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The error term in Nevanlinna’s second fundamental theorem
for holomorphic mappings on coverings

Arturo Fernandez Arias

Abstract. We study the error term in Nevanlinna’s second fundamental theorem for holomorphic
mappings F : Y — P, where on Y is defined an holomorphic covering map p : Y — C, as considered
by S.Lang and W.Cherry. We also obtain the logarithmic derivative lemma for this class of functions
which, in particular, contains the class of algebroid functions. We show that our estimate improves a
classical result of Henrik Selberg on the logarithmic derivative for algebroid functions.

Término de error del segundo teorema fundamental de Nevanlinna sobre
aplicaciones recubridoras holomorfas

Resumen. Se estudia el término de error en el segundo teorema fundamental para las aplicaciones
holomorfas F : Y — P, donde en Y hay definida una aplicacién recubridora holomorfa p : ¥ —
C, aplicaciones consideradas por S. Lang and W. Cherry. También se obtiene el lema de la derivada
logaritmica para esta clase de funciones que, en particular, contiene la clase de las funciones algebroides.
Se demuestra que la estimacién obtenida mejora un resultado cldsico de Henrik Selberg sobre la derivada
logaritmica de las funciones algebroides.

1. Introduction

In [8], Lang conjectured the following form for the fundamental inequality in Nevanlinna’s second funda-
mental theorem for meromorphic functions F' : C — P!

m(r,a;) —2T(r, F) + Nram,r(r) <logT (r, F) + lower order terms. (1)

q
=1

J

Lang’s conjecture was established by Wong [19], and Ye showed by an example, see [9], that (1) is
essentially the best possible estimate that we can obtain, in the sense that the coefficient one of log T'(r, F'),
cannot be replaced by any smaller number.

Later on, he also considered the lower order terms an gave a precise estimate for the error term in
Nevanlinna’s fundamental inequality, that is, the left hand side of (1) see Ye [20]. He proved

q
S m(r,a5) = 2T, F) + Npam () < log T (r, F) + log s (7' (r, F)) + 3 log /(). )
j=1
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where ¢ : [1,00) — R is a Khintchine function, that is, 4 is positive, increasing and

/m;lm =

1

In the same paper he showed that the estimate yielded by the right hand side of (1) is also valid and sharp
in the logrithmic derivative lemma.

Here we shall consider the same questions for functions F' : Y — P! where on Y is defined an
holomorphic coveringmap p : Y — C. Thatis, Y is a connected Riemann surface and p a proper surjective
holomorphic map. Lang and Cherry [9] developed a value distribution theory in this setting and makes
sense to study the size of the error term in the second main theorem or the logarithmic derivative lemma.

We shall see in Section 6, that we can consider the algebroid functions as a proper subclass of the holo-
morphic mappings defined on coverings. Let F' (z) be an analytic function which has algebraic character
for every z € C and a constant finite number of branches F (z),..., Fj (z) . Such a function will satisfy
an equation of the form

(FEOY +A4 ) {FEOY "+ +4,(2) =0, 3)

with meromorphic functions as coefficients. According to a terminology due to Poincaré, we shall call such
an analytic function, an algebroid function.

Conversely, any equation of the form (3) with meromorphic coefficients defines an algebroid function
if the left hand side of the equation is irreducible, that is, cannot be expressed as a product of factors of the
same type, with coefficients which are meromorphic in the plane.

Given an algebroid function F', we can consider the Riemann surface

Y ={(2,F,(2), 2€C, v=1,...,k}

with the canonical projection

and on Y the holomorphic function

F: Y — p!
(2, F.(2)) =  F(zF(2) = F.(2)

which we shall denote by F', in the same way as the original algebroid function.

H.L.Selberg [14] developed a value distribution theory for algebroid functions. We shall see that the
basic concepts introduced by H.Selberg for algebroid functions, proximity function, counting function,
characteristic function, are essentially the same as those introduced by Lang and Cherry for holomor-
phic mappings on coverings. Finally we shall compare the logarithmic derivative lemma which we ob-
tain for holomorphic mappings on coverings in the case of functions of finite order, with that obtained by
H.L.Selberg [13] and check that we improve the estimate.

