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Geometrical aspects of the Landau-Hall problem on the
hyperbolic plane

A. Lopez Almorox and C. Tejero Prieto

Abstract. Some geometrical aspects of the classical hyperbolic Landau-Hall problem are discussed.
The Lie algebra of infinitesimal symmetries of this problem is explicitly given, turning out that it is
isomorphic taso (2, 1) and that its associated Noether invariants are the hyperbolic angular momenta. The
Hamiltonian formulation is also given, allowing us to obtain the manifold of orbits of constant energy for
this problem using symplectic reduction techniques.

Aspectos geom étricos del problema de Landau-Hall en el plano hiperb  6lico

Resumen. Se discuten algunos aspectos del problema de Landau-Hall bligertEl algebra de Lie de
las simettas infinitesimales de este problema se daieitpimente, resultando ser isomorfa®2,1) y
que sus invariantes Noether asociados son los momentos angulareéliipsrifAsimismo se desarrolla
la formulacbn hamiltoniana, lo que nos perméiobtener la variedad debitas de eneig constante de
este problema medianteadnicas de redudmn simpEctica.

1. Introduction

The Landau-Hall problem is the study of the motion of a charged particle in a constant and static magnetic
field (in what follows we will refer to it as a magnetic Hall field) on a Riemann surface. The quantum aspects
of this problem have been used to give different models of the integer Hall effect; that is, the quantization of
the transverse resistivity of an electronic gas at very low temperatures and very high static magnetic fields
in certain bidimensional experimental devices which was discovered by K. von Klitzing in 1980 [19].

Let us recall briefly what the classical Hall effect is on the euclidean plane{asetrs, 23} be the
euclidean coordinates dk* and let us suppose thaf; X, is the plane of the conductor. Let us consider
a charged particle moving in this plane and Bt= (0,0, B) be a constant and static magnetic field
perpendicular toX; X, and letE = (E1, E9,0) be a constant and static electric field in this plane. If a
particle of mass m and chargés moving with velocityy = (v1, ve, 0) in that plane then the forces acting
upon it are the Lorentz forc&openi: = ¢t A B = (Fy, F»,0) = (eBuvs, —eBuy,0) and the electric
force Felecmc = ¢E = (eE1,eFE5,0). The motion of the particle on the pladég X, is described by a
parametrized curvg(t) = (z1(t), z2(¢),0) which is a solution of Newton equation with initial conditions
Z(0) = (21(0),22(0),0) and¥(0) = (v1(0),v2(0),0) with T(t) = (v1(t),v2(t),0) = (d1(¢), 22(¢),0)
being the velocity of the particle. If we introduce complex notati®t) = w1 (¢) + iz2(t), 2(t) = vy (t) +
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ivy(t), E = E; +iE,, one has that the evolution equations &g = —i L 2(t)+ £ F = —iw.:(t)+ 2 E

m m m

wherew, = % is the cyclotron frequency. Performing an integration, one has that

(& (&

(1) = E +[(0) — Ele” "t

£(t) P [2(0) F— Je
The termz(t)cyciotron = [2(0) — i;’wc Ele~™<! is called the cyclotron velocity, wheredst) ;s =
*imef = fi% is called the drift velocity and it is constant. Let us notice that the drift velagityy, =

(2 B o) = (B2 _E1 () is orthogonal to the applied electric field = (E1, E»,0) and is inde-

mwe’ mwe’ B

pendent of the mass and the charge of the particle. Performing another integration one obtains that the
trajectory of the particle is given by the cycloid

1
eEt e

[2(0) —

Let us consider now a gas of non-interacting charged particles moving in a bidimensional conductor
contained in theX; X, plane and subject to the action of a constant and static magnetic field orthogonal to
that plane and to a constant and static electric field as described beforeb&¢te electronic density, then
the mean velocity of these particles is the drift veloGity,,cqrn, >= 2(t)qrif+; therefore we will call the
drift current or Hall current, and we will denote it hy?e!! = jHall 4 j;Hall ‘the following expression

2(t) = 2(0) + E](e™™ +1)

1MW W 1MW,

2

jHA — e < 50 2 p= R
MW, B
thereforeji’*!! = "¢, andjie!! = "¢ F;. The Hall conductivity matrixs7e! = g“ Zm )
21 22
exhibits the proportionality between the Hall current and the applied electric field, tifatis= o7 E.
Therefore
j{-lall _ 0 _% El
jéﬁlall % 0 E2
In particular the transverse conductivitydag, = —‘5. The inverse of the Hall conductivity matrix is
called the Hall resistivity matripell = [gHall] ™! = ( P P12 ) and is given by
P21 P22
0o L
Hall __ ne
(e )
with p1; = — £ being the so-called transverse Hall resistivity, which, in the approximation we have taken,

ne

depends linearly on the magnetic figid

However, in experiments with Si-Mosfets devices at very low temperatures and very high magnetic
fields this linearity is not observed [24]. Instead of it one observes a quantization of the transverse Hall
conductivity,o2 is an integer or a fractional number tim%zswith the appearance of plateaux in the graph
of p12 against the applied magnetic fielsl. This phenomenon bears the name of quantum Hall effect
(integer or fractional).

