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On variations of the shape Hessian and sufficient conditions
for the stability of critical shapes

Marc Dambrine

Abstract. To study the nature of critical shapes in shape optimisation, some continuity properties of
second order shape derivatives are needed. Since different non-equivalent topologies are involved, the
Taylor-Young formula does not allow us to deduce that a critical shape is a local strict minimum of the
shaping function even if the Hessian at that point is definite positive. The main result of this work provides
an upper bound for the variations of the second derivative of some general shape functional of elliptic type
along those paths. As an application, we state a theorem about stability of critical shapes. This estimation
is then applied to some examples to solve the stability of critical shapes in some explicit examples.

Sobre las variaciones del Hessiano de la forma y condiciones suficientes
para la estabilidad de formas criticas

Resumen. Para el estudio de la naturaleza de formas criticas en optimizacién de formas se requieren
algunas propiedades de continuidad sobre las derivadas de segundo orden de las formas. Dado que la
férmula de Taylor-Young involucra a diferentes topologias que no son equivalentes, dicha férmula no
permite deducir cuando una forma critica es un minimo local estricto de la funcién forma pese a que
su Hessiano sea definido positivo en ese punto. El resultado principal de este trabajo ofrece una cota
superior para las variaciones de la segunda derivada de un cierto funcional de tipo eliptico a lo largo
de esas curvas. Como aplicacién se da un teorema sobre la estabilidad de formas criticas. Finalmente,
se aplica esa estimacion a algunos ejemplos para analizar la estabilidad de formas éptimas en algunos
ejemplos explicitos.

1. Introduction

Motivations. The general setting of this work is shape optimisation: in a family O of subsets of R?, a
real-valued function E must be minimized. This function E will be called the shaping function. Following
Hadamard’s approach, we will use a differential calculus developed by several authors (see [14], [16]). To
find an extremum in the class of domains on which a derivative is defined, the corresponding Euler equation
must be solved. Its possible solutions are called critical shapes.

In this work, we are concerned with the stability of an arbitrary critical shape denoted by {2y: when has
the shaping function E a local strict minimum at {2¢? Classically in optimisation, this question is adressed
through the use the second derivative of E at ). Several authors ([11], [2] and [9]) have considered the use
of the second derivative to study optimality of shapes in the field of shape optimisation. The first difficulty
of this task is to define its second derivative. In order to guaranty existence of the second derivative, the
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class O of admissible domains must be restricted to the open subsets of R? with a C2-boundary. Therefore,
we deal in this work with domains of at least this regularity.

In the theory of differentiable optimisation, we only need to know the sign of the shape Hessian at
Qo to fully answer this question. But, in shape optimisation, specific difficulties arise due to some norm-
incompatibility: for the second derivative, the coercivity-norm ||.||,, is often weaker than the differentiability-
norm ||.||s. Let us refer to [8] for a concrete example of such a situation known as the magnetic shaping
problem. In that example, J. Descloux pointed out that the coercitivity holds only in the H'/2 norm while
differentiability holds in C? topology. The Taylor-Young formula writes (here 0 denotes the critical shape
and h a perturbation):

E(h) = E(0) + DE(0).h + %D2E(O).(h7 h) +o(||h|c2)-
- Ik
2C|h ;1/2

Since the quantity o(]|hl|¢2) is not smaller than C/||h|3,,,5, such a basic argument does not insure that the
critical point is a local strict minimum of E (see the exemple given in [5]). This paper provides a method
to study this problem.

The key for proving the stability of critical shapes in [S] was a precise estimate of the variations of the
second derivative around a critical shape. This estimate is interesting by itself. The main result of this paper
is Theorem 1 an extension of the results stated in [S]. The conditions required on the operator and, more
important, on the shaping function itself are much weaker. In addition, we state the results in any space
dimension and not only in dimension two. This generalisation increases deeply the difficulty of the proofs
and requires new ideas. Furthermore, similar inequalities are obtained for purely geometrical functionals
such as the volume and the perimeter. We use Theorem 1 to prove the stability of critical shapes in Section 4.

The leading idea to study the stability is to reduce the problem to an one-dimensional situation. Any
arbitrary shape (); close to a critical shape {2y may be written as Q; = ©({) where O is a diffeomorphism
of R?. The flow ®g ; of an adequate autonomous vector field X g (i.e. the solution of ;¢ + X g(¢) = 0
with the initial condition ¢(0,x) = z) defines a regular path (Qt = (I)e’t(QO))te(O,l) in O; this path
connects the critical shape g to Q; = ©(£p). To study the stability of critical shapes, we write the Taylor
formula with integral rest for the shaping function along this path. This requires to consider the function
eo : [0,1] = R, ¢ — E(,) and to compute its second derivative eg. The main result of this article is (3) a
precise upper bound of the variations |ed (t) — e (0)] in terms of both the norm of differentiability and the
norm of coercivity. This bound allows us to deduce that eg (¢) > 0 from the hypothesis of weak coercivity
that states e¢, (0) > 0. Then, stability is easily deduced from the Taylor formula.

The organisation of the paper follows this idea. The second section deals briefly with the construction
of X ¢ and with the properties of his flow stated in Propositions 2, 3 and 4. Then, we recall classical results
of shape differentiability to justify the existence of the first and second derivatives of eg. The third section
concerns the proof of Theorem 1. In the last section of this paper, we apply the described method to some
specific stability studies.

Statement of the main result. Let us make precise the class of shape functionals we will consider
throughout this paper. We first introduce some notations. Let d > 2 denote the dimension. Let L =
—div(AV.) be an strictly and uniformly elliptic operator with A = A(z) is a C*> d x d-matrix with real
coefficients. Let O be the class of admissible domains that are open bounded subsets of R? of class C>2.
Possible constraints (we will later consider prescribed volume constraints) are included in the definition
of O. We denote by V the vector space of admissible deformation fields. Let j and f be functions in
CO*(R4,R) and C3(R x R?,R) respectively. For each Q € O, we define the state-function ug as the
solution in C%(Q) of

()

Lu=jin(,
u = 0 on 9N,
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and we define a shape functional £ on O by

E@) = [ flua, Vua) @
Q
Let 2y denote a smooth shape. We now state the central result of this paper.

Theorem 1 There exists a real g € (0,1) and a modulus of continuity w : (0,19) — (0, 400), which
depends only of Qo, L, f and j, such that for alln € (0,10) and all © € C>*(R?, R?) with

10 = Idpall2,a <1,

there exists a vector field X g the flow ®g ; of which defines a path (Q; = ®e¢(0))se[0,1] between Qo
and ©(Qg) such that, for all t in [0, 1], the following estimate holds,

€6 (t) — e5(0)| < wmll{X e, ma0,)IFr1/2(50y): 3)

where npq, denotes the exterior normal unitary field to Q. Moreover, if the diffeomorphism © preserves
the volume of Qq, then X can be chosen divergence-free.

The functionals of volume 90 and perimeter B are defined for all @ € O as B(Q) = L£4(Q) and
P(Q) = HIL(0Q). Here, L denotes the Lebesgue measure on R and H?~! the d — 1 dimensional
Haussdorf measure. The same approach leads to similar statements where the weak norm turns to be either
the L2(09Q)-norm in the case of U (see (45)), either the H'(9Q)-norm in the case of P (see (46)). The
main application of Theorem 1 is the next result.

Theorem 2 (unconstrained problems) Assume that Qg € O is a critical shape minimizing E and
assume that the Hessian D*>E(Sg) is coercive in the weak norm ||.||g1/2(aq,) then Qo is stable in the
following meaning: there exists an open ball around € in the C*® topology on which E has a local strict
minimum at Q.

PROOF. By assumption, D?>E(£) is coercive in H'/2(9€) and there exists Crpe,r > 0 such that
6%(0) = D2E(QO; X®7 X@) > Ccoer||<X®7 n890>||§{1/2(390)~ (4)

Fix p > 0, and choose any () in B(£g). Consider the path given by Theorem 1. The Taylor formula for eg
writtes along the path

coll) = eol0) + [ (1= 0ep (0t

and we write ed (t) as e (t) = e (0) +ed (0) — el (¢). Therefore, we deduce from (4) and Theorem 1 that
if 1) is chosen small enough, then e (¢) > 0 on [0, 1] and we have E(Qy) < E(2). W

If we are concerned now with a constrained problem say C, the natural assumption is that the Hessian
of the lagrangian is coercive on the kernel of the shape gradient of the constraints. The proof of Theorem 2
is based on the fact that ¢”(0) = D*E(; Xo,Xe) is non negative. In the constrainted case, eg(0)
remains non negative only if the vector field X ¢ satisfies DC'(Qg, X o) = 0. This must be checked for
each constraint (see section for examples). The important specific case C' = U, i.e the volume of admissible
domains is prescribed, can be treated by Theorem 1. The proof is the same than the proof of Theorem 2 by
using the divergence-free vector so that the condition D A(Q2y, X o) = 0 is automatically satisfied.

