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Probabilistic models for vortex filaments based on fractional
Brownian motion

D. Nualart, C. Rovira and S. Tindel

Abstract. We introduce a vortex structure based on a three dimensional fractional Brownian motion
with Hurst parameter H > % The purpose of this note is to present the following result: Under a suitable
integrability condition on the measure p which controls the spread of the vorticity around the filaments,
the kynetic energy of the configuration is well defined and it has moments of all orders.

Modelos probabilistas para filamentos de vorticidad basados en el
movimiento browniano fraccionario

Resumen. Se introduce una estructura de vorticidad basada en el movimiento browniano fraccionario
con pardmetro de Hurst H > % El objeto de esta nota es presentar el siguiente resultado: Bajo una
condicién de integrabilidad adecuada sobre la medida p que controla la concentracién de la vorticidad a
lo largo de los filamentos, la energia cinética de la configuracién esta bien definida y tiene momentos de
todos los 6rdenes.

1. Vortex filaments based on fractional Brownian motion

The observations of three-dimensional turbulent fluids in a number of experiments indicate that the vor-
ticity field of the fluid is concentrated along thin structures called vortex filaments. In his book Chorin [3]
suggests probabilistic descriptions of vortex filaments by trajectories of self-avoiding walks on a lattice.
Flandoli introduced in [5] a model of vortex filaments based on a three-dimensional Brownian motion. A
basic problem in these models is the computation of the kynetic energy of a given configuration.

Denote by u(z) the velocity field of the fluid at point z € R®, and let £ = curlu be the associated
vorticity field. The kynetic energy of the fluid will be

B sy _ L[ [ E) €W
H= 2/1;23 |u(z)|*dz = - /R3 o | | dxdy. (1)

If the vorticity field is concentrated along a curve v = {y(t),0 < ¢ < T'} this expression is divergent even
if the curve 7 is smooth. For this reason, following Flandoli [5], we will assume that the vorticity field
is concentrated along a thin tube centered in a curve . Moreover, we will choose a random model and
consider this curve as the trajectory of a stochastic process.
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Let us describe in detail our random model for vorticity filaments. Suppose that B = {By,t € [0,T]} is
a three-dimensional fractional Brownian motion (fBm) with Hurst parameter H € (%, 1). This means that
B is a zero mean Gaussian stochastic process defined in a probability space (2, F, P) with the covariance

function 1

E(B{B]) = 501 (M + 21 — |t — s7). 2)
In particular, this means that the components of B are independent one-dimensional fractional Brownian
motions. We will assume that the vorticity field is concentrated along a a trajectory of B. This can be

formally expressed as
T .
() =t [ < | se-y- Bs>Bsds> pldy), 3
R3 \Jo

where T is a parameter called the circuitation, and p is a probability measure on R with compact support.
Substituting (3) into (1) we derive the following formal expression for the kynetic energy:

= [ [ e pdp(dy), )
Rr3 JR3

where the so-called interaction energy Hl,,, is given by

1—12 3 T T 1 . i
H,, = — / / dB!dB;. (&)
TY 871'1:21 0 0 |$+Bt—y_B3| s t

The purpose of this paper is to give a rigorous meaning to the expressions (4) and (5) and to show that
H is a well-defined nonnegative random variable with moments of all orders.

Notice first that (2) implies that E|B; — Bs|> = 3|t — s|*. As a consequence, by Kolmogorov’s
continuity criterion, the trajectories t — By(w) of the fBm are Holder continuous of order H — ¢, for all
€ > 0. This means that the Hurst parameter H controls the regularity of the paths. Taking into account
the results by Young [10], for any Holder continuous function f of order strictly greater than 1 — H, the
Stieltjes integral fOT f(t)dBg(w) exists.

For any integer n > 1 we denote by o, the convolution of |z|~! with a three-dimensional Gaussian

kernel of variance 1/n. By the above remark, the Stieltjes integral fOT on(z + By —y — B) dB! exists for
any trajectory of the fBm, and as a function of ¢ is again Ho6lder continuous of order H — ¢, for all ¢ > 0.
Hence, the smoothed interaction energy

F2 3 T T . .
wﬁgZ/o (/0 an(x+Bt—y—Bs)dB;> dBj, (6)
i=1

is well defined.
The main result of this paper is the following:

Theorem 1 Suppose that the measure p satisfies the integrability condition

/ |z — y|*~ 7 p(dz) p(dy) < 0. 7
R3 JR3

Let H;, be the smoothed interaction energy defined by (6). Then

= [ [ ey,

converges, for all k > 1, in L*(2) to a random variable H > 0 that we call the energy associated with the
vorticity field (3).
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IfH = %, the process B is a classical three-dimensional Brownian motion. In this case condition (7)
would be [,5 [os |2 — y| ™ p(dx)p(dy) < oo, which is the assumption made by Flandoli [5] and Flandoli
and Gubinelli [6]. In this last paper, using Fourier approach and It6’s stochastic calculus, the authors show
that Fe~AH < oo for sufficiently small negative £3.

The proof of Theorem 1 is based on the stochastic calculus of variations (Malliavin Calculus) with
respect to the fBm. We present the main notation and results of this calculus in the next section.

2. Stochastic calculus for the fractional Brownian motion

Suppose that B = {By,t € [0,T]} is a one-dimensional fractional Brownian motion (fBm) of Hurst pa-
rameter H € (,1). We denote by £ the set of step functions on [0, T']. Let H be the Hilbert space defined
as the closure of £ with respect to the scalar product (1[0’,5], 10,9 > o= E(B;Bs). Itis easy to show that

T T
(o), = HH — 1) / / Ir — w720, dudr

for all ¢ and ¢ in £. The mapping B : 1o, — By can be extended to an isometry between # and
the closed linear span of the random variables { B;,0 < s < T'}. The space L'/ ([0, T) is continuously
embedded in H (see [8]).