The different theoretical explanations of the quantum Hall effect have started always studying the quan-
tum Landau problem for a particle with different boundary conditions [16, 27]. The quantum treatment of
a charged particle moving on a plane and subject to the action of a constant magnetic field is well known
but to arrive at a quantization of Hall conductivity one has to impose that the magnetic flux is quantized
(Dirac’s condition), this fact reveals the importance of the non triviality of the topology of the configuration
space in the explanation of this phenomenon. The explanation of the plateaux in the integer quantum Hall
effect is done through the effect that the impurities and the disorder in the semiconductor produce on the
Landau levels which are split into energy bands.
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Thoulesset al. have studied in [25] the Landau-Hall problem for electrons without interaction in peri-
odic potentials ( Landau problem in the flat tofli¥), calculating the Hall conductivity for Bloch electrons
in a magnetic field. Refinements of certain arguments of Laughlin and the use of the Kubo formula for
the conductivity have made possible the understanding of the Hall conductivity as a topological invariant
[26, 7]. The possible consideration of this problem in materials with different boundary conditions, leads
to the necessity of generalizing the preceding study to other Riemann surfaces differefi*franT or
the flat torus™. The quantum Landau-Hall problem in genus: 0 is analogous to the study of a charged
particle on a sphere and subject to the action of a magnetic monopole located at its center and can be found
in [11, 5]. Some aspects related to the quantum Landau-Hall problem on Riemann surfaces gf:genus
have been studied during the last years and can be found in [9]-[3].

2. Geometrical aspects of the classical Landau-Hall problem
on Riemann surfaces

For a better understanding of the quantum Hall effect on Riemann surfaces it is necessary to have a good
knowledge of the classical Landau-Hall problem in configuration spaces which are Riemann surfaces. Thus,
the first thing to do is to generalize the concept of a constant and static magnetic field which is orthogonal
to the surface [20]; these are the so-called magnetic Hall fields in the physics literature .

Let Q be a Riemannian manifold}, the metric tensor an¥ the Levi-Civita connection associated

Definition 1 A magnetic Hall field onQ is a 2-form Fy,; on @ which verifies Maxwell equations
dFyan = 0, 6Fpqy = 0 and that in addition is covariantly constant, thati3Y Fy,; = 0, for every
vector fieldD on Q.

Proposition 1 If dim @ = 2 then the magnetic Hall fields are the harmonic 2-formsianin particular
every magnetic Hall field is of the form

Frou = BQQ BeR

with 25 being the Riemannian area element.

Remark 1 The magnetic Hall fields on a bidimensional Riemannian manifpicn be described as the
curvature 2-form2g,;; of a connectionvy,;; on a principal fiber bundle : P — @ with structure group
U(1). If {U,}aer is atrivializing covering ofP and{s,, } are the local sections that trivialize the bundle

Oy (Uy) — Uy xU(1)
Oq (Cﬂ) g — (iC, g)
a)

Then one defines&fH‘a” = o (wWHa) anng;)” = 05 (Qpan). If oa(x) = 03(x) - gap(x), With gog :
U, N Ug — G being the corresponding transition functions, on the non empty intersections one has that

AE‘(?%H = A%;%u + 905(0)
Ié3 «
Fyaw = Fhan

with 6 being the Maurer-Cartan form of the structure gra@d@ ). Therefore, there exists a 2-forfyy
on (@, moreover, if it satisfies the Maxwell equations we shall say that it represents a magnetic Hall field on
Q. Itis clear that in general there does not exist a global 1-fdron @ such thatF'ly,;; = dA, although

locally it is always verified thaFI(jfl)” = dAET;’Z”.
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Proposition 2 The magnetic Hall fields on a compact Riemann surface are discrete; that is,

kh
Froy = ———
BRRTI(®)

wherek = ¢, (P) is the first Chern class of the fiber bundfeanda(Q) is the area of the surface.

Qo keZ

Remark 2 If Q is compact and if we suppose thdt*!! ~ £ as we deduced classically for the euclidean
plane, then taking into account th&t= ea(Q), it would be verlfled that

pHall kh kK h
12 ne2a(Q) N e?

with N = na(Q) being the number of electrons @ andk € Z the Chern class of the fiber bundfe
Surprisingly one obtains a behavior similar to that predicted by quantum mechanics.

2.1. (Local) Lagrangian formulation of the motion of a particle in a mag-
netic Hall field

The classical description of the motion of a particle of masand charge: in a magnetic Hall field on a
bidimensional Riemannian manifo{@, T>) can be formulated as a (local) variational problem on the 1-jet
fiber bundler : J1(R x Q/R) = R x TQ — R x @, of 1-jets of sections of the regular projection onto the
first componentr; : R x Q — @, with a Lagrangian density which, in general, is only locally defined.

JYR x Q/R) P
T lp
RxQ =2
m

R

We will suppose that the magnetic Hall fieldy,;; = B, is defined by the curvature forfg,; of a
connectionw,; on a principal fiber bundle : P — @ with structure grou@/(1). Leto, : Uy — P,
Va € I be the local sections of atrivializing coverigl, tacr of P, let us denote bylgﬁ?g” = o} (WHau)
the local vector potential and blji a” = o5 (Qpay) = dA%‘g” the magnetic Hall field on the open set
U,. Let us suppose moreover th{acj ,1 < i < 2} are local coordinates on the open 8&f; then
T =30, 9 da® @ dg®, AEL,;” = A dgl™ + AY) dgl” and FY, = FLY dg\™ A dgl™.
Onthe opensets, = 7~ 1(J x U,) C R x TQ W|th J being an open set @& with coordinate{t}, one
defines:
a) The Lagrangian (local in general)

L(I?zzll = QWQZ(Q)QE;)CI]( ) 4 eA(a (a)
b) The Poincare-Cartan form (local in general)

1 .
@52” = pﬁa)d (@) _ Hgla)”dt (mqf“)gfja) + eAE-a))dqf) + imqfa)gff)q](a)dt

where
(@) 3L§?¢3u (@) (o) (@)
Pit T T T —(md; " gi;" +eA;)
q

()
Liron (o) _ (@) (a) (@) +(a)

a 1
H}{a?ll = _( 8q(a) qj - LHall) - _qul g’L] q]
J
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are the generalized momentum and the Hall Hamiltonian respectively. Let us notice that the Hall Hamilto-
nian can also be expressed as

o 1 «@ o o ij o o
Hl(‘Ia)ll = _7(107(: )+3A7(: ))[9( )] (p§ )+eA§. ))