Theorem 3 (volume-constrained problems) Ler v > 0 be a given real. Assume that Qg is a critical
shape for the following optimisation problem

(C) find Q € O under the constraint 6 () = v that minimises E

and assume that the Hessian of the Lagrangian Ly = E+ A% is coercive is in the weak norm ||.|| gr1/2(p0,)

then Qg is stable in the following meaning: there exists an open ball B around ) in the C*® topology such
that, for all domain Q € B with B(Q) = B(Qo) and Q& # Qo, we have E(Qp) < E(Q).
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2. Some particular paths within the domains

This section is devoted to construct a path in the set O of admissible domains between a given regular shape
Qo and another shape ©(£2) close to the first one. The construction requires some technical computations.
Since we are only interested in perturbations of the shape (g, the behaviour of O far away from {2y has no
importance in this work. Therefore, we restrict ourselves to diffeomorphisms behaving like the identity on
the complement of a ball including strictly (2.

2.1. Construction of the transport fields

Let  be an admissible domain with a C*® boundary. The domain Qg can be a critical shape. This last
assumption is not necessary since the shaping function does not appear in this geometrical construction.

Remark 1 Since we will use normal deformations, we have to loose one rank of regularity. By definition
of the shaping function E, the perturbed domains must be in O : that is with a C>® boundary. Hence, we
assume that Qg is C><.

Let n be the outer unitary normal field to 9. In order to define the transport field, we need to recall
some basic facts of differential geometry. The application Ty, defined as:

T{)QO i xR — ]Rd,
(M,h)  — M + hn(M).

is well-known to be a local diffeomorphism on a open tubular neighbourhood of 9§y we will denote Upq, -
To perform the geometrical constructions, we need an extension 72 of the normal n. For all z in a fixed
open neighbourhood Vo, CC Uggq,, there exists an unique couple (M, h) € 9y x R such that =
Too, (M, h) (= M + hn(M)). We define the extension 72 on Voo, by 1(z) = n(M). OnR? \ Usg,, we
set n = 0 and use a cut-off technic to obtain a globally defined and smooth 7.

Let us fix © a > global diffeomorphism of R? closed enough to the identity Ipa to have ©(9Q) C
Vaq,- The action of © on the boundary 9} reduces to its normal component modulo a sliding term Re as
shown in the following figure.

©(990)

VM € 99, we define Rg (M) and d® (M) as
(Re(M),d®(M)) = Tag, (0(M)).
We set

d®(M) := (0(M) — Re(M),n(Re(M))),
O(M)=Re(M) +d°(M)n(Re(M)).

Re
Moreover, if ||© — Idpa||2,o is small enough, there exists a constant C' depending only of Qg (via the C3*
norm of its boundary, see [5] for the proof) such that

1d%]2.0 < Cl|© = Idgall2,a- (5)

A first vector field. We extend d® as a constant on the orbits of 72 in Vaq,, as 0 outside of Upgq,, use a
cut off to define a global extension we still denote d®. We define a vector field as

X & =d®%non R (6)

Since X ¢ has a constant modulus on its orbits in Vg, the flow ®§, , of X ¢ maps any point M of the

boundary 2 onto the point M + t d® (M) n(M). In particular, at t = 1 the boundary 9 is sent exactly
on the boundary of 90 ().
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Remark 2 The vector field X 1@ does not preserve the volume of (g even if O is an volume-preserving
diffeomorphism. Moreover, X é does not even belong, in general, to the hyper-plane H = ker DU of V.
The gradient DY is a continuous linear form on ) defined by

DB(Qg) : V — div(V) :/ (V,n).
Qo 8QO
But, for a general ©, one has (in the notations of the speed-method, see [16]) :
Dm(ﬂo;xg):/ (X§,n) = d®#0 = Xg ¢H.
(990 8QO

The Lagrange conditions of order two for the constraint A = Constant provides coercivity for the Hessian
only on H. Therefore, the sign of ej(0) = D?*E(X &, X&) is unknown. Our strategy explained in
Section 1. fails if the condition V' € H is not satisfied.

We now construct a divergence-free vector field X 2@. Our construction imposes the lost of an additional
derivative even if we work with arbitrary transverse deformations and not only with normal ones (see [4]
where T also dicuss how to avoid this loss if d = 2). Therefore, from now on, € is assumed with a C*®
boundary.

Volume-preserving deformations, a second vector field X3,.

Proposition 1 Let Q be an open subset of R? with a C** boundary 0Qq. If © € C>*(R*,R?), with
|© — Id||5.o small enough, preserves the volume of Q, then there exists a vector field X g € C>*(R?, R?)
such that :

o in the tubular neighbourhood Vg, the field X g writes X g = mn withm € C>%(Vaq,,R) and is
divergence-free,

o the flow @2@7t of X29 preserves the volume of Qg for all t € [0,1]. Moreover, it maps Qg onto
©(0Q0) at the time t = 1.

PROOF. The unknown vector field X is searched in Vpq, as
X&(M)=m(M)n(M)and div(Xg) =0

where m is a real-valued function to-be-determined and 72 is the formerly defined extension of the normal
field. In a second time, we will discuss how to extend that field to the whole space. In the following lines,
T stands for Thq, for the sake of readability.

We first characterise the functions m such that div(mﬁ) = 0 in Vjgq,. This requires to compute
the divergence of the extended field 7. We introduce an atlas for 9, with the maps (¢);) mapping the
coordinates (s,h) € R?™! x R to R?. In these notations, €Y is the set of points that can be written as
1;(s,0). The partial derivative with respect to h of the determinant of DT is :

Oh det(DT) (wi(s, h)) = Tr(@hDT(wi(s, h)) (DT)*1 (wi(s, h))) det(DT) (wi(s, h)) (7
From the definition of 72, one has

7 [1i(s,0) + hn(vi(s,0))] = n(1s(s,0)),

that we differentiate to get
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Since one has

DT (¢i(s, h)) = [Dsti (¢i(s,0)) + hn(ii(s,0)), 1 (1i(s, 0))].
where the first coefficient is a d x (d — 1) matrix, we get 8, DT (1;(s, h)) = [Dsn, 0] that we substitute in
(7) to obtain the expression of D7i. We take the trace of Dn and obtain
Oh, det( T) (M h)

det( T)

div (i) = (8)
The divergence-free condition writes (Vm, n) + m dlv( ) = 0. Therefore, m solves the equation d,m +
m dlv( ) = 0 that provides, after integration,

f(M)

mM.h) = STy Ry

©

where f is a real-valued function defined on 02 and to-be-determined and M stands for ¢;(s, 0) for sim-
plicity. We use a shooting method to choose the correct f in order to map the boundary 92 onto ©(Qp).
From Hadamard’s representation, ©(9(2) is parametrised by M + d® (M )n (M) with M in 9Qy. We work
on the normal lines and solve the family of Cauchy problems

Vt € [0,1], 8,h(M,t) +m(M, h(M,t)) =0, (0
VM € 092, h(M,0)=0,
with the additional admissibility condition (M, 1) = d?(M)n(M). We get
fon = G(mde ),
G(M, d@(M)) (11)
Xo(M,h(M,1) = - (M, h(M, 1)),

det(DT) (M, h(M, t))

where G(M, h) be the anti-derivative of 4 — det(DT) (M, h) normalised in order to vanish on the
boundary 9. Moreover, we can compute h(M, t) of 9Q(t) from 9 by solving the equation

G(M,h(M,t)) + f(M)t = 0. (12)

For M € 0, we define My as (M, h(M,t)) = &3 (M).

Let us consider any regular extension of the field X 2@ outside Vpq,. Lemma 4 (see further in Sec-
tion 2.3.) shows that the application ag : t — B(;) is twice differentiable on [0, 1]. Its second derivative
writes

Wa@(t) = /BQ div(X3) (X5, n(t)). (13)

Since, by construction, 9Q; = {®g, (M), M € 9Q} C Vaq, fort € [0,1], X3 is divergence-free in
Vag, and the second derivative ag, vanishes on [0, 1]. Therefore, the function ae is affine on [0, 1]. Since,
by hypothesis, its extremal values are the same, ag is constant on [0, 1]. The flow of any smooth extension
of X, preserves the volume of Qo on [0, 1].H

Remark 3
1) We first give some remarks on that proof.

e Since only perturbations are considered, it seems reasonnable to use the Local Inversion Theorem. In
fact, the losses of regularity make such a try very difficult.
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e Moreover, we need some special estimates on the deformation field X 2@ to prove Theorem 1. A
method based on the Local Inversion Theorem cannot easily provide those estimates stated in Propo-
sition 3 (see further in Section 2.2.). Their proof is based on the explicit expression on X 2@.

e Obviously, if 2 is another open subset of R?, such a property is not true in general since div (X 2@)
has no particular reason to vanish uniformly on R?.