2. Notation and basic facts

For a proper covering p : Y — C, we follow the notation of [9].

[Y : C] = the degree of the covering,

Y(r)={yeY [ ply) [<r},
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Y[rl={y €Y | ply) <},
Y<r>={yeY|py)l=r}

C * d0
oy =dlog|p|* =p <%),
where d6 is the usual form on C.
In a local coordinate w

. - ,
oy (w) = L ILw)du’J P (w)dw ,
am \ p(w) p(w)
outside Y <0 > .
Next let ' : Y — P! be a nonconstant holomorphic map such that F(y) # 0,00, and F'(y) # 0, for
ally €Y < 0 > . Then fora € P!, we let

nr(a,r) = number of roots of F(z) = a in Y[r] counted with multiplicity,

NF(CLT):/ Mdt: Z ordy(F—a)log‘%
0 yeY(r] Py

b

me(ar) = [ ~log||F.aloy,
Y<r>
where ||, || is the chordal distance in P, and finally
Tra(r) = mp(a,r) + Ne(a,r) + Y (ordyp)log||F(y), |
yeY(0)
With these definitions we have
First Main Theorem. Ty, (r) is independent of a € P, provided F (y) # a fory € Y (0) .

In the light of the first main theorem we denote T o (r) by Tr(r) and call it the characteristic function
of F.

As in the classical situation there is an Ahlfors-Shimizu expression for the characteristic function of a
function F which is defined on a covering of C. Indeed, let

oy =p* (idz/\ dz> = dd° |p2| =|p'(w) |2idw ANdw=d]|p|’ Aoy,
2w 2w

be the pseudo-volume form obtained by pulling back the euclidean form on C.

If
| F' [
(L+|F2)2 | [*

T dt 1 (" dt
te) = [ 5[ arev=—5 [T [ dtiogar.
o t Jyu 2Jo t Jywm

Letnow yog € Y and let F' = Fy / Fy in a neighbourhood of yo. The ramification index of F’ at yg is defined
as

TF =

then

nF,Ram(yO) - Ordyo (FOFll - F(;Fl)

Using this, we set

NF Ram () = Z NE,Ram (Y)

yeY(t)
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and

" NF Ram(t
NF,Ram(T) = / F’R—t ( )dt
0

Second Main Theorem. Letp: Y — C, and F : Y — P! be as above and let
1 L
(5(Y/C)ZE[Y:(C]log[Y:(C]—[Y:(C]?, 4)

S(F,c,¢,r) =log F(r) +1og ¢ (F(r)) + log ¥ (cr F(r)y(F(r))); )

Then for all r > ry outside a set of finite measure and for all by>by(Tt), one has for a finite set of distinct
points a1, as, . . . ,a, in P', that

(q - 2)TF(T) - Z NF(aj7 T) + NF,Ram(T) - Np,Ram(T)
= (6)

1 1
Y : S(BTf by, ) + 5[V : Clogb— 5 >~ logyr(y) — 8(Y/0).
yeY <0>

<

DN | =

3. Statements of the theorems

In the statement of our theorems we shall follow the notation and ideas of Ye [20]. Thus ¢, ¢ will satisfy
the conditions

T
x
< 00, (7
/ z ()
1
and
7 d
x
= 00, ®)
[ 6
1
respectively.
Theorem 1 Letp : Y — C be a proper holomorphic covering, a1, ...,aq,q > 1 a finite set of distinct

points in Pt and F : Y — P! an holomorphic function such that F(0) # 0,00, aj, j = 1,...,q and
F'(0) # 0. Then,

(q - 2)TF(T) - Z NF(aj7 T) + NF,Ram(T) - Np7Ram(T)

1
<[ : Qlog Tr(r) +[Y : Cllog ¥(Tr(r)) + 5[Y : Cllog ¥(7),
for all r > ry outside a set of finite measure.

Theorem 2 (Logarithmic derivative lemma for holomorphic mappings on coverings) Ler
p:Y = C, F—Pland :[1,00) = Rasin Theorem I, then we have

’

T < 1 QlogTr(r) + v : Qlogs (T (1)

1
43I Qlogutr) + [ logl/lo.
Y(r)

m(r, oo,

for all r > ry outside a set of finite measure.

