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Could a combinatorial optimization problem be solved by a
differential equation?

P. M. Talaván and J. Yáñez

Abstract. For the Traveling Salesman Problem ( ����� ), a combinatorial optimization problem, a feed-
forward artificial neural network model, the Continuous Hopfield Network ( �
	�� ) model, is used to
solve it. This neural network approach is based on the solution of a differential equation. An appropriate
parameter setting of this differential equation can assure that the solution is associated with a tour for the���
� .

¿Puede una ecuación diferencial resolver un problema de optimización
combinatoria ?

Resumen. El Problema del Viajante puede plantearse a partir del modelo de red neuronal continuo
de Hopfield, que determina una solución de equilibrio para una ecuación diferencial con parámetros
desconocidos. En el artı́culo se detalla el procedimiento de determinación de dichos parámetros con el fin
de asegurar que la solución de la ecuación diferencial proporcione soluciones válidas para el Problema
del Viajante.

1. Introduction
A combinatorial optimization problem can be stated from a finite set of valued objects for which we look
for the best (minimum or maximum value) of them. In spite of its very simple structure, there are many of
these problems which cannot be solved exactly when dealing with medium or high size instances; this fact
can be explained because these problems are classified as ��� -hard problems; see Garey and Johnson [2].
The ����� is the most prominent of the unsolved (in the above sense) combinatorial optimization problems
and the most common conversational comparator (Why, it’s as hard as the traveling salesman problem!).

The ����� is an optimization task that arises in many practical situations. It may be stated as follows:
given a group of cities to be visited and the distance between any two of them, find the shortest tour that
visits each city only once and returns to the starting point.

An Artificial Neural Network ( ����� ) is a computational paradigm that differs substantially from those
based on the standard von Neumann architecture. The ����� is inspired by the structure of biological
neural networks and their way of encoding and solving problems.

One kind of architecture in neural network modeling is the feed-back, for which the synapses (neural
connections) are bidirectional and activation continues until a fixed point has been reached. An example
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of this type of ����� is the Continuous Hopfield Network ( ����� ), introduced by Hopfield and Tank [4],
which mathematically can be viewed as a differential equation with the property that, with an appropriate
parameter setting, it converges to a local minimum of the ����� .

Many researchers have investigated the ����� under a neuronal perspective; see, for example, Aiyer [1],
Papageorgiou [6] and M.Peng [7]. However, some disappointing results were obtained; the convergence of
the network to valid tours for the ����� could not be guaranteed by all of these improvements.

This paper introduces a parameter setting procedure for the ����� applied to the ����� . This procedure
is based on the stability conditions of the ����� Energy Function of the valid tours for the ����� . In this
way, a set of analytical conditions of the ����� parameters is obtained so that any equilibrium point of the����� characterizes a tour for the ����� .

The paper is organized as follows: The ����� to solve the ����� is introduced in section 2.. Two types
of parameter constraints are introduced: those constraints assuring that any tour for the ����� will be an
equilibrium point; and, on the other hand, those constraints assuring the non-convergence of any invalid
solution for the ����� . As a consequence, each instance of the ����� has its specific parameters, which
depend on the number of cities and on the magnitude of the distances. The associated parameter setting is
detailed in section 3..

2. Mapping the � ��! onto the "$#&%
The ����� of size ' is a fully connected neural network with ' continuous valued units. Following the
notation of Aiyer et al. [1], let �
(*) + be the strength of the connection from neuron , to neuron - . In addition,
each neuron - has an offset bias of -/.( . If 01( and 23( represent respectively the current state and the output of
the unit -541-7698;:=<?>@>@>A<B'DC , let E�</F�<HGI. be the vectors of neuron states, outputs and biases.

The dynamics of the ����� is described by the differential equation:J EJLK�MON E PRQTS F Q G . (1)

where
PVUXW

and the output function 2L( MZY\[ 01(^] is a hyperbolic tangentY�[ 0\(I] M :_a` : Q Kcb 'ed ` 01(0gf1hih 0 f UXW (2)

If, for an input vector E f , there exists a point EDj such that E [ K ] M Ekj�4 K�lmK j , for some
K j l W , this

point is called an equilibrium point of the system defined by differential equation 1. Such an equilibrium
point will also be called the limit point of the ����� . The existence of equilibrium points for the ����� is
guaranteed if a Lyapunov or Energy function exists. Hopfield [3] showed that, if matrix

S
is symmetrical,

then the following Lyapunov function exists:n M$N :_ F
o S F Np[ G . ]co^F Q :Prqs (utwvkxzyH{f Y1| v [*} ] J } (3)

Following Gee et al. [?], the ����� will solve those combinatorial problems which can be expressed as
the constrained minimization of n M$N :_ F
o S F Np[ G . ]cocF (4)

which has its extremes at the corners of the ' -dimensional hypercube ~ W <@:@��� . The idea is that the network’s
Lyapunov function, when

P N1��� , is associated with the cost function to be minimized in the combinato-
rial problem. If the value of

P
is large, the continuous system performs much like a discrete binary system,

ultimately stabilizing with all outputs near zero or one, i.e. the ����� converges to a vertex of the unit
hypercube ; see, for example, Wassermann [9].
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In this way the ����� output can be used to represent a solution of the combinatorial problem. This
process has been termed mapping the problem onto the Network and will be explained for the ����� .