2) We have considered only motion along the normal lines in Vpq,. Therefore, the flow of the vector
field we have constructed does not realise a path in diffeomorphisms between Idp. and © but only a path
connecting g to ©(Qy) via the sets $g +(€20): in other terms, ;1 (Qy) = () and ¢; # O hold!

2.2. Properties of that path

The results stated in this paragraph are the key-estimates to prove Theorem 1. The section is split in
three parts each concerning a given kind of quantity defined along the paths. All the estimates stated in this
section are uniform with respect to O in the ball of center /dp« and radius 7 > 0: this an essential point. The
parameter 1 is assumed to besmall enough so that @(9€g) C Vaa, holds for all © with ||© — I dpal|2,o < 7.
We will even restrict 1 during this section.

Propositions 2 and 4 are rather classical results, therefore we give only the sketches of the proofs.
Proposition 3 is specific to the paths we have constructed in Section 2.1. From now on, X ¢ denotes either
X § either X3, and Qq denotes a bounded C*® domain.

Study of purely geometrical quantities. A preliminary result shows that ®¢ ; — Idpa is controlled
by © — Idya in the C** norm. Since X g is autonomous, the following lemma is trivial in the C° norm.

Lemma 1 Let © be a C*>*-diffeomorphism of R¢ on itself close to the identity Idpa. For the fields X g
exhibited in the former section, there is a constant Cy such that, for all t in [0, 1], we get

|®o, — Idpall2,a < C1]|O — Idpal|a,q-

SKETCH PF THE PROOF. In Vjq,, the field X g is given by (6) or by (11). Therefore, the derivatives
of the product of f by 1/ det (DT) and 1 must be controlled. These derivatives write as a sum given by
Leibnitz’s formula. The quantities 1/ det (DT) and 1 are geometrical and C*® quantities defined only by
Qo. Their ||.||2,o norms on Vag, are therefore bounded without any dependency with respect to ©.

On the other side, the factor f depends on © as shown by its expression (6) or (11). Recall that G is the
anti-derivative of h — det (DT) (M, h) vanishing on 9Qg. Hence, G is a continuous geometrical quantity
in the compact Vg, . From Faa de Bruno’s formula!, we deduce

||G(M, d@(M))Hz,a <N Gllen.e T 147 (AD)l2.0- (14)
We then use the estimation (5) which bounds d® to get:

[ Xe(®o,t)ll2,0 < C([[Po,ll2,0) | Xoll2,0-

Then one concludes easily. B

We now examine how the boundary 9, behaves for ¢ € [0,1] . We assume 7 < 1/2C4 to have
|®o,t — Idpal|2,o < 1/2forall ¢ € [01]. The following proposition described the evolution of geometrical
quantities defined on 9€;.

Proposition 2 There exists a constant C > 0 such that for all t € [01]:

The Faa de Bruno’s formula gives the expressions of derivatives obtained by iteration of the chain rule.
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L ||D®e; — lallL> +[|D*Pe L~ < [|Po, — Idpall2,a-
2. ||[D®g), — lullz= + [|ID[D@g il < Cll®o,t — Idpallza-
3. Let J(t) be the Jacobian det(D®e 4||'(D®e,¢) 'nol|). Then, we have

I17(t) — 1ller a0y < Cll®o,t — Idpall2,a- (15)

4. If n; denotes the unitary outer normal vector field to ®e +(0€Q0), then

Ing o @o.t — nollcr(a0y) < CllPo,e — Idpall2,a- (16)

5. Moreover, if © has the C3-regularity and satisfies ||© — Idpal||3 < 1/2, then the following estimate
makes (16) more precise

Ing o ®o s — nolle2(a0y) < CllPo,t — Idpall3. )

SKETCH OF THE PROOF. Points 1 and 2 are direct applications of the definition of Hélder norms and of
the inversion formula using power series since Holder spaces are Banach spaces.

The third point concerns the Jacobian determinant .J involved in the change of variables for boundary
integrals when an integral defined on 9€2; is changed into an integral defined on 9. Since the determinant
is an C* function on M, (R), we just have to bound the distance between I; and ||*(D®g ;) 'no||DPo
to deduce the L part. This is a direct application of points 1 and 2. In order to show the C! estimate
on J, this determinant must be differentiated. The use of Faa de Bruno’s formula allows to separate the
contribution of the norm in order to bound the derivative.

Points 4 and 5 deal with the outer normal field to 9€2;. The signed distance dagq, to 9 gives a global
definition of m. If ¥ is a diffeomorphism, then dpq, o ¥ ! defines the domain ¥ (£)) as its 0 level set. In
particular, for all M € Qg and all ¢ € [0, 1],

_ V(dag, © ®g),)
IV (dag, © Bol)l

B VdaQo
IVdaqyl

niodg; —n|(M) (®o,(M))

holds. The main interest of this formulation in this work is to put the whole dependency in the variable ¢ in
®g ;. We then differentiate this expression to obtain the wanted upper bounds as a consequence of the Faa
de Bruno’s formula. l

Properties of X . To prove Proposition 3, we need the following lemma about estimates of a product.
The main arguments to prove this lemma are simply harmonic extensions of traces and the continuity of the
trace operator from H'(Q) into H/2(9%).
Lemma 2 Ler Q be in O. There is a constant ¢(Q?) depending only on Q) such that:

o if f € HY/?(09Q) and if g € C*(9N), then

I fgllerra0) < (@) I fllm2a0) ll9llerag)-
e if f € H'(0Q) and if g € C1(0Q), then
Ifgllmoe)y < () |Ifll(ae) ll9llci(a0)-

We now establish very important estimates about the variations of the vector fields in some norms on 9€2;.
The estimations stated are not true for any vector field and are essential to prove Theorem 1. This is the
reason why we have to restrict ourselves to the vector fields X g and X g we have constructed in Section 2.1.
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Proposition 3 There is a constant C' depending only of Qq such that

Imo@es—mllapny < Climlizony© ~ Idlsn.
Vt € [0, ].], ||mo@@,t _m||H1/2(BQO) < C||m||H1/2(8QO)||®_Id||2,aa (18)
lmo Sor —m|yony < Climln oonl© - Idla.

where m is defined by m = (X o, 1).

PROOF. The vector fields X g writes X o = mn in Vpq,, where the moving boundaries 0€; are confined
for¢ € [0, 1]. The proof relays on the explicitation of m o &g ; — m.

By definition, the quantity m! = (X %9, 1) is constant on the normal lines and does not depend of h.
Hence, equation (18) is trivial for the vector field X %9 since the left hand size vanishes. The consistent case
is the case of X g we consider now.

By construction (see (9)), for all ¢ € [0, 1] and all M € 99, we have :

m(My) —m(M) = m(M)A(M,t) where A(M,t) := l det(DT) (M) - 1] ,

det(DT) (M)
If there exists C' > 0 such that
vt € [0,1], A(,t)lleriaay) < CllO — Id|l2,a, (19)

then the estimations of Lemma 2 give

Imo@os—m a0, < Imllioon Il
Ve [0,1),¢ [[mo e —mll /a0, < c(Qo)llmllmrziany | Alle o0,
|m o ®e —m||H1(3QO) < (Qo)lImllm o00) | Aller (a0):

that is to say exactly (18). Let us prove (19). On the neighbourhood Vpq,, T is a diffeomorphism and
its Jacobian never vanishes. Therefore, by compactness of Vg, | det(DT')(x)| > Hp, holds for some

H,, > 0. Since h > det (DT) (M, h) is C>® on Vpq,, the same argument of compactness gives
| det(DT)(M;) — det(DT)(M)]| < sup |0n det (DT)| [|n(M,t)|| L (002)
<6 - IdeHZ,a'
To get the C' semi-norm estimate, we differentiate A with respect to the tangent variables and obtain

_ D,y det(DT)(M,) det(DT) (M) — D, det(DT) (M) det(DT) (M)
D.AM,#) = [det (DT (M;)]?