10
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The next two theorems show that in some sense Theorems 1,2 are the best that we can expect

Theorem 3 Ler ¢ be as above and h : [1,00) — R any positive increasing function with h(r) — oo as
r — oo. Then for any holomorphic covering p : Y — C and any finite finite set a;,...,aq, ¢ > 1 of
distinct points of P, there exists an holomorphic function Fy : Y — P! such that,

( )TF ZNF a]v )+NFRam( ) Np,Ram(r)

> [Y : Cllog Ty (r) + [Y : Cllog ¢(Tr(r)) + h(r).

Theorem 4 Ler ¢, h as in Theorem 3. Then for any holomorphic covering p : Y — C, there exists an
holomorphic function Fy : Y — Pl such that

m (r o, %) IV : log Tr(r) + [V : (] log¢(TF(r))+/y<T> log |/ | oy + h(r).

4. Proofs of Theorems 1 and 3

Proof of Theorem 1.
To prove Theorem 1, we shall follow the ideas of Ye, (cf. [20, Theorem 2])

Lemma 1 Leri) : [1,00) — R be a positive increasing function satisfying (7) and let p > 1 a real number.
Then there exists a positive increasing function 1y (t), satisfying also (7) and,

m Pi(t)

t—00 z/J(t) =0, ®)
bi(t) < tr, (10)
bi (87) < (t) (1)

forall large t.

We start from the main inequality in the Second Main Theorem where, in place of i), we consider the
associated 1)y of Lemma 1 for p = 6,

' (q - 2)TF(T) - ZNF(ajvr) +NF7Ram(T) - Np,Ram(T)
%[Y QS(BTR?, by, n, 1) + %[Y:(C]logb—% S logr(y) — 6(Y/C)

yeY <0>

=[Y :(log Tr(r) + ;[ Cllog 1 (BTr*(r)) + 1[ Y : CJlog 41 (byr BT (r) ¢ (BTr(r))

)
51V Qlogh— 3 > logr(y) —6(V/0).
YyeEY <0>

12)
outside a set of finite measure.
Since Tr(r) > B for r sufficiently large, we get from (11) that

U1(BTp?(r) <o(Tp(r), (13)
for large r. Furthermore, when Tr(r) < 7, (10) and (11) imply,

U1 (b7 BTR? (1) (BTR2(r)) < 1 (b1 B*r®) < o(r), (14)

11
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on the other hand, when Tr(r) > r, we have

U1 (bir BTE® (r)y1 (BTF? (r)) < ¢1 (b B*TE(r)) < &(Tr(r)),
thus we conclude from (14) and (15) that
U1 (i BTr? (r)¢1 (BTF*(r)) < (1) (Tr(r)),
forr > rq.
Finally we conclude from (12), (13) and (16) that
q
(¢ =2)Tr(r) - Z Nr(aj,r) + Nr,ram(r) — Np,Ram(r)
j=1
1
<[Y :Clog Tr(r) + [Y : Cllog ¥ (Tr(r)) + §[Y : Cllog ¥(r),
for all » > ry outside a set of finite measure. ll
Proof of Theorem 3.
We shall use the construction of Ye [20], which yields an entire function
F : C — C such that,
q
(@ =2)Tr(r) =Y Ne(aj,r) + Neram(r) > [V : Qg Tr(r) + [V : Clg ¢(Tr(r)) + h(r),
j=1
and consider the related function Fy = Fop:Y — C.
Now we compare the Nevanlinna magnitudes of F' and Fy
Lemma 2 The following relations hold:
a) [Y:Cm(r,a,F) <m(r,a, Fy) <[Y : C{m(r,a, F) + C(a)}.
b) N(r,a,Fy)=[Y :C|N(r,a, F),
C) NFy,Ram(r) = [Y : (C]NF,Ram (T) + N, ,Ram(r)
d [Y:(Tr(r) <Tp (r) <[Y :C(Tp(r) + [Y : CC + 3, ey (o) (ordyp) log | Fy (y), ocl|.
PROOF.
a)
miraFy) = [ ~logl|Fyalloy
Y<r>
. [ df
= [ —lglFopaloy = —logllFop.alp (5
Y<r> Y<r> ™
=[Y: (C]i /27r —log ||F(rei0) a“ de
) 27 0 ’
>[Y'C]—1/2ﬁlo 1 dd =1Y : Cim(r,a, F)
=5 72, g F(re®) —a| e
where we used the inequality ||w — a|| < |w — a]. On the other hand
m(r,a, Fy) =[Y (C]—l /27T —log |F(re®),a dd = [Y : (C]i +Y:C 1
o 2m Jo ’ 21 Jip-al<y 21 Jip—al>
1 1 1
<[Y:(— logt ———————df +log™ C} (a) + [V : C]27 log ——
SO0 f ey TRGem —a @ Tl L@+ I Ginlos 5 6