2m
which is the usual Hamiltonian of a charged particle placed in an electromagnetic field. (Notice that due to
our definition of the generalized momenta there is a global sign change, thus inessential, with respect to the
traditional notation).
Taking into account that on the intersectidis N U # 0, it is verified tham(}’ﬁ“ = A(P}lgu + d¥@d)

andF}(fa” = Ff(fgll, then

5 oweh)
Ly = Ligu+e g™ g
o, = o), —edvd,

Therefore, since the fiber bundle may not be trivial, the Lagrangian and the Poincare-Cartan form, in
general, are not globally defined. However

() _ (8)
Hygw = Hpa
@ B
d@gﬂill = d@gﬂ)zll

that is, there exists a global Hall Hamiltonian which we will denotdhyy,,;;. These expressions prove that
there exists a global 2-form of (R x Q/R) = R x T'Q which will be denoted b¥2z;;; in general it is

not exact, but on each open $&t it coincides withd@%‘g”. If we denote byO;netic the (globally defined)
Poincare-Cartan form associated with the (global) kinetic term of the Lagrangian then

Qran = dOinctic — e T (Fran)
and therefore the evolution equations can be given in a global way by Cartan equations
(ipQman) i, =0 VD eT(TJ' (R x Q/R))

The solutions of these equations are parametrized curvé} timus on each open sét,, they are of the
form

c:J — U,
t— o) = @) 6" )
fulfilling the usual equations for a charged particle subject to the Lorentz force

(a o «@ « a sk a) (a
m (G + D)) = e [g@) Fe gl

(%) Z
with [T (“)] being the Christoffel symbols of the Levi-Civita connection associated Withn the open

setlU, andF$) = B(g{¥gls) — gl gl ) the magnetic Hall field.

2.2. Infinitesimal symmetries of the classical Landau-Hall problem

The concept of infinitesimal symmetries of a globally defined variational problem, and their associated
Noether invariants can be found in [13]; however due to the fact that in the Landau-Hall problem the
Lagrangian and the Poincare-Cartan are, in general, not globally defined it is necessary to generalize these
concepts in the following way [20]
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Definition 2 A vector fieldD onR x @ is said to be an infinitesimal symmetry of the Landau-Hall problem
if its 1-jet extension! D to J!(R x Q/R) verifies the following conditions:

1. D is m-projectable.
2. (j'D)Le'%), = —dg'% on each open séf,,.
3. OnU, NUs # 0, it is verified thatg(ﬁ) (“) + e jtD(w(h),

Notice that in the case of globally defined Landau-Hall problems, such as the euclidean or hyperbolic
plane, this definition coincides with the one given in [13]. One can also compare this definition with the
definition of the symmetries of a gauge field given in [18, 12]

Definition 3 The Noether invarianfp associated with the infinitesimal symmef?ys the global function
of JY(R x Q/R) which on each open sét, is given by

@) _ el | gl

Hall

Notice thatfp, is globally defined because on the intersectibns) U # 0 it is verified thatf (ﬁ).
Corollary 1 The set of infinitesimal symmetries for the Landau-Hall problem is a real Lie algebra.

Let us see which are the equations that an infinitesimal symmetry of the Landau-Hall problem has to
verify.

Let U be one of the open sefd/, }.cr and let{t, q1,q2, ¢1, 2} be fibered coordinates dii; then
Fran = Fia(q1,q2) dg1 N dga = BVdet Gdq A dga andAgan = A1(q1,q2) dgi + A2(q1, q2) dgz with

Fip = 922 — 824 If D is an infinitesimal symmetry then dn = «(U) it is expressed as

0
+ fa(t,mq1, q2) —

0
+ fi(t,maq1,q2) 5— 90

0
D= )5 5

ot

since it ism-projectable. Thereforg' D = f & + f; o- + [%F + dj 55 — ¢ 3] 55, Since onU
(le)L@Ha” = —ng we have [20]

Proposition 3 If D = fat + f1 6?11 + fag- 9_ s an infinitesimal symmetry then &hthe following system

of partial differential equations is SatISerJ

m[% g11 + 88t£2921] +eFiy aJ;Q =0

m[ﬁ(;];l gi2 + 86tJ;2 g22] — e Fio a@il =0

3(?]2 [m(%gn * (9(9};2 g21) + e Fiafo] = %[m(%gm + 88‘);2 g22) —eFiaf1] =0
Q(Zflgn + gf g21) + (fi 8g11 f23g11) gng—{ -0

2(%912 + gf g22) + (fi 8922 + f2ag22) - 22% —0
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Let us notice that in these equations the vector potential used to define the Lagrangian does not appear but,
rather the magnetic Hall field, which is globally defined.
To integrate these equations it is better to use isothermal coordipates, } on the open sdt, thus the
complex coordinate of the underlying Riemann surfacedsx; + iz, andz = x; —ixo. The infinitesimal
symmetries are
0 0 0
D = _- 7) — _ 7) —
f@) py + h(t, 2, 2) % + hz(t, 2, 2) %
with b, = f1 +ifs andhs = f; — ifs (notice thath, = h. because the vector field is real) and the
equations that must be verified by the infinitesimal symmetries are simplified to
82}12 erg 8]15
0 = ——— 1
82}1/2 erg oh

0= B tg. ot @)
0 = otgh - (e - Pgn - L (L ®
0 = h. ag” +hz ag; + 922 8;; + g2z a;; - gzz%{ (5)
0 = 8;; (6)
Let us note thatEF# eB _ ;.. These equations have been integrated by the authoi$*faith

m

its usual metric, the flat toruE2, C* with its usual complete flat metric, every Riemann surface of genus
g > 1 as well as for their universal Riemannian coverings.