Since [det(DT)(M;)]* < HZ, we should dominate D det(DT)(M;) — D, det(DT) (M) in order to
bound |D,A(M,t) — D;A(M,0)|. This derivative of det(DT) is a geometrical C** quantity since
T € C*2. We conclude that

| D, det (DT) (M;) — Dy det(DT)(M)| < C|h(M,t)| < C[|© — Idpa|l2,a-

The estimation (19) is now proved. l
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Study of the state-function. To justify the differentiability of eg (defined as the restriction of the
shaping function E to the path), the behaviour along the path of the state-function ug, must be examined.
We use the inverse transport by Vg ; = ((}@,t)*l to work on the initial domain 2y. To work on a fixed
domain implies to deal with perturbed coefficients. The transported solution ug ; = uq, © ®e+ does not
solve a Dirichlet problem for L but for a perturbed operator L(t). A classical computation shows that
L(0©,t) writes

n

n n n
L(©,t)u = [Z a@j@i‘l’%,t@j‘l’gt] ai,ﬁu + [Z Zai7j8’27j\l/%’t] Dot
i=1 j—1 i=1 j=1 (20)

-

= aa,ﬁ(®7 t) 83,BU + bg(@7 t) OpUt.

The following proposition gives an upper bound of variations of the transported state-function.

Proposition 4 There exists a modulus of continuity w such that, for all diffeomorphism © with ||© —
Idpa|2,a small enough, one has

sup |luet — uollygr < w(I1© = Idgalla,a)- 21)
teo0,1]

SKETCH OF THE PROOF.  Since such a result is classical in the field of shape optimisation, we only recall
the main steps of the proof. First, by matricial considerations, the next lemma is proved (see [4] for details).

Lemma 3 Ler \g be the smallest eigenvalue of A. There exists n. > 0 such that ¥n € (0,7.), for all
admissible © and all t € [0, 1], the smallest eigenvalue of the main part of L(t) that is \DVg ;ADV g ; =

(aa,ﬂ(t)) I <a,p<d is bigger than Ao /2.

Then, the classical Schauder a priori estimates are used to get a uniform upper bound for the transported
state-function ue ¢ in the Holder space C**(Q). Then define the function w on (0,7n) as

w(d) = sup llue,t — wollez @)
1©—1Id;all2,o <65 t€[0,1]

Seeking a contradiction, we assume w(07) # 0. Then, there exist a real @ > 0 and two sequences ©,,, t,
with

1
||®n — IdeHZ,a S Eand ||U@mtn — U’O“C?(Qio) Z a>0 (22)
By the compactness of the injection of C**(§g) into C?(fp), the sequence (ue, ¢,) bounded in C* ()
is compact in C%(€y). By extraction, a subsequence (ue,,:,) converges in C%(Qp) to a limit wuy;,y, with
tp — tiim. Then, we notice that
L(O®y, ty)ue, t, — Luyim = [L(Op,t,) — L]ue, +, — L{ue,t, — tim].

Passing to the limit when p — +00, we see that u;,, solves the Dirichlet problem

Lu = kin Qy,
u = 0 on 9.

This problem has an unique solution hence w;;,, = ug holds. This last point enters in contradiction with
(22). We have shown that w(07) = 0. W
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2.3. Differentiability of the restricted shaping functional

Differentiability of the state-function. This differentiability is a classical result (see for example [16,
Propositions 2.82, 2.83 and 3.1]). We recall the conclusions of [16]. The derivative J;u exists and solves

Lw = 0in Qy, (23)
w+ (Vu(t), Xeo) = 0 on 9Q;. )
The elliptic regularity is needed to justify the existence of the second derivative 97 u that solves
Lw = 01in Qy,
w+2(Xgo®ey, Voue ) + (0: Xe o e s, Vue t) (24)

+<X@,D2u®7t - Xgo (P@’t> =0on 0Qy.
Proposition 4 allows to conclude that for all 5 € (0, a)

u(t) € €°([0,1],¢*7 () N ' ([0,1], () N €2 ([0, 1], ™7 ().

The Hadamard derivation formula.

Lemma 4 Let V be a vector field in C*(R? , RY) with k > 1. Let Qo be a C* open subset of R? and let Q;
denote its image by the flow of V. If

f€CH(0,T),C°(Q)) NC((0,T), C ()

then the function e : [0,1] — R, t — E(Q,) is differentiable with derivative
e'(t) = / [Btf(tw) + div(f(t,z)V () |da. (25)
Q4

Expression of some derivatives.

1. The volume. To compute the derivatives of ag : [0,1] — R, ¢ — (), we set f = 1 and obtain

(1) = /8 _(Xon(t), (26)

ag(t) = /8Q div(Xe)(Xe,n(t)). 27

2. The perimeter. We introduce pg : [0,1] = R, ¢ — JB(92;) and consider the extension of the unitary
normal field n to 9€; defined by

. _ VdaQO o (I>t_1
L 9
We set f(t,z) = div(7(t)) to get
Po(t) = [ div(ia(t) (Xo,n(0). (29)
o0
() = /8  [div(@(0)) + div (div (1) X o)} (X0, (1)) (30)
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3. The shaping functional E. The state-functions uq, are only defined on the moving domains {2,
as solution of (1). This fact introduce some technical difficulties to use [Lemma 4. To overcome
these difficulties , we define some linear and continuous extension operators P; in order to deal
with functions defined in the whole space. We refer to [12, lemma 6-37] for the construction of the
extension operator P, outside the initial domain €. For ¢ > 0, we define the extension operator P;
outside the domain Q; by P, = ®g 0 P o <I>671t).

To compute the second derivative of eg with Lemma 4, we must regularise the extended solution
a(t) = P;(u(t)) by convolution with some mollifiers p.. We introduce a perturbed shaping function
E.(Q) defined by

E(Q) = / £ (e (1), Ve (1),

where u(t) = @(t) * p.. Then, Lemma 4 justifies the following calculus

ebm(t) = ; Dsf(ue(t), Vue(t)) Opue(t) + div(f(;c,ue(t)7 Vue(t))X@)

+ (D, f(x,ue(t), Vue(t)), Voru,(t)),

and then

e%,e(t):/Q div([Dsf(ue(t)7 vue(t))atue(t) +<va(x7ue(t)7 vue(t))vvatue(t)] X@)

Q4
+ Dy f (e (t), Vue(t) Ofue(t) + D3 f(ue(t), Vue(t)) (Opue(t))?
+2(D3 , f(uc(t), Vue(t)), VOrue(t)) druc ()
+ (Do f(ue(t), Vue(t), Vojuc(t))
+ (D}, f(ue(t), Vue(t)) Voue(t), Voue(t)) + div(div(fXe) X o)

We need the regularisation to give a sense to VOZu(t). Without this regularisation, a third order
derivative of ug would have appeared and ug s is only C*“ by Proposition 4. We apply Stocke’s
formula to make this third derivative disappear. Then, we pass to the limit when € — 0 to get

eo(t) = QDsf(u(t» Vu(t)) dpu(t) + (Do f(z, u(t), Vu(t), Vou(t)) + div(f Xe),  (31)

eo(t) = A(va(U(t%Vu(t))m(t)wftU(t) +div(f(u(t), Vu(t) Xe)(Xe,n(t))

Qi
+ Z[Ds Fu(t), Vu(t) dru(t) +(Dof(u(t), Vu(t)), Vﬁtu(t)](X@,n(t))
+/Q [Dsf(u(t), Vu(t)) — div(D, f(u(t), Vu(t)))] opu(t)

+D7  f(u(t), Vu(t) (Qeu(t)” + 05 , fu(t), Vu(t)) Vou(t), Vou(t)
+2(D3 , f (u(t), Vu(t)), Vopu(t)) dpul(t).

(32)

Remark 4 This writing of eg is not canonical. As well-known by the structure theorem of shape deriva-
tives (see for example [6], [3], [15]), the shape Hessian at ); is a distribution supported on the boundary
0. The presence of integrals over (), is caused by the use of Hadamard’s Lemma. Nevertheless, (32) is
convenient to prove Theorem 1.

106



On variations of the shape Hessian and sufficient conditions for the stability of critical shapes

3. Proof of Theorem 1

Preliminaries. In this section, © denotes a fixed admissible deformation in an adequate neighborhood
of the identity. Therefore, we will omit in this proof the dependency with respect to © in order to simplify
the notations that we fix now. Let C' denote any constant depending only of the operator L, of ||j||p,o and
of Qg. Weset n := ||© — Idpadl|2,4-

Let V be either X ¢ either X 5. Let (% )teqo,17 be the path realized by the flow ®; of V: it connects
Qo to O(Qp). The transport of differential operators from 2, onto {2y is a key to many of the following
estimates. We introduce simplified notations. The use of the accent ~ denotes the composition with the
flow ®; of V. For example, we define: m := me, m := mo ®;, V := Vo ®,, , i(t) := n(t) o
&, L(O,t) = L(t), iy = ue (= u(t) o ®;), .... Let ®; denotes the matrix ' D®, * so that a gradient
writes Vu; o &, = 0,V once transported.