Let � be the number of cities and let
J�� ) � be the distance between the cities } and � , with } </�O68L:L<@>@>?>A<B�RC . A tour of the TSP can be represented by a ����� permutation matrix, where each row and

each column is associated respectively to a particular city and order in the tour. In the following, this
concept is formalized: Let� M 8���6R~ W <@:�� q���q C ��� M 8��m6�8 W <@:=C q���q C
be respectively the hypercube of � ��� , where ' M ���V� and its corner set.

Given ��6�� , let��(w� s � 2 � ) ( � � � s ( 2 � ) ( �a� s � s ( 2 � ) ( M s � � � M s ( ��(
be the sum of rows, columns and rows and columns. The tour set for the ����� is:��� M 8���6�� �R� � � M :=<H�
( M :�4 } <B-�6�8L:L<@>@>?>A<B�RCLC (5)

Based on this representation, Hopfield and Tank [4] proposed the following network mapping, where
each neuron of the Network is identified by each element of the above matrix. In this way, there are '
neurons, whose output will be denoted as 2 � ) ( , where } 6�8L:L<@>?>@>�<H�RC is the city index and -�6�8L:L<@>?>@>�<H�RC
is the visit order. The matrix ��6�� will represent the system state of the ����� . In this way, the Network
evolves until it is trapped in some limit or equilibrium point. Obviously, our aim is that this point would be
the minimum length tour.

The energy function of the ����� of any state ��6V� , proposed by Hopfield, is:n [ ��] M � _ s � s ( s +��t
( 2 � ) ( 2 � ) + Qm� _ s ( s � s�;�t � 2 � ) ( 2 ��) ( Q � _�  s � s ( 2 � ) ( N ��¡£¢Q�¤ _ s � s�L�t � s ( J � ) � 2 � ) ( [ 2 ��) (u¥wv Q 2 ��) ( | v ] (6)

(the - Q : and - N : subscripts are given modulo � )
The three first terms of the energy function are null for any valid tour for the ����� , the fourth term

penalizes the total length of the tour. Comparing them to equation 4, we haven [ ��] MON :_ s � ) ( s ��) + 2 � ) (*� � (*) �H+�23��) + N s � ) ( - .� ) ( 2 � ) ( (7)

where the weights and thresholds for the ����� are:� � (*) �H+ MONa[ ��¦ � ) � [ : N ¦?(§) +�] Q � [ : N ¦ � ) ��]¨¦@(*) + Q � Q ¤ [ ¦?(§) + | v Q ¦@(*) +B¥wv?] JL� ) �=] (8)- .� ) ( M ��� (9)

The convergence of the neural Network to some point �©6T~ W <?:��*� is related to the partial derivative of
its energy function

n [ ��] with respect to 2 � ) ( for all } <B-7698L:L<@>@>?>�<B�aC , which will be denoted asni� ) ( [ �ª]�� « n [ �ª]« 2 � ) (
Taking into account equation 7,

n�� ) ( [ �ª] can be computed asn � ) ( [ ��] M � [ � � N 2 � ) (I] Q � [ ��( N 2 � ) (^] Q � [ � N ��] Q ¤ s�;�t � J;� ) � [ 23��) ( | v Q 23��) (¬¥kv@] (10)

221



P. Martı́nez and J. Yáñez

Introducing the following notation:n f [ �ª]�� ­�®¬¯° � ) (u±*² y´³Aµ { t f ni� ) ( [ �ª] n v [ �ª]�� ­�¶3·° � ) (¬±*² y´³Aµ { tkv ni� ) ( [ �ª]we can conclude that any point �¸6¹� will be an equilibrium point for ����� if and only if the three
following relations n f [ ��] l W (11)n v [ ��]»º W (12)n�� ) ( [ �ª] M W 4 [§} </-/]76�8L:=<?>@>?>A<B�RC ¢ � 2 � ) ( 6 [ W <@:�] (13)

are verified.

3. Parameter setting of the "m#�%
Any point �¼6z� � will be an equilibrium point if and only if relations 11 and 12 are verified. However,
with the parameters �£< � <H��<B¤ , no tour �½6$� � will ever be an equilibrium point for the ����� and
another parameter ��¾ is needed. Equation 9 will be replaced by:- .� ) ( M ��� ¾ 4 } </- (14)

and the partial derivative will be computed asn � ) ( [ �ª] M � [ � � N 2 � ) (^] Q � [ �
( N 2 � ) (I] Q � [ � N � ¾ ] Q ¤ s�L�t � J;� ) � [ 23��) ( | v Q 23��) (u¥wv?] (15)

Let
J�¿

and
J�À

be respectively some upper and lower bounds for the distances
J�� ) � :J À º J � ) � º J ¿ 4 } </�Á698L:L<@>?>@>�<H�RC (16)

The following results will be presented without proof, for further details, see Talaván and Yáñez [5].