<[Y:Cm(r,a,F) + C(a),

12

(15)

(16)

(17

1
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since
|w—al|<Ci(a) |w—al, iflw—-al<y,

and
|w—al|>Bi(a), iflw—al>1i.

b) First, we note that,
n(r,a, Fy) is the number of roots of Fy (z) = a in Y[r]
= number of roots of F o p(z) = ainY[r] = [V : C|n(r,a, F).
Thence

n(t’a’FY)dt :/ Y :(n(t,a,F) it
0

N(r,a,Fy) :/ "

0 t

[Y:(C]/(:Mdt: Y : QN (r,a, F).

¢) This follows easily from the definition of the ramification index and the relationship

F'y(20) = F'(p(20))P' (20),

for any zg in Y. Since F'(p(z9)) # 0, in Ye’s example, in this case (c¢) becomes,

NPy ,Ram (T) = Np Ram (T)7

and
NFy,Ram (7") = Np,Ram (T)

d) It follows from the definition

TFY (7") = TFY7OO(T) = m(T‘,OO,Fy) + N(T‘,OO,Fy) + Z (Ordyp) 10g||Fy(y),oo|| )
y€Y(0)

together with a) and b). B
PROOF OF THEOREM 3.
We obtain from Lemma 2 and (17) that

' (@ —2)Tpy (r) - Z Npy (aj,r) + NFY,Ram(T') - Np,Ram(r) > Y :C{(qg — 2)TF(r)
a (18)
- ZN(F7 a;,7) + Nrraem (1)} > [Y : Ci{log Tr(r) + log ¢(Tr(r)) + h(r)

Jj=1

=[Y : Cllog T, (r) + [Y : Cllog 6(Tr (r)) + [Y : C] A(r).
Now we use d) again, namely,
Try (r) <[V : (Ir(r) +[Y : CIC, (19)
and define ¢, : [1,00) — Rand h : [1,00) — R,
¢1(r) = (Y :Cr+[Y:C]0),
hy (r)

13
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For these functions ¢; and h; we can find Fy, F; y such that (18) holds, i.e.

q
( TF1, ZN Fl Y,a;, +NF1 y,Ram( ) Np,Ram(r)

j=1

> [V : Qlog Tr, » (r) + [V : Cllog 61 (Tr, (1)) + [Y : Clhy (r),

and finally making use of (19), since ¢ is increasing, we conclude from (20) that

(20)

(¢ —2)Tr v ( ZNFI v+a5,7) + NFy v ,Ram(r) = Np,Ram (1)
j=1

> [Y:QlogTr,y (r) + [Y : Qlog o([Y : CTr, (r) + [V : CJC) + h(r)

> [V : Qllog T () + [V < Clog 6(Tr, v () + h(r). M

5. Proofs of Theorems 2 and 4

We can derive Theorem 2 from the following Theorem 5 following exactly the same argument as the one
used to obtain Theorem 1 from the Wong-Lang-Cherry version of the second fundamental theorem.

Theorem 5 Let F : Y — P! be a holomorphic map, where on'Y is defined a covering map p : Y — C,
such that F(0) # 0,00 and F'(y) # 0 for every y € p~1(0). Then

F' 1

m (1“7007 —> < [V :CQ S(BTE,b1(TF),,7) +/ log|p| oy,
Fj=2 v ()

for all r > ry outside a set of finite measure.