We can construct a stochastic calculus of variations with respect to the Gaussian process B following
the general approach introduced, for instance, in Nualart [9]. The derivative operator D is defined on
smooth and cylindrical random variables of the form F' = f(B(¢1),- .., B(¢n)) by

pF =3 L (Bgy),.... B

Ox;
i=1

where ¢; € H. Notice that DF is an H-valued random variable. The divergence operator ¢ is the adjoint
of the derivative D, defined by the duality relationship

E(Fé(u)) = E((DF,u)y) . ®)

It holds that the set of processes u such that

T T /T .
/ |ug|  dt + / / |Dsug| ¥ dsdt
0 o Jo

is included in the domain of the divergence operator in L2.

In the case of the Brownian motion, the divergence operator is an extension of the It6 stochastic integral,
and it coincides with an extension of the stochastic integral for anticipating processes introduced by Skoro-
hod (see [9]). The following result proved in [2] provides also an interpretation of the divergence operator

2H

E < o0 Q)

as a stochastic integral. We will make use of the notation §(u) = fOT utdBy.

Proposition 1 Ler u be a process such that (9) holds andand fOT fOT |Dyug| |t — s> 2 dsdt < oo a.s.

Then the pathwise integral fOT ud By, defined as the limit in probability of (2¢) ™! fOT Us(Bsye — Bs—e)ds,

exists and
T T T /T
/ usdBs = / us0Bs + aH/ / Dguy |t — s|2H_2 dsdt, (10)
0 0 o Jo

where agp = H(2H — 1).
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In particular, if we apply (10) to the process u; = f(By), where f is a C1-function with polynomial
growth, we obtain

T T T
/ f(By)dB; =/ f(Bt)(SBH—H/ f1(B)t* 1 dt. (11)
0 0 0

As a consequence, from the change of variables formula for the Stieltjes integral

T
chTyzf«n+¢A F(B.)dB,

we deduce the following It6’s formula for the fBm in terms of the divergence operator (see also [1], [4],

[7]): ; .
f(Br) = f(0) + / f'(B)éB, + H / f(Byt . (12)
0 0

The previous results have the corresponding natural generalization to the case of a multidimensional frac-
tional Brownian motion.

3. Proof of the main result

In this section we sketch the proof of Theorem 1 for £ = 1. The main steps of the proof of this result are:

Step 1  Using that the Fourier transform of |z| =% is (27)3|£| 72, we get

(@) = /Rs || 2eit6m) -1 /2n g

Substituting this expression in (6), we obtain the following formula for the smoothed kynetic energy

r2 o e2/om
= o [ VeI A e, (13)
T JRr3

where p(€) is the Fourier transform of the measure p,
T .
}/—E = / e’L(é"Bt)dBt
0

2 3 it
and |Ye|lc = X5, ngﬁz

Step 2 From Fourier analysis we can write
[ Ja= sl ptdmiptds) = Cu [ 1pC@) el < . (14
R3 JR3 R3

Then, taking into account (13) and (14), in order to show the convergence in LI(Q) of H"* to a random
variable H > 0 it suffices to check that

B||Yell?. < Cle[F2, (15)
for some constant C' > 0.

Step 3 We will present the main arguments for the proof of the estimate (15). Relation (11) applied to

the process u; = €*¢:B+) allows us to decompose the pathwise integral Ye = fOT ei&B1) dBy into the sum
of a divergence plus a trace term:

T T
Ve = / e“&BI5B, + H / iget&BO2H=1 gy (16)
0 0

216



Probabilistic models for vortex filaments based on fractional Brownian motion

On the other hand, applying the three-dimensional version of Itd’s formula (12) to the exponential function
eH&BT we obtain

3 T _ T .
(6P =143 / i ePOsBI — H / N (17)
=Jo 0
Multiplying both members of (17) by i£|£| 2 and adding the result fo (16) yields

’ i(€,B:) i§ i(€,Br) (1) (2)
Yé:pg ‘/06 ’t(SBt —W(e ’T—].)::ng +Y:£ )

where pe(v) = v |—E§|§ (€, v) is the orthogonal projection of v on (£)™. It suffices to derive the estimate
)

(15) for the term Yg(1 . Using the duality relationship (8) we can write foreach j =1,2,3

T
i~(1),7 i i ] j —1 t
]E(Yﬁ(l),gyé)i):E<e(§,B)’péD_ <pé/0 e <€’B>5Bt>> : (18)

H

The commutation relation (D(d(u)), h),, = (u, h)4 + 6((Du, h),,) implies

] [ iten —i(¢.By) (&) YN _ie.BY)
pgDr pé/o e 6B 5B, — e U&Br (1— ]2 ) —}-pé(—lg)pg /0 1[0,t](’f“)e 6B 5B,

_  _—i&.B) _(§j)2)
‘ (1 €7 )

This means, the term involving derivatives in the expectation (18) vanishes. This cancellation is similar to
what happens in the computation of tha variance of the divergence of an adapted process, in the case of the
Brownian motion.

As a consequence, we obtain

T T
B2 = 20m / / Rei(6.Ba~Br) |5 _ p2H=2 gog,

T T |s—r|2H 2
= 2&1-1/ / e 2 & |s —r]2H2 dsdr,
o Jo

which leads to the estimate (15).
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