Corollary 2  Every infinitesimal isometry @, is an infinitesimal symmetry of the Landau-Hall problem.

PROOF  If X = h.(z,2) £ +hz(z, 2) £ is aninfinitesimal isometry df, it is verified that) = X T =
29.: %= de®@dz+2g.: % % dzZ®dz + [gzz (Yhe 4 Ohay | fy, 09:2 4 9822 (dz @ dZ +dZ @ d=) therefore

z

equations (1),(2), (4), (5) and (6) are automatically verlfled. On the other hand equation (3); same
hz do not depend on t, is written as

J— F = —_— F =
82( zzhz) 82’( zzhz) O
but F,; = iBg.z, thus the preceding equation is written as
0 0
%(gzz z) &(szhz) =0

which is automatically verified sinc&E“7, =0. H
Corollary 3 ltis trivially checked thatD = at is an infinitesimal symmetry of the Landau-Hall problem.

Remark 3 In the examples analyzed by the authors the Lie algebra of infinitesimal symmetries of the
Landau-Hall problem is finite-dimensional. However, in the Landau-Hall problem on the euclidean plane
and the torus there are infinitesimal symmetries different from the ones given in the preceding corollaries.
On the sphere and on the Poineapper half plane it is proved, by integrating the preceding equations, that
every infinitesimal symmetry of the Landau-Hall problem is a linear combmatugq ahd the infinitesimal
isometries ofl; [20, 21]. Finally on compact Riemann surfaces of gequs 1 there are no infinitesimal
isometries apart frong%.
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2.3. The evolution equations of the classical Landau-Hall problem

In complex coordinates it is easy to see that the evolution equations of the Landau-Hall problem are given
by

al zZ FZZ . . .
54 32 19 = - ° Z = —iw 2 (7
0z mg.z
. .2 0lng.s F.s . .
280z 0 CeE sy, (8)
0z mg,s

sinceF.,; = iByg.:.
Using the Frenet frame, one can give an intrinsic expression for these equations in the following manner:
LetD = a*(%) be the velocity vector field of the particle; then the evolution equations are

impvpTe = —€ipFHan

Let & be the tensor field of type (1, 1) determined®y D1, ®(D2)) = Frau(D1, D2), VD1, Do tangent
vector fields taR, then the evolution equations can be expressed as

mDVD = —e®(D)
It is important to remark thag defines the complex structure of the Riemann surface underying
Lemma 1 Itis verified that
1. 2 = —B?Idrq
2. To(®(Dy),®(Dy)) = B*T»(Dy, D5)
Using the bidimensional Frenet formulae, one has

Theorem 1 The geodesic curvaturg, and the energy of the trajectory of a charged particle placed in a
magnetic Hall field are constant and, = — <&

muv”

PROOF  Let D,y = v(t)T, ) with v? = Ty (D, D) and let< T,(t), No(ry > be an orthonormal basis of
T, @. The bidimensional Frenet formulae are

VT = x,N

TVN = —x,T
with x, being the geodesic curvature. Taking into account fh8tD = D(v)T + x,v>N, one has that
To(mDVD,T) = —eFyau(D,T) = 0, which impliesD(v) = dﬁd—(t” = 0 ; that isv is constant (which

in turns implies that the energy is conserved ). Bearing in mind this fact, the evolution equation can be
expressed as
VT = - &(T)
muv

2
and from this it follows thag? = ||TVT|| = <5 — “ with w. = <2 the cyclotron frequency.

m2v2

On the other hand it is easy to check that

Ty (@(D), ®(D))
Tr(D,®(D)) = 0

thus we can také/ = %, and the basis T, @ > is positively oriented with respect to the Riemannian

orientation of@Q since (T, %) = Fyau(T,®(T)) = To(T,T) = 1. ThenTVT = %2 &(T) and

comparing this with the expression found before one deduces@hat—ﬁ |

muv”°

266



Geometrical aspects of the Landau-Hall problem on the hyperbolic plane

3. The hyperbolic Landau-Hall problem

With the aim of a better visualization of some results that we will find later, our hyperbolic model will be
the hyperboloid oRR?3

Q={(z,y,2) R/ a? +y* —22=-R*; 2>0}

The metric tensof’¥? = da? + dy? — d=* defines a hyperbolic geometry @&¥. It is well known that
the restriction othhyP to the hyperboloid) defines a Riemannian geometry @with constant negative
curvature equal te- 5.

If we consider now the hyperbolic stereographic projectio@ anto theXY plane

o Rx oy — Ry
'""R+z " R+z
it is verified thatz? + 22 = %f‘z’z) < R?, obtaining in this way the disk modé}?, and the metric is
expressed as
4R* 2R*
=T —=— "  (da?+did)=—" _(dz2®dz+dz®dz
2 2 |Q (R27:£%7:E%)2 ( 1 2) (R2 722)2 ( )

with z = z1 + ixo. Therefore the magnetic Hall fields ghare

4R*B 2iBR*
Frai = —————5dri Ndxay = 272 dz Ndz
(R? — 2% — 3) (R? — 22)
thus the Hall potential can be taken as
2R?B —iBR? _
AHall = m (Jfldﬂ?Q — Jdele) = m (ZdZ - ZdZ)

It is important to point out that this Hall potential, although global, is not invariant under the isometries of
the metricTs.
One has that the Landau-Hall Lagrangian in the hyperbolic case is globally defined
I 2mR* . ieBR? (25— 52)
all = -5 At oy (BF — 2z
Hall (R2722)2 (R2 — 2%)
and the corresponding Poinéa€artan form, which is also global, is given by
2mR*z iBR%z 2mR*z iBR?z
() = - d - dz
fatt K(R? — 2 TS =) ((R2 | g =) A
2mR* 2z
(R? — 22)°
Theorem 2 The set of infinitesimal symmetries of the hyperbolic Landau-Hall problem is a real Lie alge-
bra of dimension 4 which is generated by the following vector fields

0
Dy = En
D = xlxgi_(R2+x%—m§)i__i(R2+z2)£+i(R2+22)2
Y7 R om 2R dzy 2R 02 2R 0z
b (Bomead) 0 mm 9 (B- 0 (R-P) 0
2 2R dr; R dxa 2R 0z 2R 0z
Dy = in—xli:—izg—kii—.

