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A characterization of space-filling curves

Gaspar Mora and Juan A. Mira

Abstract. A famous theorem discovered in 1936 by H.Steinhaus on a sufficient condition for obtaining
the coordinate functions of a curve filling the unit square is revised in the present paper. Here we point
out that the converse of the above theorem fails in the Lebesgue curve. A characterization of the space-
filling curves by means of a filling condition is proposed. A constructive characterization of this filling
condition, in terms of the Borel measures, is also settled.

Una caracterizacion de curvas que llenan el espacio

Resumen. En este articulo revisamos un famoso teorema, descubierto por H. Steinhaus en 1936, en el
que se da una condicién suficiente que permite obtener las funciones coordenadas de una curva que llena
el cuadrado unidad. Ponemos de manifiesto que el reciproco de este teorema no se cumple para la curva
de Lebesgue. Aqui proponemos un teorema de caracterizacién de curvas que llenan el espacio, basado
en una condicién de llenado. Asimismo, damos una caracterizacién constructiva de esta condicién de
llenado por medio de medidas de Borel.

1. Introduction and notation

In 1890, G. Peano [9] demonstrated that the interval I = [0, 1] could be mapped surjectively and continu-
ously onto the square @ = [0, 1]2. Immediately, furthers examples of such curves by D. Hilbert (1891) [3],
E. H. Moore (1900) [7], H. Lebesgue (1904) [5], [6] and others followed. In spite of each curve was greatly
superior in simplicity and ingenuity to the previous, a method for generating them remained unsettled.
H. Steinhaus in 1936 [11] solved the problem by means of a surpresively result: if two continuous non-
constant functions on I are stochastically independent with respect to Lebesgue measure, then they are the
coordinate functions of a space-filling curve (see [10, pp. 2] and the original paper of Steinhaus [11]).

The attainment of space-filling curves by means of stochastically independent functions, begun by Stein-
haus, was soon forgotten and, apparently, Garsia [1] and others (see [4]) arrived to the same conclusions
about forty years later. Following the way of the stochastic independence (in brief, s.i.), it is neccesary to
remark the work of Holbrook in [4]. Nevertheless, as we shall prove below, the s.i. is a too much strong
condition for giving a characterization theorem on space-filling curves, which is exactly the objective of
our paper. For this reason we introduce here (Definition 1) a filling condition (in brief f.c.), which will be
appropriate to characterize the space-filling curves.

The f.c. is a concept, implicitly handled in [8], that was given to characterize a class of curves that
contains to the family of the space-filling, namely the a — dense curves in parallelepipeds H of R"™. These
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curves have the property of densifying H, i¢.e. for any point of H there is a point of the curve at distance
less than or equal that o > 0.

To avoid that the f.c. to be considered as a trivial characterization of space-filling curves, a character-
ization theorem on that condition , in terms of Borel measures, will be also settled. Moreover, this result
will point the way to the construction of the coordinate function of a space-filling curve.

In order to facilitate the reading of the text , recall some definitions, contained in [10], concerning to the
concepts of space-filling curves, stochastically independent functions and others.

I" will denote the Cantor set, J,, the n-dimensional Jordan content of a Jordan measurable subset of R™
and A,, the n-dimensional Lebesgue measure of a Lebesgue measurable subset of R™.

A continuous function f : I — R™ with n > 2, is called a space-filling curve if J,,(f(I)) > 0.

Let ¢1,...,0n : I — R be measurable functions. Then, ¢1,...,y, are called stochastically inde-
pendent with respect to the Lebesgue measure (in brief r.L..m.) if, for any measurable sets Ay,..., A,
of R,

Al [991_1(141) n...N (,D;Ll(An)] = A1 [(101_1(141)] X ... X Al [@;1(An)] .

A surjective function f : I — @ is said to be measure-preserving if, for any measurable set A of (),

AL(f7H(A)) = Ax(A).

2. The quasi-stochastic independence as a filling condition.

The purpose of this section is to prove that the stochastic independence is sufficient but it is not a necessary
condition to define space-filling curves. A characterization of these curves will be given by means of the
following simple concept .

Definition 1 (Filling condition) We shall say that n measurable functions p1,...,¢0n : I — R are
quasi-stochastically independent (in brief q.s.i.) with respect to the Lebesgue measure, if for any open sets
Ay, ..., A, of R the condition

A1 [@;1(141)] X ... X Al [le(An)] >0

implies
AT (AN N, (A,)] > 0.

Our next result is immediate.

Proposition 1 Let ¢1,...,0, : I — R be nonconstant continuous functions such that the curve
f = (o1,..-,0n): I — R" fills the parallelepiped NM?_, ©;(I). Thus @1, .. ., oy are quasi-stochastically
independent (r.L.m).

