis, Univ. of Heidelberg.
- [6] Meirmanov, A. M., Pukhnachov, V. V. and Shmarev, S. I. (1997). Evolution equations and Lagrangian coordinates, Walter de Gruyter & Co., Berlin.

S. Shmarev Departamento de Matemáticas, Universidad de Oviedo Calle Calvo Sotelo s/n, 33007, Oviedo, Spain shmarev@orion.ciencias.uniovi.es