0x1 0o 0z 0z
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The Lie brackets of the infinitesimal symmetriesDg, D1, Dy, D3 > are

[Do, D;] 0, Vi=1,2,3
[D1,D2] = —Ds,

[D1,D3] = —Dso,

[Da, D3] = D,

from where it follows that the vector fields D,, Do, D3 > generate the Lie algebsa(2, 1). These vector
fields are the restriction of the infinitesimal isometrieéT@“f” to the hyperboloid?, and their expression
in Cartesian coordinatds:, y, z}, onQ are

0 0
D — _ _
! oy Vo
0 0
D2 = Z%—‘rl'&
0 0
D — _ -
3 y@x I@y

with the conditionz? + % — 22 = —R? andz > 0.

Theorem 3 The Noether invariants associated with these infinitesimal symmetries are

2mRY:z

o = A

fo (R? —22)2 0
imR3 2 _9\ - 2 2\ = BRB(Z + 2)

= - _ ekl ALV

Ip, TESE (R +72°): — (R°+2%)z] +e ' 27) + A
mR3 o . . iBR?(z — 2

fp, = _(R2 _ 22)2 [(R? = 2%): + (R? = 2%)Z] — e (R2 (_ ZZ)) + A2
2imR* . 2BR*

with Ao, A1, Ao and A3 being arbitrary constants.

The preceding constants can be chosen in a way such that the following additional conditions are ful-
filled

[jl(Dl)}fD2 = _fDS (9)
[jl(Dl)}st = _sz (10)
(D)) fps = fo- (11)

It is sufficient to take\; = Ay = 0 and)\3 = —e BR?. Taking into account that the Poisson brackets are

given by{fp,, fp.} = [i1(D,)]fp. we shall see that these conditions guarantee the equivariance of the
moment map that will be defined in section 4).

We will also takehy = 0. Thus, one defines the energyand the hyperbolic angular momentg, J,
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andJs, as the preceding Noether invariants for these concrete valyes ofVi = 0,1, 2, 3}; that is

£ — 2mR*:iz
(R? — 22)*
o= R (e 4 R B
' (R? — 23)° (RZ — 22)
mR3 . iBR3(z — %)
J = —-F—[(RP=2)+ (R? - 2H)2] —e "l
? (R? — 22)?2 . )2+ A=~ Rr 23
2imR* : 2BR*
Jy = —— 2223 +e——— —eBR.
3 7 22)? (22 — zz]+e =) e
In Cartesian coordinates on the hyperboloid these invariants acquire a more symmetrical look
1
E = ?mﬁ+f—£)
Ji = m(yé—zy) —eBRx
Jy = m(z& —xzz)—eBRy
Js = m(yz —ay) —eBRz

with the conditionse® + y* — 2> = —R?, 2 > 0 andzi + yy — 2z = 0. Itis clear thatF is the kinetic
energy of the particle and = (J;, Jo, J3) represents the hyperbolic angular momenta.

Proposition 4  The following relation is verified between the energy and the hyperbolic angular momenta
J? 4+ J2 — J2 = 2mR*FE — ¢ B*R*

Hyperbolic notation
1. Given two tangent vectors; and.X, at a point of the hyperbolic spa¢g?, Tzhyp),such that in Cartesian
coordinates they are expressedas= (a1, as, az) and X, = (b1, ba, bs), we shall write

X1 xXo = Tzhyp(Xl,Xz) = a1b; + asby — asbs

2. The hyperbolic cross produdf; xj,, X2 of the vectorsX; = (a1, az,a3) and Xy = (by, be, b3) Is
defined in the usual way to be

. h h
(D¢} Xh,pr2T2 = QSyp(Xla Xo, *)
whereQ? = dz A dy A dz is the volume element dR? associated with the hyperbolic metfit’*”. Due
3

to the antisymmetry oﬂg‘y”, it is verified thatTthp(Xl, X1 Xpyp X2) = TQ}”’P(XQ, X1 Xpyp X2) =0.In
Cartesian coordinates

X1 X hyp Xo = (a2b3 — azbs, azby — a1bz, —ai1bs + a2b1)~

Note that with the above notationif= (z, y, z), andpy = (mi, my, mz), then on the hyperboloi@ it is
verified that

=

J = ’FX}Lypﬁ—eBRF
1 7. T .2np2p4
E = 2mR2(J*J—|—eBR)

It is easy to prove the last equality using the hyperbolic notation we have just introduced,; it is enough to
take into account that

T Xhyp D= (Myz — mzy , mzd — maz, myd — may)
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and that if we calbi = (#, g, ) the velocity vector of the particle one has that
(F X hyp D) * (7 Xnyp P) = m?[~0 % T (2® + y* — 2°) + (vd +y§ — 28)7)
on the hyperboloid), since it is verified that? + y? — 22 = —R?, z > 0 andzi + yy — 22 = 0. Then
(7 X hyp D) * (F X pyp P) = m*R? (0% 0) = 2mR*E
with £ = %m U x U being the energy of the particle. Therefore
J s J = (7 Xnyp D) % (F X nyp D) + €2 B?R? (7 7) = 2mR*E — 2 B*R*
Since(7 X pyp P) x 7= 0 andr * 7 = —R2.