As a generalization of the classical result of Steinhaus (see [10, pp. 109] or [4, Proposition 1]) we
expose the following theorem.

Theorem 1 Let ¢, ...,p, : I — R be quasi-stochastically independent functions (r.L.m.). Assume also
that they are continuous but not constant. Thus the curve defined by f = (¢1,...,¢n) : I — R" fills the
parallelepiped M7, ¢, (I).

PROOF. Letz = (x;)7, be a point of M7, ¢;(I), so there exist (¢;)7_, in I such that z; = ;(t;) for

1=
eachi =1,...,n. Given ¢ > 0, consider the open sets

Ai:<xi—%,xi+%> fori=1...,n (1)
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By continuinity, ¢; (4;) is open in I and contains ¢;, therefore the condition
A [ H(AD] x o x Ay [ (An)] > 0
holds. Since ¢4, ..., ¢, are g-s.i., one has
A [ (A nLong ' (A,)] > 0.

Thus there exists ¢ € I such that p;(t) € A;. From (1)

lpi(t) — 2] < % fori =1,...,n,

so the euclidean norm || f(¢) — || < . This proves that f(I) is dense in []?"_, ¢;(I), but f(I) is a compact
set, therefore f(I) = [];—, i(I) and the result follows. B

To expose our next results,we need recall some elementary properties on the Cantor set and the Lebesgue
curve.

The binary representation of a number a € I will be denoted by 02, a1, azas ... where a; € {0,1}.
Analogously in the ternary basis, a € I is written as 03, ajasas . .. with a; € {0,1,2}.

The Cantor set, or the set of the excluded middle thirds, can be represented by all numbers of [0, 1] such
that, in the ternary basis, can be written only using the digits 0 and 2, i.e.

I'= {037 (2t1)(2t2)(2t3) I tj =0or 1} .
A continuous mapping f can be defined from I" onto the unit square () by means of

‘)"(037 (2t1)(2t2)(2t3) .. ) = (027 t1t3t5 ce ey 027 t2t4t6 .. )

H. Lebesgue extended this mapping continuously into I by linear interpolation, obtaining a continuous
function f; defined on the complement I'¢ as

filt) = (b — ) - flan) + (t — an) - F(ba)].

bn_an

(an, by,) being the interval that is removed in the construction of I at the n-th step and a,, < ¢ < b,,. Then,
the Lebesgue curve (also Lebesgue function), denoted by L, is defined by

[ f, iftel
L(t)—{ £,  iftere.

L is a continuous and surjective function onto the square (9, so a space-filling curve (is also differentiable
almost everywhere; for details see [10, Theorem 5.4.2]).

The two following simple propositions show just how fails the converse of the Steinhaus theorem in the
Lebesgue Curve.

Proposition 2 The Lebesgue curve is not a measure-preserving function.

PROOF.  Consider the measurable set A = [0, 3) x [0, %), then we claim that L~*(A) C [0, §). Indeed,
let (z, y) be an element belonging to A, then in the binary basis one has

56202,07’27'3... and y:02,08283...

where r;,s; € {0,1} for any ¢ > 2 and with some r;, s; = 0 (for instance, observe that if all »; = 1, then
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By denoting t = L~ (x,y), we have two cases.

1
Case 1: t € T, then t = 03,00(2r3)(2s2) . .. and consequently ¢ € [O, 5)
1
Case 2 : t € I'°, then we have again that ¢ € {0, §> Indeed, suppose that there is a value ¢ € I'® with

1
t > 9 and L(t) € A. Let (ap, b,) be the interval that has been removed in the construction of I". Thus

1 1
a, <t < b, and noticing that — € T, it follows that a,, > —

On the other hand, as L (%) = <%, 1> and L (g) = (%,0) one has that ¢t ¢ (%, ;) . Furthermore,

since L) = (33) 0 (2) = (o) (D)= (1) war(3)=(5)

1
,bn:m+ and n > 3.