The C? non-linearity f induces no real difficulties: the following lemma easily deduced from the Mean
Value Theorem is sufficient to deal with it.

Lemma 5 Let F be one of the functions f, s f, 0, f, 02, f, 02, f or 82, f, we have

1F (e, De Vg )| oo () < C
| F (T, D¢ Viig) — F(UO’V“0)||2Lw(Q—O) < Cw(n).

The Hessian given by (32) is a sum of different kinds of terms defined by the number and type of the
derivations applied to the state-function. In particular, the upper bounds of their variations are obtained in
terms of various weak norms. All the needed technics will be described in this section but illustrated on
only one term each time to avoid repetitive proofs.

We start with the terms written in (32) as an integral on the boundary 92; we call boundary terms
in opposition to the terms written as an integral over the domain (2; we call internal term. One has to
distinguish two cases depending if the quantity V;u on 9); appears or not. From (23), this quantity is the
harmonic extension on Q; of —(Vu(t), V). In order to deal with the conormal derivative, the Dirichlet-to-
Neumann operator corresponding to both the elliptic operator L and the domain €2, is to be used.

Let us introduce some notations around the L and L(t) harmonic extensions of Dirichlet boundary data
and Dirichlet-to-Neumann operators. We first define the operator R; of L-harmonic extension on §2; and
RE of L(t)-harmonic extension on Qg

Ry :HY?(0Q,) — H'(Q,), RE  H'Y2(00Q0) — H'(Q),

u — Ry(u) u — Ry(u) (33)

where Ry (u) (resp. Rf(u)) solves

v = u on Of; v = u on 9.

{vaomﬂh {L@Uzomﬂm
resp.

Recall that L(t) is defined in (20). By abuse, we will simply writes Ry instead of RJ. Then, the Dirichlet-
to-Neumann operator C; (also called interior capacity operator) associated to £ on (2 is defined as

Cy HY2(00Qu) — HY2(00y),

34
wo e Clu) = (e, VR(w), 9
where the conormal vector is n;, = An. The operator C; has the following fundamental property:
(u, Cowr) /2o, ) x H-1/2(00,) = / VR (u)]?. (35)
Q

We now start the proof of Theorem 1.
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A. Boundary terms without derivatives of the state-function. They are treated by transport.
They give L?-estimates. We transform the integral over 0, into an integral over 92 to obtain an difference

written as
N N
=2 (P 2 )
/BQO [m H a;(t) —m g al(O)].

i=1
From the estimates related either to the geometrical quantities of the boundary 9€2; (see Proposition 2),
either to the state-function itself (see Proposition 4), the a;, where the quantity m does not appear, satisfy
llai(t, Mz, < Cllai(0, )|z (a00)
vt € [0,1], o = 0 (36)
I (P 5 i i T

Proposition 3 gives then

/. i T extt) - /. m2ﬂai<o>\ < Cllag(O)]13 o) (n)-

i=1 i=1
For example, consider the term
fdiv(V)(V,n(t)).

a0,
One sets:
ai(t) = f(ag, D:Viag), ax(t) = (n(t),n),
az(t) = J(t), as(t) = div(n).

For i = 1, one gets the needed estimates from Lemma 5. The properties of the transport shown in the
Section 2.2 give for i = 2,3 and for all ¢ € [0, 1],

llai(t)|| a0y < C and [la;(t) — a;(0)||p=(a0y) < Cn.

The inequality on div (ﬁ) id deduced from its explicit expression (9).

B. Boundary terms with V9,u(¢). The main idea is to decompose the vector which appears in a scalar
product with V9;u into its tangent and conormal components. This leads to separate the contributions of
the tangential gradient of d,u and of the conormal derivative of J;u. After integration by part on 92, the
part with the tangential gradient leads to a situation without any derivatives of the state function treated in
the former paragraph. The part involving the conormal derivative is transformed into an integral on {2; via
the Green formula that requires the classical elliptic a priori estimates in Sobolev spaces. We will carry the
computations on the term

/ (Do f (4, V), V)V, (1)).
o,

The first step in the study is to decompose D, f (u, Vu) in its tangential component [D,, f (u, Vu)], and its
conormal one [D,, f (u, Vu)]n, - We get

<va(u7 VU)? n>

D0 (0, Vel = =7

and [va(uv VU’)]T = va(uv VU) - [va(uv vu)]”LnLa
and then study separately

/ (V-0 (Do f (4, V)] )V, m(t)), and / Dy f (u, V), (1 (£), V) (V. ().
o0, 0

The following lemma is easily deduced from Leibnitz Formula and Propositions 2 and 4.
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Lemma 6 Both the function by = [D, f(u, Vu)]n
Moreover, there exists a constant C' such that

and the vector field by = [D, f(u,Vu)], are C'.

L

C

; ||bi(t7')||cl(390) < )
vielo.dlvie .2} { < w0, Vet s

1bi(t,.) = bi(0, )ller (a0)

The tangential part: We first perform an integration by part on 9, to suppress the tangential gradient?,
After the expansion

Vo =V (—m(Vu,n)) = —(Vu,n)Vym — mV(Vu,n),

we get since mV,.m = 1/2V,m?:

/(Vratw[va(u7VU)]r><V7n(t)>=— m*(Vr(Vu,it), [Dy f(u, Vu)];) (2, n(t))
o, o

We are a the former situation and obtain estimates in terms of ||m||%2( 9%0)"
The conormal part. From the expression of dyu, we set

By (6) = [ Ci(=m{Vu,))m(D, f(u, V), (. (1)
o0
We apply Green’s formula to get:
B, (1) = /Q [V R, (m(Vu, 1) | A[V B, (mlDy f (1, V), 2. m(1)))]. 37)

As in [5], we are interested in the dependency of those quantities with respect to m. The H'-norm of the
extensions (that is the H'/2-norm of the traces on the boundary 9;) appears. Following the idea to use a
priori estimates, we first study the boundary condition set in H'/?(9€)) and we define:

21(t) = m [Dy f(u, Vi), (2, 1(t)) = Zi(t) = m [Dy f (i, Vig)ln, (2(t),n),
z2(t) =m (Vu,n) = Z3(t) = m (D:Vig, n).
Our analysis starts with the following lemma the proof of which is postponed.
Lemma 7 There exists a constant C such that for all t € [0,1] and all i € {1,2}
IR0 (Zi (D)l (20)
IR0 (2:(0)) = Bo (i (1)1 (20)

The second step is to transport (37) on Qg :

O||m||H1/2(390)7

<
< Cwmlimll gizan,)-

Bosm, (t) = /Q t[COtVRB(EZ)] [Aotbt] [CotVRf)(él)] J(t).

Note that we have used that Ry[z;(t) o ®;] = Ri[%]. We set X} = D, VRE(%;) fori = 1,2 and A4; =
J(t)A o ®;. We get the punctual® estimations

)

'XPAX] — 'XZAOXY| < | XA — AoX} |+ | F(XF - X3)A0X] | + | X3 Ao(X] - X))

< (14 = Aolloo I X, IHIXEI + [l Aolloo [1 X — X NIIXEN + [1Xo [[1X7 — XGI]-

2Note that both this operator and the tangential divergence are relative to €2 even if we drop this dependency in the notations for
the sake of readability.
3This is possible since we deal, in fact, with continuous functions even if only Lebesgue or Sobolev norms count.
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From the expressions of coefficients of L(t) given (20) and the regularity of A, one deduces the existence
of a constant C' such that ||4; — Ap|lec < Cnand ||A¢]|oc < C forall t € [0, 1]. We obtain

|BzanU)—-BzanUU|S<7W/Q XYl
0

e n&-xmum+c/nn-nmnn
Qo Qo

We conclude with Lemma 7 that
|Bo2ins, (1) = Bazm, (0)] < w(m)lml3 o oy

PROOF OF LEMMA 7. We first gives upper bounds in terms of H'/2(9€)-norm of the normal deforma-
tion m of the traces on the boundary.

Lemma 8 There exists a constant C such one has forall © , all t in [0,1] and i :== 1,2

C||m||H1/2(390)7
Cwmllmll g2 (a0q)-

Z: () 172 (062)

<
12:(0) = Zi(O) | grr2000) <

PROOF OF LEMMA 8.  First, remark that the z; write z = m f(t) with f € C'(9€Y;) as shown in Proposi-
tion 4 and in Lemma 6. Let f(t) denotes f(t) o ®; € C1(9Qp), then one has Vt € [0, 1]:

{w@mw%>sa
1F(t) = FO)llexamy) < Cuoln).