One can also use the constants of mot{oh, J,, J3} to integrate the evolution equations since our
system is completely integrable.

Theorem 4 The trajectory of a particle o) = {(z,y,2) € R3/ 22+ 4% — 22 = —R?; 2 > 0}
with values{.J; = a1, J» = a3, J3 = a3} for the constants of motion is given by the intersection of this
hyperboloid with the plane of equatien = + a»y — azz = eBR3>.

PROOF.  Bearing in mind that the hyperbolic angular momentum is
J =T Xpyp P — eBR T 0ne has that if (¢) is the trajectory of the particle o} then it is verified

J«7(t) = ax7(t) = —eBRF(t) 7 (t) = eBR®

from whence it follows that the trajectory of the particle is contained in that plne.

However, we shall give a geometrical method, based on the Darboux frame, to analyze the trajectory
that the particle follows on the hyperboloid and to prove that it is contained on a plane.

Theorem 5 LetD = vT be the velocity vector of the curvét) that describes the motion of the particle

on the hyperboloid, then the trajectory of the particle is contained in the plape: o(t) = ng with
Qp = £N — BN, = %% + BT x4, 2T) being the hyperbolic angular velocity vector which is

constant on the trajectory.

PROOF Let (R3,T2hyp) be the hyperbolic space and let us denotevbthe Levi-Civita connection as-
sociated with the hyperbolic metric. L&, be a normal vector to the hyperbolaigiwith respect to the
metric 73" and such thaly’¥”(Ng, Ng) = —1. Let D = vT be the velocity field of the curve(t) that
the particle follows orf) and letV be a vector field, with support on the curve, tanger@tand orthogonal
to T' such that the vectorl', N, N } are orthonormal at each point of the curve and such that

TIP(T,T) = 1
TMP(N,N) = 1
h
TZyp(NQ’NQ) = -L

These vectors are the so-called Darboux frame of the curve. It is verified that

TVT = xyN+xaNo
TVN = —x,T+1,Ng
TVNg = xaT+1,N
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with x, = *ciﬁ; being the geodesic curvature, the geodesic torsion ang, the normal curvature. In

particular one can takfl’, N = %@, Ng = =T Xpyp %}. as a Darboux frame. It is not difficult to
check that for every vector field tangent to the curve,

TVX = Qp xpyp X VX

where() is the vector field with support on the curve that we shall call hyperbolic angular velocity, which
is given by
Qp = 7TgT + xnN + XgNQ
and it is verified thaf2p « Qp = 72 + x2 — x2.
Let V be the Levi-Civita connection associated with the first fundamental IrRiemannian) ofy).

It is easy to see that the second fundamental fésof Q is 5 = % T5. Hence ifD; and D4 are vector
fields tangent t@), the Gauss formula is written as

- 1
DY Dy = DY Dy + ®5(Dy, Dy)Ng = DY Dy + = Ty(D1, D2)Ng

therefore
& v 1 1
Qp xyp T = TVT =TT+ S To(T, T)Ng = xgN + £ Ng
S 1
Qp Xpypy N = TYN=TVN + 7 DT, N)Ng = —x,T
thus
eB 1 0
= 3 n—7 s Tg=—
Xg muv X R g
and therefore
1 eB 1 w
Op=—-_N—-_"Np=_N—-ZEN,
b R muv Q R v Q
with Qp *x Qp = % - Zj—: from which we conclude that
02— wERQ

[1 - R2 (QD *QD)]

If o(to) is a fixed point of the curve, thef(t) = (o (t) — o(ty)) * Qp verifies f(t) = D « Qp + v (o (t) —
a(te))*TVQp = 0sinceT *Qp = 0andTVQp = 0 becausélp, is constant on the trajectory. Therefore
f(t) = f(0) =0, thatis

(o(t) —o(ty)) * Qp = 0.

This means that the trajectory of the particle is contained in the plane that passes trough tlhgippint
and is perpendicular, with respect to the hyperbolic metric, to the vegtorSince the points of the curve

verify o(t) = £ Ng, then

1 c
—NQ:—&NQ*NQ: d

0 =0 =0 =,
D * o(to) p *o(t) D * 2 5 "

Thereforep « o (t) = ¥5 = —<2 aswas to be showill

<

Remark 4 If we compare this result with the preceding theorémi(t) = @ we see that the relation-

ship between the hyperbolic angular velocity and the angular momentum is giv)tgﬁl?ywa4 Qp.
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4. Symplectic reduction of the hyperbolic Landau-Hall prob-
lem

One can give a Hamiltonian formulation of the hyperbolic Landau-Hall problem by considering that the
configuration space is the hyperbolail = {(x,y,2) € R®/ 2% + y*> — 22 = —R?; 2 > 0}. Let
m : T*Q — @ be the cotangent bundle ¢J, then the phase space, as is well known, is the symplectic
manifold (7*Q, wi*! = wy — en*(FH)) with w, being the canonical symplectic form @@ and
FHall — B O, with B # 0.

Let SO(2,1)° be the connected component of the identity6f(2,1). ThenSO(2,1)° ~ Si(2,R)/Zs
acts transitively or) (the isotropy group of each point @j is isomorphic toSO(2,R)) and it induces
a symplectic action ofiT*Q,wi*!), without fixed points, that preserves the Hamiltonian of the system,
furthermore it admits a moment mdp. 7*Q — so(2, 1)* which is equivariant with respect to the coadjoint
action [1, 15, 22].

The fundamental vector fields of this action are nothing else but the restrictibiQoc T+ R? of the
fundamental vector fields of the natural action#(2,1)° on T* R3. If we take a basis< A;, Ay, A3 >
of the Lie algebrao(2,1) with [A;, A3] = — A3, [A1, A3] = —As and[As, A3] = A4, one has that the
fundamental vector field associated with these vector fields are, in Cartesian coordin@tes on

DleAI = —z— — 7_27_

o . 9 L0 D

Dy, =A, = z2— 40— 44—

e S T,
? ?