3n

12
we conclude that ¢ ¢ <§7 §> U (5 g) Therefore t € (ay, b,) with a,, = SE”

Consider the following three possibilities:
i) a, = 03,0(2r2)(2r3)(2ry) ... and b, = 03,2(2s2)(2s3) ... with r;,s;, € {0,1}. Then a,, <

1
03,0222... = 03, 1 and b,, > 03,2000... = 03, 2. Therefore b, —a,, > 3’ which leads us to a contradiction

1
since b, — a, = — withn > 3.
371,

ii) a, = 03,02(2r3)(2ry)... and b, = 03,02(2s3)(2s4) ... with r;,8; € {0,1}. Then L(a,) =
f(an) = (02,0r3rs...; 0,1ryrg...) and L(b,) = f(bn) = (02,0835 ...; 02, 18486 ...). Therefore, if
we denote by ¢ and ¢ the first and second component of the function L respectively, we get

1
lan) 202,100 = 25 ¢(by) 2 02,100... = 2.

| =

Consequently, ¢(t) > = for any ¢ € (ay, b, ) and then it contradits that L(t) € A.

iii) ap, = 03,2(2r2)(2r3) ... and b, = 03,2(2s2)(2s3) ... with r;, s; € {0,1}. In this case ¢(a,) =
02, 1rsrs ... and ¢(b,) = 02, 1s3s5 . .. Thus we have

~ D

1 1
plan) > 02,100 .. = 3 p(ba) > 0,100... = 7,

deducing that p(t) > — forany ¢ € (ay, b, ), which is again a contradiction.
1 1 1
As conclusion L=1(A4) C {O, 5), involving that Ay [L7(4)] < 9 Since Ay(A4) = Ve deduce

that Ay [L_l (A)] # Ay (A) and consequently the Lebesgue curve is not a measure-preserving function, as
claimed. W

Proposition 3 The coordinate functions ¢ and 1) of the Lebesgue curve are not stochastically indepen-
dent.

PROOF. Letustake 4; = Ay = [O, %) , then we claim that:
) 1 1 1
1) 0,5 \FC(P (Al)c 075 )
1 17 1 17
ii — — r -4 — -
i ([ng)u (39)) wrevanc og)u(zg)
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1
Indeed, let us take a € {0, §> N T. In the ternary basis, a is expressed as

a = 03,0(2r2)(2r3) ..., with some r; = 0 fori > 2,
hence )
(@) = 02,0r575 ... < 02,011... = 2.

1
Let ap, by, € {0, §> N T be the end-points of the interval (a,, b, ) removed in the construction of T, then

bn = 03,0(282)(283) N

has the following easy property: there exists k > 2 such that s;, = 1 and s; = 0 forall © > k. As
consequence

1
p(bn) < 02,011... = 3.

1 -
Foreach t € [07 §> \I' denote by A the number bt an

, then

n an

pt) =1 = Neplan) + Ap(b,) with 0 <X < 1.

1 1 1 1
Since ¢(a,) < 3 and p(b,) < 30 We deduce that p(t) < 5 and so [O, 5) \I' C o 1(A;) is proved.
1 1
On the other hand, if ¢ € T with a > 3’ one has that either ¢ = 03,022... <f0ra = §> or

1 1
a = 03,2(2r2)(2r3) ... (fora > §> Therefore we get p(a) > 3

1 1
Assume t € <§, 1] \I', then there exist a,,, b, € I with 3 <an <t<b,andso

DO | =

e(t) = (1= XNp(an) + Ap(bn) >

1
Therefore p=!(A4;) C {O, §> and it proves i). Finally, as conclusion, since A1 (T") = 0, it follows that

A(p™(AL) = <. )

1 2
For proving ii), first observe that if a € ( {0, 5) U [— Z)) N T thus

1
bla) < 5. ©
1\ .
Indeed, a number a € [O, 5) is expressed as

a = 03,00(27’3)(27‘4) ..

1 2
with some r; = 0 fori > 3. Therefore ¢)(a) = 03, 0rgrg... < 02,011...= 5 Analogously, ifa € {5’ g)
1
then a = 03,20(2r3)(2r4) . .. with some r; = 0 for ¢ > 3 and so ¢)(a) = 03,0747 ... < 09,011... = 3
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On the other hand, if a € <B, %) U [g, 1)) N T thus

Y(a) > 5. )

D | =

9’3
1
05,1r4... > 05,1 = 3 Ifa € {g,l), thus ¢ = 03,2(2r2)(2r3)(2r4).... Now, noticing that

12
Indeed, whether a € [— —) its expression is given by a = 03,02(2r3)(2ry)... and then ¢(a) =

7
g = 03,2022... we have that, either ro = 1 (a > g) orry = 0O withr; = 1forall¢ > 3 (a: §>

Therefore, in both cases

1
Y(a) = 09,7914 ... > 02,1 = 3
From (3) and (4) we deduce that if a € T, the condition
1
¥(a) < 3 )

implies, necessary, that a is a number belonging to
1 27
b5)Ul55):
1 17 . .
Let us take t € 0, 9 U 2’9 \[', then there exist a,,, b, € I’ with a,, < t < b,, and then we
. 1 27 12
have either [ay, b,] C {07 §> U (5, 5) or [an, bp] = [g, g} .
1
In the first case, as we have already showed, ¥(a,,) < 3 and ¥ (b,) < 5750 P(t) < 5 Whether [a,,, b,] =