The product Lemma 2 provides the estimate

121l 1 72000) = ||mf||H1/2(aQO) < ||m||H1/2(aQO)||f||c21(390) < Cllmll g2 a0,)- (38)

To an upper bound of ||Z(t) — z(0)[| g1/2(aq,). We use the triangular decomposition

Zi(t) = 2z:(0) = m()f(t) ~m(0)f(0) = (m(t) —m(0)F(t) + m(0)(f(t) - £(0)).
Then, we applied Proposition 3 and Lemma 2 to get
1Z:(t) = 2i(0) 11112 (0020) < 172 (t) = m(0) | ;1172 (0620 1 (D)l 0025
+ Iml g1z (000) 1) — FO)lera00) < Cnllmllgrrza0,)-

This concludes the proof of Lemma 8. H
From those estimates on the traces, one deduces the wanted estimations on the extension through the
classical a priori estimate

lullzr < €0, L) [l = + gl e,

that holds for the solution of

L(u) =k in 0,
u = g on 9N,
We apply this estimate to (38) and get
IRs(Z(0)l 1 00) < N2()ll12(000) < Climllenaiany)- (39)

110



On variations of the shape Hessian and sufficient conditions for the stability of critical shapes

Here, the constant C' depends only of )y and of the extremal eigenvalues of the order two part of L(t).
From Lemma 3, we know that this constant C' can be chosen independently from both © and ¢. If t = 0, it
means

||R0(Z(0))||H1(Qo) < ||Z(0)||H1/2(390) < O||m||H1/2(BQo)'

We turn ourselves to the study of the difference between the extensions. The starting point is the equation
L(t) (Rg (5(75))) — 0in Q.
It can also be written as
L(R(E(t)) = Ro(2(0))) = [L = L(®)] (RA(:(1)) ) in Q0.
In our particular case, we get R (2(t)) — Ro(2(0)) = 2(¢) — 2(0) on 9Qp and hence

|R6G@) = Ro2)|| | < C[1E0) = 2llmsaon,) + |[[E) - L) (R G|

H'(Q0) H—l(QO)]'
The trace is already known but we need some control on the H ~!-term. We use a duality method. Let 1) be
a test-function in C§° (), we get

vIL) - Ljw = |

[ [lass(0) = (001220 + 15(0) = by )0y

Qo

The main argument is that the coefficients of L(t) and L are close in the C!-norm. This is deduced from
Proposition 2. Since v vanishes on the boundary, the Green formula gives

IN

)

Ylag;(t) — am(o)]a?,jw‘ ‘/Q [@' [ai j(t) = ai ;(0)]Y + [ai; (t) — a; ;(0)]0;¢] diw

Cllai,j(t) = aij(0)ller o) 1¥1 (o) 101 E1 (2)
CnllYoll 2 (o) 1wl (20) -

‘QO

INIA

For the order one term, we get :

\Qow[bj(t)—bj(o)]ajw\ < ClIbi(8) = b5 (0| L= (20) 1Y 18 (20 10l 21 02)
< OnllYllag o) llwllm (o)
That is
[z = 21@ @], 0, < OBy (40)

Hence, we get from (39)

[z - £y (rece) |

s <Ol @

We now study the internal terms. The main difference between those terms is the presence of one or

two derivations with respect to ¢. Recall from (23) and (24) that the trace on 92 of 9;u (and 87,u) is linear
(resp. bilinear) with respect to m. Therefore, different methods are required.
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C) Quadratic internal terms in 9,u or VO;u One uses again the L-harmonic extensions and the a
priori H'-estimates. This apply to the following terms

Dz,sf(u,Vu)(atuV,/(Divf(u,Vu),Vatthu,/(D%’vf(u,Vu)Vatu,Vﬁtu).
Qy

Q4 Q4

The extension operators defined in (33) are essential to study those terms since they allow to control 9;u by
its trace on 0f); since it solves (23). We mimic the former study of the conormal case and set :

z=—-m(Vu,n(t)) = Z=—-m(D:Vig,n(t)).
We then establish some estimates.

Lemma9 There exists C such that

2O 2000 < Climllrzaaq), (41

12(0) = 2Ol 2 000) < CwlImlr/2(504) (42)
1RSIty < Climllmzany), 43)
IRo(2(0)) = REG(t)lmr (o) < Cwlmlimllzm/zang)- (44)

PROOF. The H'/2-estimations are direct applications of the product estimate stated in Lemma 2. We
factorise m in the expressions of z(0) and Z(t). Propositions 2 and 4 gives upper bounds for the C!-norm
of the factorised quantities. The difference is treated as follows

12(0) = 2D 2 000) < Nl — (D) 172 (800) (D Ve, 172(1))le1 (900)
+ Il g1/2(500) 1KV, n(t)) = (D Vg, 7))l e1 (a00)
CwmlImllg1/2(00,)-

IN

We conclude as in the proof of Lemma 7. B

As example, we treat the term involving D%w f. First, we transport the term on the fixed domain
/Q (D%wf(u7 Vu)Vosu, Voyu) =
[ (uD2 10, 27 50) 011D By (0. eV R (D).
0
Then, we decompose the difference into
/Q ([9:D3 , f (e, "D Vi) "Dy — D}, f (uo, V)| D VR(2()), D VRE(2(1)))
0
+ [ (D2 o, Vo) [0V R(E(0) = VRo(=(0))]. 26V R (0)
0
+ [ (D2 w0, Vo) VR=(0)), [9: T By ((0) = VRa((0)]-
0

From Lemma 5 and Cauchy-Schwartz inequality, we can bound the first term as

CwmD:V R (Z(t)I12(0y) < CoIR(Z)IEn @y < CoImllinz(on,)-

The others terms are bounded by

ClID3.. £ (wo, Vo)l o= (20) 1D VRG (2(1) — V Ro(2(0))l] 2200 IV RS (2(1)) | 22(0)-

We then apply Lemma 9 to obtain the upper bound Cw(n) ||m||§[1/2(890).
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D) Internal terms involving 97,u. The second derivative of the state-function 87,u is given as solution
of (24): that is the L harmonic extension of a C%®(9€);) Dirichlet data. We use the following L' lemma
that is sufficient for our purposes. This approach is relevant as soon as appears 97 u without any spatial
derivatives. Recall that the V92 u, that appears by a direct application of Hadamard’s derivation Lemma, is
removed by the use of Green’s formula (see Section 2.3.). Note also that the p = 1 case is the critical one
for elliptic estimates in WP and that the following lemma is not true in W1>!

Lemma 10 Ler Q be a domain in O, let E = 0;(ai j(x)0;) denote a strictly elliptic operator and z be a
continuous function on 9). Then, there exists a constant C' such that the solution R(z) of

Eu=0in,
u =z onodd

satisfies the following a priori estimate

IR(2)z @) < Cllzllzraq)-

PROOF. We use a duality method to use known L°-estimations. We set u = R(z) and we consider (P*)
the adjoint problem to (P) defined as

Eu=0inQ, . [Eo=0inQ,
) 5" LR
u = z on 02, ¢ = 0on 9N,

where E* denotes the adjoint of E in distribution meaning. Green formula writes

/¢E(U) = —/ Zai7j6ilt6j¢+/ ¢Zai,j8iu8jn.
Q Q7 0 T

|uz@ == [ on0

Therefore, we need to control ||V ¢|| e (sq) With #. This is done via a L>°-estimation of the gradient (see
[12]) where the constant C' depends of d, 92 and of the smallest and the biggest eigenvalue of the matrix

(ai,;)

We then get

V@l < ClI8]| -
We obtain
‘/Quﬂ‘ < zlln o0 101 Lo () -

We use the duality L' x L to conclude. B

Let z denote the trace of 97, that is
r=— {2(V7 Vo) + (DV -V, Vu) + (V, D2uv>],
= - [Q(mﬁ, VR (—m(it, Vu))) + (DV -V, Vu) + m2<ﬁ,D2uﬁ)]
on the moving boundary 92;. We transport z on the fixed boundary and get
= [m(ﬁ,@tvzzg(—m<ﬁ,©tvat)>
+ (D, DV (8,) - V(B;),D,Viiy)) + 102 (i, 0, Dy tmtm].

This time, we are interested in the L'-norm of the difference between the traces on 9y from which the
estimations on the extensions is easily deduced.
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Lemma 11 There exists a constant C' such that for all t in [0, 1],
12(8) = 2(0)lz1(a05) < Cw(ImIlz/2(06,)-

PROOF. The term with V Rf requires the transverse-conormal decomposition already used in the second
method for boundary integrals. This leads to the H'/2-norm. To study the term with DV.V, we have to
distinguish between V" and X §;, we obtain in both cases a control in L?-norm. Let us examine the term
with D?u. From the triangular inequality, we have

| (1, D¢ D@ty "Dyt — m* (1, D ugn)|
S |77~12 — m2| ||<’h,®tD2’l~1/t tgt’ﬁ,>||Loo(3QO) + m2||D2u0 — 9,5D2ﬂ/t tgt”LOO(BQO)'
From Cauchy-Schwartz inequality, we get that
72 = m?([ g2 = (|07 — m) (1 + m)|| 2 < [l = m|p2]li + ml| 2,
< Cw()llmllgz [[l@llp> + llmllz2] < Cw(n)lmllz.