To prove Theorem 5 we shall use the Ahlfors-Wong function. Set

Lk
,}/F :—7

(1+1F7) P

then if ay,...,a4,¢ > 1, is a finite set of distinct points in P*, such that F'(y) # a; for all j and all
y € Y (0), and A is a decreasing function of r with 0 < A < 1, the Ahlfors-Wong function is defined by,
(see [6]),

q
—2(1-A
= TIF el .
j=1

From [9, Lemma 5.6], we have

Lemma 3 Ler

1
T for r>nr

Ar) =

constant for r<mr
Then
log [ anoy <8 (BTRbi (Tr) 1) +logh,
Y(r)

14
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PROOF OF THEOREM 5. We proceed as in the plane case, see [7, Theorem 6.1]. Let A be as in Lemma 3.

It follows from the definitions that )
FI

= nt
YA ‘Fp/ ’
;12
where h = ||F, 0| ||F, o0||® . Let u = \%\ and
A
v = h—z, S S 1
p'|

Then we have
FI
m <r, 00, F)

!

F
ja + C)oy

log™
)

1 1
= / (log™ u + logv)oy — —/ logvoy + C[Y : C @A)
2 )y 2 )y

F 2

:/ log Frl oy S/ (10g+
vy || oo Y (r)
/s

F' 1
—ay+C[Y:(C]:—/ logt uoy + C[Y : C]
Y(r)

1

1
= / logexp (logt u+logv) oy — = / A(r)log hoy
2 )y 2 Sy

+ [ oglfloy +ClY .
Y{(r)
Making use of the inequality
exp (log"'u + logv) <uv+1=v +1,

we obtain that

1 1 Y :
- / log exp (10g+ + log v) oy < = / logya + ﬂ (22)
2y 2y 2
We estimate the right hand side of (22) as follows
Y:
/ logyaoy + ﬂ
v (r) 2
gy [Y : C]
=[Y: log va + 23
-a Y(r) Y :q 2 2
1
:[Y:(C]log/ VAUY—[Y¢C]<10g[Y¢C]+§>v
Y(r)

where we have pulled the logarithm out of the integral after a normalization of the measure.
By Lemma 2

Y :(Q log/ yaoy <Y : Q) S([Y : C] BT#,by,9,7) + [Y : C]logb, (24)
Y{(r)
and by the First Main Theorem
1

—3 A(r)loghoy = A(r)(m(r,0,F) +m(r,o00, F))
Y(r)

IN

20(r)Tr(r) = A(r) > (ordyp)log (1F (), 0l [|[F(y),0l) .
yeY(0)

15
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By our definition of A(r) we get
2A(r)Tr(r) = A(r) > (ordyp)log (||F(y),0ll[|F(y),o0ll) < 2+ of1). (25)
yeY (0)

Putting together (21), (22), (23), (24) and (25)we conclude

FI 1 2 !

mi{r, o0, — S_[Y(C] S([Y(C] BTFvblvwvr)'i_ 10g|p|0Y7

F 2 Y (r)

for a certain new constant. [l

PROOF OF THEOREM 4. We use again the results of Ye, (see [20, Theorem 2]), who constructed for any
given ¢ and h as in the statement of Theorem 3, an entire function F' : C — P! such that

m <r, 00, %) > logTr (r) +log o (Tr (1)) + h(r), (26)

for large r outside a set of finite measure.
Then we consider the function Fy : Y — P! given by Fyy = F o p. For the function Fy defined in this
way we obtain

Jal (F’op)p' Jad
Xr)y=>———=(—=op)p,
Fy Fop

F
F,1_(F\
Ay \F b,

whence using the definition of the chordal distance, that is

or

1
2
a, 0| =
lla, ool| P
so that 1
2
ool T
we obtain
, 2
1 L+|(Fop)
F! 2 +1o= |:|2 +1
7,00 [p'] b
1+‘F’ S| 1
= - °b i 2 T T2
F A 2
thus
1 1

T e TRl
Eofwr IFen]

Taking logarithms and integrating and recalling a) in the proof of Lemma 1, we get

F;, F' ,
mi\r,—,0 Zm r,—op,o0 |+ 10g|p|JY+O(1)
FY F Y<T>

!