Theorem 1 If the energy function parameters for the ����� are nonnegative and verify:_ ¤ JÂ¿ ºZ� [ � ¾ N �9]�ºÃ� Q � Q ¤ J�À (17)

Then, any tour ��6���� will be an equilibrium point for the CHN.

Example 1 Consider the ����� defined by Ä cities on the vertices of a regular hexagon on � � ¢ with a side
length of

_
and with the Euclidean distance.

The distance matrix is

[ J;� ) �=] M
ÅÆÆÆÆÆÆÇ
W _ _LÈ É Ê _LÈ É __ W _ _ È É Ê _ È É_ È É _ W _ _ È É ÊÊ _LÈ É _ W _ _LÈ É_LÈ É Ê _LÈ É _ W __ _LÈ É Ê _LÈ É _ W

Ë�ÌÌÌÌÌÌÍ
From the distance matrix, the following bounds can be obtained:J;À M _ JÂ¿ M Ê
It is easy to check that the parameters� ¾ MÏÎ >u: � M :=>ÑÐ � M _ > _ � M : ¤ M W > _LÒ

verify equations 17:Î >¬: M � ¾ U � M Ä b ' J _ ¤ J ¿ M _ ºZ� [ � ¾ N �9] M _ >u:�ºÃ� Q � Q ¤ J À M Ê > Ê
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On the other hand, no invalid tour ��6V� N � � can be an equilibrium point for the ����� .

Theorem 2 If the energy function parameters for the ����� are nonnegative and verify:É ¤ JLÓ N �ÕÔX� [ � ¾ N �9]�ÔX­�®¬¯�8 � <H� Q ¤ J À < [ � N :�]c��C (18)

Then, any invalid tour ��6�� � N ��� cannot be an equilibrium point.

Theorem 2 gives sufficient conditions so that the ����� will not be trapped in any invalid solution�©69� � N ��� . There could exist, however, some points �¼Ö69� � (invalid tours consequently) which are
also equilibrium points. See the example below.

In example 1, the following values parameters:� ¾ MÏÎ >u: � M :=>ÑÐ � M _ > _ � M : ¤ M W > _LÒ
verify inequations 18.

However, the point

� j M
ÅÆÆÆÆÆÆÇ W×W W WØW :W×W W WØWÙW: W W WØWÙWW : W > Ú WØWÙWW×W W : WÙWW×W W W : W

Ë�ÌÌÌÌÌÌÍ 6 � N ���
is an interior point of the Hamming cube, cannot be a tour for the ����� , and is also a stable point, because
it verifies equations 11, 12 and 13.

In this way, inequations 18 of theorem 2 will be substituted by:É ¤ J�¿ ºp� [ � ¾ N �9]�ºÃ­�®u¯
8 � <H� Q ¤ J�À < [ � N :�]c��C N � (19)

respectively.
In example 1, the parameter values of interior stable point ��j verify inequalities 18 and do not verify

inequality 19: É ¤ JÂ¿ N � Q � [ � N � ¾ ] MON W >u:�6 [¨N ��< W ] M$[¨N :L< W ]
From the inequalities 19, the lower and upper bounds for � [ � ¾ N �9] of theorem 1, see equations 17,

can be substituted by: É ¤ J ¿ ºp� [ � ¾ N �9]�ºÃ­�®u¯
8 �ÁÛ � Q ¤ J À Û [ � N :�]c��C N � (20)

One of these parameter can be fixed, say, for instance, ¤ M vÜ@Ý . Moreover, the bounds 17 are implied
by bounds 20.

As a consequence of the above results, the following parameter setting assure that any stable vertex�Þ6T��� will be a valid solution of the ����� and also avoiding that any interior point �ßÖ6z�à� could be
stable. ¤ M vÜ Ý � M É ¤ J�¿ Q � � Mm[ É J�¿ N J;À ]¨¤ Q � M � N ¤ J�À � ¾ M � Qmá´â Ü@Ý� (21)

In example 1, if � M : , the parameter setting 21 gives the following values:¤ M :J ¿ M W > _LÒ � M É ¤ J ¿ Q � M Ê � M � N ¤ J À M É > Ò � ¾ M � Q É ¤ JÂ¿� M Ú
This parameter setting represents an improvement with respect to other authors in the sense that, not

only better solutions are obtained, but —which is the most important feature— valid tours are always
obtained. The theoretical results have been tested with sample instances from ������ã7� � , see Reinelt [8],
with sizes of up to : WLW=W cities. See also Talaván and Yáñez [5] for further details.
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