Hence, we conclude that

|[17? (12, D¢ D?i1y ') I (1) — m2<ﬁ,7D2u0ﬁ)“L1(mo) < Comlmlizza0y- ™

E) Case of geometrical quantities. The aim of this small section is to use the former approach to
recover similar estimates for the volume and perimeter (in the class of regular shapes).

Variations of 0. If we use X %, ae is constant along the path and therefore ay, = 0 on [0, 1]. If we consider
the field X g we get

ag(t) = /{m(t) div(Xg)(Xe,n(t) = /{m(t) m? div(n)(n,n(t)).

We treat this integral by transport and get:
|ag (t) = a(0)] < Cw(m)|Iml|72(s0,)- (45)

Variations of 3. Recall that
i (t) = / [aiv (9,73(1)) +div( div (3()) V) ] (V. 5(0)).
a0(t)

For a fixed ¢, 1(t, z) defined by (28) is an extension of n(¢) that is C! with respect to ¢. After an expansion
to let m appear, we perform an integration by part on 9€2; and get

|
=
=
=
2

S]
=
S
=

/ m? [div (38(t)) (3, 7 (1)) (33(t), D2 (1)
o,

We compute the derivative 9;72.(t)

_ 2AD _ADQOADAWD) _ AN _ HAD o
~lA@Il aA@iE Aol lAor ’

Byin ()
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where
DA(t) = V[0 (doe, 0 71)| = V((Vdoa,) 0 @1, 0,8, (@),

By differentiating with respect to ¢ the relation ®; o &, ' = I'dpa4, we obtain the expression of 9;®; *
8, = —[D®;] .V = —m[D®] .

The properties of the used deformation fields (either 9, m = 0 either 9ym = —m div (h)) and Proposition 2
leads to

1{(Vm) o &, n(t) o (I)t>||L2(BQO) <)o - Ide||2,a||m||H1(BQO)~

Plugging the expression of ;7 in pg(t), we check that this second derivatives writes

po(t) = m2ay + m{az 1, a22Vm) + m(ag 1, Vem){as 1 Vem, a2 Vm).
a9,

where both the a and a are obtained by additions or multiplications from the geometrical quantities 72, D1,
n(t), Dn(t) and &, (and its derivatives up to the order two). Since all quantities satisfy (36) by Proposi-
tion 2, and since such an property is stable by both addition and multiplication, we obtain by a now classical
argument the existence of a constant C' such that, for all ¢ € [0, 1],

P& () = p6(0)| < Cwmlml|F a0,)- (46)

4. Study of the stability of critical shapes on some examples

Our motivation in this section is to study the stability of critical shapes on some specific examples. In
particular, we use Theorem 1 to achieve this aim. The first example we study here is the mimimisation of
the Dirichlet energy already studied in [5] in a particular case. The second example presented in this section
is a pathological case for the method developped in this paper : it presents some new difficulties, we will
discuss.

We fix ain (0, 1) and k # 0 a smooth radial function in C>(R?, R) with a constant sign. We define the
set O of admissible domains  as the set of open bounded subsets of R? (d > 2) with a C>® boundary. As
a constraint, the measure of each admissible domain in O is assumed fixed. For convinience, this constant
is chosen as wy the volume of the unit ball B, in R%. For each Q € O, we define the state-function uq as
the solution in H} () of

—Au =k inQ,
{ v =0 onQ. @7

Study of Dirichlet energy :  Let us consider Jy the Dirichlet energy defined as

1 1
Jo(Q) = §/Q|qu|2—/QkuQ _ —§/Q|vu9|2. (48)

We study the stability of {2y which minimizes this functionnal .Jy. The analysis of [8], [5] can be followed
and leads to

DJo(% V) = —/ Vo2V, n).
o

A critical shape ), satisfies therefore the Euler-Lagrange equation: there exists a Lagrange multiplier
A € R such that
|Vug, |[* = A on 9. (49)
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From symmetry invariances, the solution upg, of (47) posed on the unit ball By is radially symmetric and
therefore By is a critical shape. Let us investigate its stability.

D?*[Jo + AD)(Bs; V,V) = /8B 2A(V,n)Co((V,n)) + (V,n)*(V|Vug|*, n)

where Cj the Dirichlet-to-Neumann operator defined in (34). The changes occur when we explicit the term
(V|Vup|?,n). We fix 29 on B, and compute the quantity (V|Vug|?,n) at the point xg. The following
compution is rather general and can directly be extended to general smooth sub-manifold. The sphere 0By
is locally given as the graph of a function f :] — ¢, e[~ — R with £(0) = 9;f(0) = 0 where the origin 0
is the point zg. For all z €] — ¢, €[?~1, the homogenous Dirichlet condition writes

uo(z, f(x)) =

We differentiate this expression twice with respect to the tangential variables (;);eq1,....4—1} and get for

(i,j) €{1,...,d—1}

0 = diuo(x, f()) + i f()Onuo(z, f(z)),
82 juo (T, (x)) 8f( )05, Jtto(, f(z)) + 0, (@) 2 nuo(z, f(@))+
i f ()0 f ()07, puo(x, f(x ))+3?,jf(x)<9nuO( ().

At the point zg, these equations simplify. For (¢, ) € {1,...,d — 1}

{ 0 = 8U0(5€0)
0 92 juo(0) + 07 ; f (20)Dntio (o).

o
I

In particular, this means that
Z@iiuo + (d — 1)HOpuo(zo) =0
i=1

where H stands for the mean curvature (here H = 1 but we keep it in the following computations since
those computations are rather general). Since (Vug,n) = d,ug, we have

d—1 d—1
(V|Vauo[2,n) = 8, [Z(@iu0)2 n (anu0)2] - 2[2 Di1100? yto + Bnugaimuo] — 20,1002 0
i=1 =1

From the state equation (47), we deduce that —82 pto =k + Zd ! 82 ;uo and therefore

d—1
<V|VUO|27 n> = 28nu08,2l7nu0 = —28nu0 |:k + Z aiin] N
i=1

= —2(d — 1)(Bnuo)2H — 20,uok = —2 [(d — D)AH + (Vaug, n)k

where A denotes the Lagrange multiplier. Since the unit sphere 9By is connected and (Vug, n) is con-
tinuous on @By, there exists € = +1 such that VA = €(Vug,n). To determine the value of €, we write

that
/ k=— [ Aup= —/ (Viug, ) = —qs(aBd)‘/—K _ _deaVA
Ba By B4 € €

(We used the classical relationship (9Bg4) = dwg). Then we get

dwd\/K
de k '

€= —

116



On variations of the shape Hessian and sufficient conditions for the stability of critical shapes

The Shape Hessian writes:

Dy + AB|(Bis V. V) =20 [ (VmCo((V.m) + [(d=DE - F2X)(v,m2 (50
0B4 de k

Since we are concerned with vector fields such that [ ,(V,n) = 0, this Hessian is coercive in / 12(60y)
(see (35)) if the term in (V', n)? is non negative, that is if

(d—1)
H1) < S /Bk

We can be more precise : coercivity still remains if the coefficient in (V', n)? is negative but not too much.
There exists Ay > 0 such that

(m, Co(m)) /2 g—172 > Ag||m||z2 for m with m = 0.
0By
In dimension two, the constant A, can be computed explicitly through the Poisson kernel see later and we
get Ao = 1. Therefore, we have that for all € (0, 1),

D2LJo + AT)(Bys V, V) >2A(1 — 1) /B V)GV

+/BB [nx\d+(d—1)H—%] (V,n)2.

Therefore, the Hessian is still coercive in H'/2(9B,) if

Bg

dwd

Under this condition, Theorem 3 applies and one deduces that the ball By is a stable minimum. If, the
opposite inegality is satisfied that is if

A+ (d-1
k(1) > # k,

d(AJd By
there exists at least one direction of deformation for which, the Hessian is negative and the critical shape
does not realize a minimum of the shaping function. Of course, the case of equality remains open. In the
next example, we consider that limit case in dimension two.