Z[Y:C]m<r,£)+/ log [p'|oy + O (1).
EJ v

27

16
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Given ¢ as in the statement in Theorem 6 and an arbitrary function h(r) tending to infinity, we define the
new function
h(r)

hl(T)Z[Y:(C]’

then for ¢, hy, we find F such that (26) holds

m(n ) = IoBTr() +1050(Te () + by (1)

= logTr (r) +1log ¢ (Tr (1)) +

then for the corresponding Fy = F' o p we obtain from (27)

1A%
m (’I", F_Y? OO)

!

F
[Y:C]m(r,7>+/ log|p'|oy + O (1)
Y{(r)

Y%

ZD“Q@MHHH%M%WWMMM+AHMWMm

and arguing as we did in Theorem 3, we conclude

m (n ?—{/7 oo> > [Y:CllogTr, (r) +[Y : Cllog ¢ (Try, (1))
Y

+/ log [p'|oy +h(r),
Y (r)

as it was to be proved. B

6. Holomorphic mappings on coverings and algebroid func-
tions

6.1. As it was observed by A. Eremenko there is a close connection between the value distribution theory
for holomorphic mappings on coverings developed by Lang and Cherry and the value distribution theory of
H.L. Selberg [13] for algebroid functions.

As we said before, an algebroid function F' (z) is an analytic function which has algebraic character for
every z € C and a constant number of branches Fj (z2),..., Fi (2).

In this situation the set of pairs

Yr={(z,Fj(2)|z€C, j=1,...,k},
defines a connected Riemann surface and there is a well defined analytic function on it, given by

F: Yr — P!
(2, Fi(2)) = Fj(2)

which we have denoted in the same way as the original algebroid function F'
We can consider the natural projection

p: Yr — C
(2, Fj(2)) = =z

so that we obtain a proper holomorphic covering of the plane.

17
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In this sense, given an algebroid function F' there is a proper covering of the plane and an holomorphic
function defined on it, associated to the algebroid function.

Conversely, given a proper holomorphic covering of the plane p : ¥ — C and an holomorphic function
F :Y — P!, we can consider locally the function F o p~!. It is true that any branch of it can be continued
without bounds in the plane, however it might happen that in this way we obtain several disjoint complete
analytic functions.

If we exclude this possibility, that is, F o p~! defines a unique complete analytic function connecting all the
possible branches by analytic continuation, then it will be an algebroid function which we shall denote by
F* and the Riemann surface Y« associated to F™* will be conformally isomorphic to Y. This isomorphism
Y < Yp- can be defined assigning to a point y € Y, the pair (p (y), F' (y)) € Yp-. This is a well defined
analytic function between Riemann surfaces and by our restriction is also an isomorphism.

6.2. Now we shall relate the value distribution functions introduced in both settings and check that they are
essentially the same, except that Selberg divides them by the degree of the algebroid function which is the
same as the degree of the associated holomorphic covering.

We shall consider an holomorphic mapping F' on a covering Y which gives rise to an algebroid function
in the above sense, that is, we exclude the possibility of obtaining different complete analytic functions by
analytic continuation of different branches of F'o p—1.

The notion of neighbourhood Y [r] of radius r in ¥ and the corresponding boundary Y (r) , introduced
in [9] by Lang and Cherry, correspond to the subset Yz~ [r] of the Riemann surface Yp« associated to an
algebroid function F™*, which projects over the disc D,. = {z||z| < r } and its boundary T (r) in Selberg

[14]. Also the angular measure
« (a8
oy =dlogp|* =p <2—) ;
™
in Y (r) on a covering surface Y, is the same as that considered in the different sheets of the Riemann
surface of an algebroid function, namely the pullback of the normalized angular measure in the plane.