L2 1<t<20nehas
—. —|,since — -,
3’3 2 3

D0) = (1= Nilan) + A (bn) = (1= N9(3) +A6(5) =1 -2

2
1 t—a, 3

<
b, — an,

W = =+
N | =

2
3
and this shows the first part of ii).
Finally, if ¢ (z) < % and z = a € T, from (5) we deduce that

1 27 1 17
welrs)Ulss) < [05)UGS)
1
On the other hand, if ¢(z) < 3 and x =t ¢ T', we obtain the same conclusion. Indeed, by supposing that

“¢r5)ULE5)

and by applying again (4) to the end-points a,, and b,, of the removed interval (ay,, b,,) , with a,, < t < by,

we are led to ¢(t) > 3 which is a contradiction.
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. . 1
The above involves that for any = with ¢(z) < 5 one follows that
1 27 1 17
0, - -, = 0, = =, =
welra)U5a) < o) UGS)

M () = o

and therefore ii) is proved.
Now, i) and ii) imply

and from (2) one has
7

A (7 (A) A (™ (Ar)) = 7k

1
On the other hand, since ¢ ~(4;) Ny~ (4s) C {O, 5) , one deduces

A (T (A NPT () € 5 < o = Mo () A (0 (42))

concluding that ¢ and v are not stochastically independent. H

From this the following is clear.
Corollary 1 There are space-filling curves whose coordinate functions are not stochastically independent.

Corollary 2 There are Q.S.1. functions that are not stochastically independent.

3. Characterization of the Q.S.l. condition

Though it is obvious that Theorem 1 is not a trivial result, the characterization of space-filling curves by
means of the Q.S.I. condition could seem it. Therefore, to avoid that appearance, in this section we are
going to prove that the Borel measures characterize the Q.S.I. condition, in such a way that the coordinate
functions of a space-filling curve can be easily determined.

From the countably additivity of the Lebesgue measure and Theorem 1, the easy technical lemma fol-
lows immediately.

Lemma 1 Let i, p2,...,0n : I = R benonconstant continuous functions. Suppose also they are Q.S.1.
Then the set function y defined by

I (H Bi> = Ay [Ny ey H(B)]

is countably additive on the class Cy of all cubes C' = [];_, B; contained in the parallelepiped H =
[T, @i(I). Furthermore, u(H) = 1.

With the help of this lemma we finally have what we wanted all along, the connection between the curves
filling a parallelepiped and the Borel measures defined on it.

Theorem 2 Assume 1, ......,on : I — R are continuous nonconstant functions verifying the Q.S.I.
condition. Then the set function p(IT", B;) = Ay [ noert (Bi)], on the class Cy of all cubes [}, B;
contained in H = [, pi(I), defines a Borel measure on H such that

wH)=1 and p(C)>0 (6)

for any cube C of Cy with int(C) # 0.
Reciprocally, any Borel measure 1 on a parallelepiped H = [[_, [a; bi], (a; < bi,i = 1,2,...,n)
satisfying (6) defines n continuous nonconstant functions that are Q.S.1.
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PROOF.  Suposse that the functions ¢, . . ., p,, are Q.S.I, then, by Theorem 1, the curve ¢ = (1, - .., ¢n)
fills H = [];"_, :(I). On the other hand, by the previous Lemma, j is countably additive on the class C'y
and satisfies u(H) = 1. Clearly, then, u defines on the ring R(K), of all finite disjoint unions of sets of
C'n, a unique finite measure which is extended to an unique measure on the o-ring ¥(H) (see for instance
[2]) that contains the Borel sets. Therefore u defines a Borel measure on H, and from the Q.S.I condition

u(C) = Ay [Mizy 7 ' (Bi)] >0

for any cube C' =[]}, B; ,provided that int(C') # 0.
Conversely, let ;s be a Borel measure on H = H?Zl [a;, b;] verifying the condition (6) of the statement of the

theorem. Let P; denote the partition of H into the 2™ equal disjoint subcubes {C’l(,l) :1<p< 2”}. As-

sume, for N > 1, that Py is the partition of H, into the 2N "equal disjoint subcubes {C’éN) s 1<p<2hn },

1)

obtained from the partition Py _1 by the division of each C,(,Nf into 2" equal disjoint subcubes.