Study of the Dirichlet energy in the critical case. We set d = 2 and £k = 1. Since By is a
critical shape, we can restrict 7 to normal fields. We introduce ., the space of the normal component
m = (V,n) of admissible deformations fields that is the subspace of C%®(0D) of functions the integral
of which vanishes. We obtain the quadratic form Qo(m,m) corresponding to D?[Jy + AD|(B2,V,V)
defined on H,, by

Qo(m,m) = mCo(m) —m? = / |VRom|* — m?,
OB> D OB>

where the operator Ry of harmonic extension is defined in (33). To study the sign of (g, the normal
component m is written as its Fourier series. We set

m(0) =Y cne™ = Rom(r,0) = Y _ cprinle™? (51)

neZ neZ
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by application of Poisson kernel. Note that ¢y = 0 because of the constraint. We get after a straightforward
computation

Qo(mym) =7 (In| = 1)|ea|

neZ

A first remark is that QQy vanishes for the first Fouriers modes e?’ and e~*’. The reason of this cancellation
is the invariance of the functional with respect to translations. The second point is the coercivity of () on
HL the closure in H of the subspace generated by {exp(inf), |n| > 2} where we have

e ™
Ym € Hy,, Qo(mym) > 5D [nlleal® > Zllmllz e op,)- (52)
nez

Remark 5 (On the norm in H'/2(9B,)) We define the H'/?(9B,) norm through Fourier’s series as

1m0, = D V1 +n2lenl”

neZ
Since, one has |n| < V1 + n? < 2|n| for n # 0, the inequality (52) holds.

To take into account the invariance by translation, we restrict O. The center of gravity of any admissible
domain is assumed to be the origin O. This can be seen as the addition of two constraints :

C’l(Q):/xl:()andC'g(Q):/xg:O,
Q Q

where (1, 22) denotes the coordinates in the plane. This leads to the derivatives :

2m
DCl(D;V):/ 21(V,n) :/ cosf(V,n),
OB> 0
2w
DC’Z(D;V):/ 22(V,m) :/ sinf(V,n).
OB> 0

Then, the natural space to check the sign is H},. The restriction of Qg to H}, is coercive in the norm given
by Theorem 1. But a major difficulty arises since the divergence-free vector field X é does not belong to
HL . Therefore, the sign of j§/ (0) = D?.Jy(B2; X &, X&) is a priori unknown,

We take advantage of the invariance under translations to solve this difficulty in that particular case. Let
®; be the flow of X 5. We define G (t) as the position of the center of gravity of Q(t) = ®;(Bs) that is

1 1 1
Gol(t) = W/Qt T = w_2/132 Do ¢ (y) det (D (y)) = w_2/132 P4 (y), (53)

since X % is divergence free, the jacobian det(D(Pt(y)) is identically 1. We consider now the diffeomor-
phism ¥g ; = &, — Gg(t) i.e. the flow of X% minus the translation of vector Gg(t). By construction,
this is a familly of diffeomomorphisms which preserve the center of gravity. This path satisfy therefore the
additional constraint that the center of gravity of admissible domain should remains fixed. This path can
be seen as the flow of the non-autonomous vector field 0;¥; = X % — 0:Go(t). And therefore, the vector
field (9, ¥;)|;=o belongs to ], and satisfies

~ T
75 (0) = D*J(By; (3:¥+) =0 (0 ¥+)j=0) > 5||<(8t\1,t)|t:07n>||H1/2(8B2)- (54
Since Jy(21) = Jo(£22) as soon as there exists a translation mapping 21 on Qo,

Jo(t) = Jo(¥4(B2)) = Jo(®4(B2) = jo(t)

118



On variations of the shape Hessian and sufficient conditions for the stability of critical shapes

forall ¢ € [0, 1] and, in particular, j§ (0) = j&(0). Att = 0, the derivative 9;Ge (t) is deduced from

1 1
G@(t)—G@(O):w—Z/B Qt—IRz:w—Z ; tXg +olt)
2 2
1
= (0 V)= = X — — | Xbo.
w9 B

From Stocke’s formula and div(Xg) = 0, we get
<2 :/ /2”2 pind (cosﬂ) a6 = ( €1 + ¢ ) .
Bo dBs = —i[c—1 — ¢1]

To compute the H'/?(9Bs) norm of {(9; W4)|¢—0, ™), We compute its Fouriers coefficients with respect to
the coefficients of (X g, n) and get

. [n| #1 = &, = cp, (in particular, ¢y = 0)
<(8tqlt |t 07 %Cn Wlth { |n| — 1 = én — 0

Since 0 < 1—%<1,weget

||<(6t\1}t)\t:0an>||§{1/2(332) = Z v1+ n2|5n|2

nez
(55)
1—— )Y V1+n2e,) = ||<X ) 31208,
nez
Along the path Q; = ®4(B>), Taylor’s formula writtes
1
() = ia0) + [ (1= 00 )t (56)
0
and we have
Jo (1) = Jo (0) + 75 (0) — jo (£)],
. ~ —
= 3000 2 21O im0 Iy o < oIl
2 Z(L =) ml|%. ) from Theorem 1
from (54) and (55 )

Therefore, as soon as the diameter 7 of the ball in O (for the C>® norm) around the critical shape D is small
enough, ji'(t) > 0 forall ¢ € [0, 1] and (56) shows that D is a local strict minimum of .Jy.

Study of a functional without Vu, : We still consider the plane case and & = 1. Then up is given
in polar coordinates as up(r,8) = (1 — r?)/4. Therefore, up has the natural extension (1 — r2)/4 on the

whole space. We still denote this extension by up. Note also that Opug = d,ug = —1/2 on the unit circle
0B5. On O, we define

T(@) =llue ~ uplfixe) = [ (ua — up)?. (57)
Q
We will show that the unit disk is a stable minimum of J; but that this stability cannot be deduced from
Theorem 1.

By definition, we have E(Q2) > 0 = E(D), therefore the unit disk D is a global minimum of .J;.
Moreover, for all  in O, the state-function ug is C>®. From the maximum principle, ug does not vanish
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in ). Then, ug = up if and only if 2 = D. Thatis D is then the global strict minimum of J;. We now try
to prove this elementary result with the presented method.

We first apply Lemma 4 to compute the successive derivatives of the restricted functional j; (f) =
Ji(®e,:(Q)). Forall t € [0,1],

j{(t):/ 20pu(u — up) + div(|u — up|*V),
Q¢

Jrt) = /39 [48tu(u —up) + div(|ju — uD|2V)] (V,n) + /Q 202u(u —up) + 2(0¢u)*.

Since the expression of the directional derivative remains valid for any deformation field in V, D is a critical
shape for J;. Moreover, the proof of Theorem 1 shows that the integral over the boundary varies with a
control in the L2-norm and that the integral over the domain is controlled by the H'/2-norm.

Let us study the coercivity of the Hessian. Since u;—q = up, cancellations occur in ji'(0) and we
obtain only

o =2 [ @u? o, 58)
D
Recall that 9;u solves (23). Here the boundary condition simplifies as
o m
(V ,Vup) =m(n,Vup) = mo,up = -5

Let m € H,, given by its Fourier series (51) with ¢y = 0. We get with the Poisson kernel

1 1 21 . -
Qi(m,m) = 3 / / (Z cnrln‘emg) (Zarwe*m”)dr(w,
0 7o nez nez
[ ke - 25
= 7 cnl’r r=— .
o 2 4 In| +1

neZ

Therefore, Q (m,m) is coercive on H,, but only for the H~'/2(8By) norm since

™ ™
ZHm“%{fUZ(aBZ) < Q1(0)(m,m) < §||m||%{,1/2(8B2)
and Theorem 1 does not allow us to conclude to the stability of D.

Remark 6 In this example, the dominant term, the one which behaves in the strongest norm, in the ex-
pression of the Hessian at the critical point vanishes. Therefore, only weaker terms remains at the critical
point and provide the coercivity of the Hessian. This cancellation is specific to the critical point and the
dominant term reappears for non critical shape.

On the stabilising effect of surface tension. To modelise surface tensions, one can use a penalisa-
tion of E by the perimeter. Assume the existence of a critical shape (2 for the penalised shaping function
E. = E + &8 and assume that the shape Hessian of E. is coercive in a weak norm ||.|| -

In order to be in the situation of .Jy, the coercivity needed (at least in this approach) to claim stability is
a coercivity in H'-norm shown by Theorem 1 and equation (46). But the H'! norm can only appear through
derivatives of 3.

The physical interpretation is that the tension force are strong enough to insure a geometry of the critical
boundary 9 rather close to a sphere. When the surface forces are weaker (that is ¢ is smaller), we are in
the situation of .J; where three different norms (the norm of differentiability, of coercivity and of continuity
of the second derivative) are involved and where further studies are necessary.
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The conclusions of this paper are the following ones. Two cases are possible: either no additional weak
norms appears in the study and then the weak coercivity insures stability (see [5] and example .J, in Section
4.), either a third non equivalent topology will appear and then a new problem arises (see example J; in
Section 4.).
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