Givenp:Y — C, F : Y — P and the associated algebroid function F* (2) = Fop~!, the corresponding
counting functions are related as follows

n(F* a,r)=n(F,a,r)
N (F* a,r) = %/Mdt
0 (28)
1

where £ is the degree [Y" : C] of the covering p.
As for the proximity functions we have

27 k
m(F*,OO,T) = ﬁ/ [210g+ |Fl, (T‘e’¢)|] d¢
0 v=1

27T k
1 E: i
- o Y :( / 7110g+ |F" (T‘e d)) |]
0o =

whereas according to the theory of Lang-Cherry

1 2\ 3
m (F,00,r) :/ log ———oy = / log (1+ |F] oy,
vy - IF, o Y (r) ( )

18
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Using the relationship
1
logt 2z < 3 log (1 +2?),

. . . d .
and recalling that oy restricted to each sheet is the same as 2—¢, we obtain
™

m (F*7 0077') S

m (F,o00,r) . (29)

Conversely, using the relationship

[N

1
2 +
< —
log (1 + |z| ) <log™ |z| + 5 log 2,
when we integrate in each sheet, we conclude
Y :
m(F,oo,r)g[Y:(C]m(F*,oo,r)+[ 2(C]log2. (30)
Finally from (28), (29) and (30) we get
1 1
T(F*,T')SWT(F,T)ST(F*,T’)+§IOg2 (31)

7. The logarithmic derivative lemma for algebroid functions

In [13], H.L.Selberg proved the following logarithmic derivative lemma for algebroid functions of finite
order

Theorem 6 (Logarithmic derivative lemma for algebroid functions) For every non identically zero
algebroid function G (z) of finite order ), it holds

G!
m(r&) poeaoi
lim sup < <| [+

< + 2. (32)
00 logr 2

In this section we shall compare Theorem 2 with the previous Selberg’s logarithmic derivative lemma and
check that for finite order algebroid functions Theorem 2 yields a better estimate than (32).

By the considerations in section (32), every algebroid function G can be obtained as an F'™* associated to an
holomorphic mapping F' on a covering Y, where

Y ={(z,Gj(2) |z € C},

the G;’s are the different branches of G,

and

Recalling Theorem 2, we have the estimate

m (%,oo,r) <Y :ClogTr (r) +[Y : Clog ¢ (Tr (r)) + % [Y : Cllog ) (r)
(33)

+[Y:(C]/ log |p'| oy .
Y(r)
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In this case p’ = 1, that is log |p’| = 0 and the last term vanishes identically.
The terms

¥ Clog (T (1) + 5 [V : Cllog vy ().

are lower order terms compared with [V : C] log Tr (r) if G is not algebraic, see Selberg [14, page 12].
Thus making use of (31), we obtain from (33)

FI
m (F’ 00, 7') <[Y : CllogT (F*,r) + lower order terms, 34)

as r — 00. On the other hand we have locally
F* — F ° p—l

so that we obtain
(F9) _(Fep™)' (Fop)(pt)

F* = Fop=! Fop-1 ’
that is
() _(F'Y'
== 35
= =(F) ()

since (p~1)' = 1.
Thus we conclude from (29), (34) and (35)

!
m <(?*) , 00, 7’) <logT (F*,r) + lower order terms,

what for functions F™* of finite order A yields

m <(F*)I7oo7r> <(A+¢e)logr,

F*

for any € > 0 and r sufficiently large, or

m (—(1;;)1 , oo,r)
limsup ———= < A

P00 logr

, (36)

which improves Selberg’s estimate (32).

We leave open the question whether the estimate (36) is sharp for algebroid functions. Also our estimates
in Theorem 1 for the error term in the second main theorem for holomorphic mappings on coverings are
valid for algebroid functions and remains the question whether they are sharp for this more restricted class
of functions. We note that the example exhibited to show that such estimates are sharp for holomorphic
mappings on coverings, does not give rise to a proper algebroid function.

Acknowledgement. The author was partially supported by DGYCYT PB95-0017, DGES-IC PB97-
0073. The author thanks Professor David Drasin for proposing him the above questions and for his
suggestions and Professor Alexander Eremenko for pointing him out the connection with the work of
Selberg on the algebroid functions.
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