Dy =A, = y— —0— +9— —

BT Yar T oy o T Mgy

with 2 + y? — 22 = —R?, z > 0 andxd + yy — 2% = 0.

Let {w1,wa,ws} € s0(2,1)* be the dual basis ofA4;, A2, A3} and let us denote by, as, a3) the
coordinates of an element € so0(2,1)* with respect to this basis. Then the moment ndap7*Q —
50(2,1)* is defined by

J (1) = Ji=m(yz—zy) —eBRx
J*(a2) = Ja=m(z& —x%)—eBRy
J*(a3) = Js=m(yz —zy) —eBRz
with 22 + y2 — 22 = —R?, 2z > 0 andz@ + yy — 25 = 0. This expression can be written ds=

7 Xnyp D — eBRT. The energyl is a positive function off™*Q which is not independent of the conserved
hyperbolic momenta, since as we have previously indicated

1

_ 2 2 2 202 p4
E—W(J1+J2—J3+6BR)

It is easy to check, thanks to equations 9,10 and 11 of section 3, that the Poisson brackets are

{J1,Jo} =Dy (J2) = —J3
{N1,J3} =Dy (J3) = —Js
{J2,J3} =Dy, (J3) = Ji.

Using the hyperbolic stereographic projection (isothermal coordinates) or hyperbolic coordingtes on
it is proved after a long but easy computation #&t A d.J> A dJs = 0 if and only if E = 0, which implies
that
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Proposition 5 The moment mag : T*Q — so0(2,1)" is a regular projection on all points except for
those that verifyi? + 2 — 22 = 0 (which correspond to the points of zero energy for whigh- J2 — J2 =
—e?B2RY).

Theorem 6 Givena = (aj,az,a3) € s0(2,1)* andr, = o? + a3 — o3. If we suppose thatB < 0
(analogously ileB > 0) then we have that:

1.

. Ifro, =0, the energyf =

If r, < —e?B2R%, thenJ 1(a) = 0. ( Note that otherwise the particle would have a negative
energy, but this is impossible sinégis positively defined o™ Q).

. Ifro = —e?B2?R%, thenE = 0.

2a)If a3 < 0thenJ ! (o) = {(F5, %5, =55.0,0,0)} € T*Q C T*R is a point on the
image of the zero section of the bundle T*Q — Q); that is, the velocity is zero and the particle is

fixed at a point of the hyperboloid.
2b) If ag > 0 thenJ ! (a) = 0, since in that casé-%5, 5%, -5%) ¢ Q.

1 —e2B2R* < 1, < 0,then0 < E < €B’R*

2m

3a)lf a3 < 0thenJ () = 0, since in this case the intersection of the hyperbo@idith the
planea;x + asy — asz = eBR? is empty.

3b) If a3 > 0 thenJ~!(«) is a one dimensional submanifold Bf ) defined by the zeroes of
the functionsJ; — a1, Jo — s, J3 — a3} and furthermorer(J~1(«a)) is the closed trajectory o
given by the intersection of the hyperboldjdwith the planen; z + aoy — a3z = eBR2.
e?B?R?

2m

4a) If o = (0,0,0) thenJ'(a) = 0 sinceJ = 7% j— eBR7 = (0,0,0) implies that
7 p = eBR T and since” x p'is orthogonal tor, it turns out that” = (0, 0,0) but# = (0,0,0) ¢ Q.

4b) If o # (0,0, 0) thenJ~!(«) is a onedimensional submanifold’Bf Q defined by the zeroes
of the functiong J; — a1, J2 — az, J3 — a3} and one has that(J~!(«)) is the open trajectory on
Q given by the intersection of the hyperbolgjdwith the planen;z + asy — azz = eBR3.

. frq >0, thenE > ¢B°R \ith 7(J~1(a)) being the open trajectory of given by the intersection

2m

of the hyperboloid with the planen; = 4+ asy — azz = eBR>.

Proposition 6 The distinct coadjoint orbits of the grog0 (2, 1)° are:

1.
2.

5.

6.

Oy = {(07070)}

OZ@”:L ={(a1,a,0a3) / o + a3 — a3 = —k? | a3 > 0} for eachk? # 0 € RT.

. Ogé’p_ = {(o1,2,0a3) / af + a3 — aj = —k? | a3 < 0} for eachk? #£ 0 € R*.

. Oi‘me:{(aho@’ag) #(0,0,0) / a%—ka%—a% =0, az>0}.

0cone = {(an, a,a3) # (0,0,0) / af + a3 —a3 =0, as <0} .

Orptieds — f(ay, a9, a3) / o + a3 — af = k?} for eachk? # 0 € R+,

Proposition 7 If G, is the isotropy subgroup of a poirt € so(2,1)* with respect to the action of
S0O(2,1)°, then one has that

1.

2.

If o € Oy, thenG, = SO(2,1)°.

Ifo € (925”’;, thenG,, is isomorphic taSO(2).
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3. Ifae (9’””’7 thenG,, is isomorphic taSO(2).
4. Ifa € O, thenG, is isomorphic taF(1).

5. Ifa € O™, thenG,, is isomorphic taF(1).
6. Ifa € O/ thenG,, is isomorphic taSO(1,1)°.

Theorem 7 Let us denote by @ the submanifold o1 @ of constant energy’ = ¢, then :
1. Jﬁl(OO) = 0.

2. (@) JTH(OM) =0if —k* < —e2B2R*.

(b) J—l(OZ,ffjr) = Tg Q (zero section of the cotangent bundledfif —k% = —e? B2R%.