For an integer M > 1, we arrange the 2M" cubes CI(,M), of the partition Py, in such a way that CI(,Q\_/II) is

adjacent to C’,(,M) foreach 1 < p < 2M™_ Assume the same has been also done for each of the 2" subcubes
produced by the construction of the partition Pyr1.

Mn
Since u(H) = 1, we have 22:1 w(CSM™)y = 1. Noticing that u(CS™)) > 0 forall 1 < p < 2Mn the 2Mn
real intervals defined as

1 = Jo,uef™),
B = (O™ )+ we™))
o =[St

form a partition on I = [0, 1] for any M > 1. Furthermore, in view of the above arrangement,

(M) _ 2m p(M+1) (M) _ 2 +! (M+1)
L= szlfj Iy = UjZZnHIj e
and so on.
Now, we distinguish an interior point of each CI(,M) with 1 < p < 2Mn, say, for instance, its center

P,SM) = (gcg%z))?zl with 1 < p < 2M™ and M > 1. This allows us to define on I the n functions

M M M
h% ;(t) = ng’)% ift I{, ;
M M) . M
hs 7 (t) T ift €I, o
M@ = 2Mirre ™, 1<p<oMn
(p)n p
Now, we are going to prove that the limits
lim A, lim A8 lim A
M—o0 M—oo M—r00
there exist, define functions that are continuous (observe that th), R hslM) are not) and satisfy the Q.S.I.

condition. Indeed, let us take an index ¢ with 1 < ¢ < n and denote by L; the length of the interval [a;, b;].
Directly from the definition of hEM),

1
R 1y — BT (| = ZLiQ_Mfor any t € I. ®)

K3
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For N > M

BN - nM )| <

() - mN V0] +
B @) = nM )|

Dty =N )] + ...

Hence, given € > 0, there exists a large enough My such that for M > My,

g;

N
1 .
‘h(N) — hM (1) ‘ SL Y 27 < ©)
=M

This proves that {hZ(N) (t)} is a Cauchy sequence for any ¢ € I. Hence, there exists the pointwise
N=1,2
limit
hi(t) = lim RN (1), (10)
N—o00
Taking limits in inequality (9) when N — oo, one has

o0

Z ~J < zforall M > M, (11

o110

'-lkI»—ﬂ

and , certainly, then, the limit (10) is also uniform.
Now, it remains to show that the h;(¢) are continuous. Indeed, given ¢ > 0, let M > 1 be such that

L2~ M+ < ¢ If t is a fixed point of I, there exists some p for which ¢, € IéM). Choose a number ¢ so
that 0 < § < min{p(Cl(,M)) :1<p< QM”}.

Clearly, then, for ¢ such that |[¢ — ¢o| < ¢ one has that either ¢ € I,(,M) ort € I(Ml) ort € 7 Anyway,

p+1-
from (11) and (7) we have

hat) = hi(to)] < |ha(t) = BV ()] + [ (1) = B 00)| + [ (t0) = htto)
<L2 M- 4poM4 M-t
= Li27M+1 <e.
This shows the continuity of h; forall: =1,...,n.

Finally, let {A; : i = 1,...,n} be an arbitrary open sets of R such that the condition
A1 [hl_l(Al)] X ... X A1 [h;l(An)] >0

holds. Evidently, then, there exists a closed cube C' in H with int(C') # 0, such that C' C A = M, 4;.
Given C, determine a cube CI(,M) of a certain partition Py so that C,(,M) C C'. Denoting by h the function
defined by (h1,...,hy), we are going to prove that I,(,M) (the corresponding interval to the cube CI(,M) )

verifies
M ~1
M c nt(o). (12)
Indeed, let ¢ be a point of Il(,M). From (7), the function hM) | defined as (th), R thM)) , satisfies
M) () = PV, (13)
According to the above partitions, there exists a cube C,,M+1 C C,(,M) such thatt € I,(,fwﬂ) and then,

h(M+1)(t) _ (th“)(t),th*l)(t)v . .,hSLM+1)(t)) = PISIMH).
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In this way, we can inductively determine a sequence of cubes

oM oM c oM c o

and a sequence {h(M+N)(¢) : N =1,...} of points of R”. Now, taking the limit, we have

lim AMFN () = h(t) = lim PMTN) = p e C.

N—o0 N—o0

Therefore t € h='(C') and so (12) is showed. Consequently, we have

Ay [Ny b7 (A)] = Ay [hH(A)] > A (I9)). (14)

By using (6), Ay (II(,M)) = u(O,(,M)). Because of the assumption on the measure y, u(C’,(,M)) > 0. Hence,
from (14), Ay [N, h; '(A4;)] > 0 and the proof of the theorem ends. W
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