(©) T HOW" ) = TrQwith € = 51 (—k? + e2B2RY) if —e?B2R* < —k2 < 0.

3. JTHOMP ) =0, Vk? #£0.

4. JHOP) = TrQwithe = €L

5. J-L(Ome) = .

6. J7HOEP ) = TrQ with e = 51 (K2 + €2B2RY).

Corollary 4 Let £ = € be the energy of the particle, then:
1) Ife=0, then the trajectory oK) is a point.
2)If0 < e < €821 B R then the trajectory oK) is closed (periodic).

3)Ife> ¢ me ,then the trajectory ony) is open.
Remark 5 It may be expected that when one quantizes this problem, the states of 8nergy: 625";’*2
will represent localized quantum states and therefore will contribute to the Hall resistivity, whereas for
€ > 62’5’;32, where ergodicity phenomena appear, these states will represent extended states which will
contribute to the Hall conductivity.

5. The manifold of orbits of constant energy on the hyperbolic
Landau-Hall problem

As we have indicated, the submanifold of constant enéfgy 0 is identified with the image of the zero
section of the bundl&™ @, whereas in the other casé€s= ¢ # 0, it is a tridimensional submanifold of
TrQ of T*Q, which is defined by the zeroes of the functigh= (J7 + J3 — J3 + > B?R*). Let us denote
by Z(e) the ideal ofC>°(T*(Q) generated by this function.

If € # 0, letw}’*" ;.. , be the restriction td7*@Q of the 2-formwj/!".

Proposition 8  If e # 0, T*Q is a coisotropic submanifold ¢*Q, w3'*"") and the radical ofw}* ;.. ,
is the restriction tdl* @ of the Hamiltonian vector fields associated to the functbgs.

Therefore it is easy to check that the vector fiéd= J, D;, + Jo2 D, — J3 D, is tangent to the

submanifold of constant enerdy = ¢ # 0 and their restrictions to evef§*() generate the radical or null
kernelrad wy'*" 1. of wi' ™ 1. .
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Proposition 9  The trajectory that passes through the point

(I07y0a 205 j707 y07 ZO) € T*Q

with J (20, Yo, 20, &0, Y0, %0) = (a1, az, az) ande = 5-1= (0f + 03 — o3 + e2B2R*) # 0, is the integral
curve of the vector field = J, D;, + J2 D, — J3 D, which fort = 0 passes through that point.

Since the moment map intersects the coadjoint orbits corresponding to non-zero energy cleanly, as a
consequence of the Kazhdan-Kostant-Sternberg theorem [15], we have that

Theorem 8 |If € # 0, the integral curve of the radical that passes through the pbjf@ is the orbit under
the connected component of the isotropy group of the imagedfyhat point.

With the above notations and results, bearing in mind $t2, 1)° acts transitively off @, if we fix
a point of this submanifold we have that

Proposition 10 The morphisms
1L.J:T:Q— OZ%”; fore = ;1o (—k? + €2B2R*) with —e? BR* < —k? < 0.

2. J:TrQ — O withe = %.

3. J:TrQ — 0P for e = o1 (k2 + € B2RY) with €2 B2R* < k?

are principal fiber bundles whose structure groups 8@(2), E(1) and.SO(1, 1)° respectively.
The manifold of orbits of constant energys nothing else but the reduced phase spr%%eff;l%—.

ITFQ
Taking into account theorem 26.6 in [15] and that the isotropy subgroups with respect to the coadjoint action

are connected for every € so0(2,1)* one has that

Theorem 9 The moment mag induces diffeomorphisms, that will be denoted/by

7. T Q hyp i 2p2pd - 1.2
LTt gt — — O, i ~2B2RY < k2 <0,
7. 'Q cone if 1.2 _
2.0 ¢ gt = O k2 = 0.
7. T'Q hyplleaf ¢ 1.2
3.0t gt = O} if k2 > 0).

withe = L (—k? + e2B2R*). In this sense, every manifold of orbits of constant enétgy ¢ # 0, is
identified, via the moment maf with the corresponding coadjoint orbit.

Let us analyze the manifold of orbits of constant energy. % for which the trajectories are
closed

Theorem 10 If € < 62555?'2, then there exists a unique symplectic structufé®'! on OZQﬂ such that

%, Hall _ , Hall
J = Wy

Wred T*Q"

PROOF In hyperbolic coordinates

ar = k sh(y cos(
as = k sh(y sin(s
as = k ch(y
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on the coadjoint orbiOZé”;, its Kirillov-Kostant symplectic 2-form is given by;kyp = k% sh¢y dé A

5. One has then that w o= sh¢y d(i A d¢,. Itis sufficient to calculate the value
dCy. One has then thae/74/! = Aw)'¥?, = X k? sh(y d¢ A dGa. | ffi lculate the value af

such that the required condition is fulfilled. For doing this note that sinc@l’yﬁ , itis verified that

G = arcch(ﬁ)
k
o = wend)
One has that
Jwldt = TN E? sh¢y d¢y AdG) = J*(A K? d(ch(y) Adp) =
J. J: J: JidJy — JodJ
_ 2 . J3 J2. _ J3 1dJs — JodJ1 _
= Mk d(k)/\d(arctgjl) )\kd(]g)/\—J12+J22
. k dJi ANdJs
= —5
since, as/f + J5 — J§ = —k?,isdJs = Ddlrdadlz,

Hall _ dJiAdJ. iy i _ 1 i 2 _ 2 ’B?R*
But ws'¢ Q= T and comparing it turns out that= ;- and sincé” = 2mR<e — 5

1
wd = [2mR%e — ?B*R*|? sh(y dG A ds
as was to be showl

Remark 6 The application of geometric quantization to the manifold of constant eflergy < < 32R2
leads to a quantization of energy that will be developed and compared to the results given |n the physics
literature elsewhere.
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