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Análisis Mateḿatico / Mathematical Analysis

On a functional-analysis approach to orthogonal sequences
problems

V. P. Fonf, A. M. Plichko and V. V. Shevchik

Abstract. Let T be a bounded linear injective operator from a Banach spaceX into a Hilbert spaceH
having dense range and let a sequence{xn} ⊂ X be such that{Txn} is orthogonal. We study properties
of {Txn} depending on properties of{xn}. We also study the “opposite situation”, i.e. the action of an
operatorT : H → X onto orthogonal sequences.

Una aproximaci ón a problemas de sucesiones ortogonales por an álisis
funcional

Resumen. SeaT un operador lineal acotado e inyectivo de un espacio de BanachX en un espacio
de HilbertH con rango denso y sea{xn} ⊂ X una sucesión tal que{Txn} es ortogonal. Se estudian
propiedades de{Txn} dependientes de propiedades de{xn}. Tambíen se estudia la “situación opuesta”,
es decir la acción de un operadorT : H → X sobre sucesiones ortogonales.

1. Introduction

There are numerous investigations in the theory of orthogonal sequences connected with the following
problem of Banach ([11], Problem 86):
Given an orthonormal and uniformly bounded sequence of measurable functions{φn(t)}, can one always
complete it, using functions with the same bound, to a sequence which is orthonormal and complete?.
Consider the case when infinitely many functions are necessary for completion.

This problem was first solved by S. Kaczmarz [7] in 1936. Later other solutions were found (see [8]).
In [15] an “abstract” approach to this problem was proposed. Namely, in [15] a coupleX↪→H, whereH is
a separable Hilbert space,X is a Banach space densely, non-compactly embedded inH, was considered. It
was proved that then there exists an orthonormal sequence{en} ⊂ H such that it is bounded inX, admits
no extension to a complete orthonormal sequence inH, using elements fromX, and the closed linear span
of {en} in H has an infinite codimension inH. This gives, in particular, a negative answer to Banach’s
question.

We can describe our approach to orthogonal sequences problems (like Banach’s problem) in the follow-
ing way. LetX be a Banach space,H be a separable Hilbert space. Consider a bounded, injective operator
T : X→H having non-closed, dense rangeT (X) in H. Following [4] we callT with these properties“a
dense embedding operator.”Suppose{Txn} is an orthonormal sequence inH. We study properties of
{Txn} in H depending on properties of{xn} in X.
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We also consider the “opposite situation” in the following sense:T is a dense embedding operator
acting from a separable Hilbert spaceH into a Banach spaceX. In the last case we start from the following
result in the theory of orthonormal sequences in the couple of spacesL2(0, 1)↪→L1(0, 1) (see [19]): There
exists an orthonormal sequence which is a (Schauder) basis inL1(0, 1), but not inL2(0, 1).

2. Extension of orthonormal sequences

We start with some definitions and notations. Denote bySX the unite sphere of a Banach spaceX. The
distance of an elementx ∈ X to a subsetA ⊂ X will be denoted byd(x,A) ; [xn]∞1 denotes the closed
linear span of a sequence{xn}. Let {en} be an orthonormal sequence in a Hilbert spaceH. We say that an
orthonormal sequence{yn} is an extensionof {en} if there exists an orthonormal sequence{zn} such that

{yn} = {en} ∪ {zn} ,

The following proposition shows, in particular, that we can find an orthonormal sequence{yn} in T (X)
such that it cannot be extended inH to an orthonormal sequence even adding only one element fromT (X).

Proposition 1 Let T be a dense embedding operator acting from a Banach spaceX into a separable
Hilbert spaceH. Then there exists an orthonormal sequence{yn} ⊂ T (X) such thatcodim [yn]∞1 = ∞
and

([yn]∞1 )⊥ ∩ T (X) = {0} . (1)

PROOF. Let {vn} ⊂ T (X) be a complete sequence inH such that each element is repeated infinitely
many times and letεn ↓ 0 . By [14] there exists a closed infinite dimensional subspaceZ in H such that
Z ∩ T (X) = {0} . We proceed by induction. For elements{zi, yi}n

i=1 ⊂ H we will denoteHn =
span (zi, yi)n

i=1 . On the first step we takez1 ∈ SZ . By Lemma 6 from [15] there existsy1 ∈ T (X)∩Sz⊥1
,

such thatd(v1,H1) < ε1. On then-th step we takezn ∈ SZ ∩H⊥
n−1, and by Lemma 6 from [15] choose

yn ∈ T (X) ∩ H⊥
n−1 ∩ Sz⊥n

such thatd(vn,Hn) < εn. So we obtain a complete orthonormal sequence
{zn, yn}∞n=1 wherezn ∈ Z, yn ∈ T (X). By the construction([yn]∞1 )⊥ = [zn]∞1 ⊂ Z. The proof is
complete.�

If T : X→H is a non-compact dense embedding operator we can ask whether there exists abounded
sequence{xn} ⊂ X such thatyn = Txn possesses the properties described in Proposition 1. The following
proposition, the proof of which actually coincides with the proof of Proposition 3 from [15], holds.

Proposition 2 LetT be a non-compact dense embedding operator acting from a Banach spaceX into a
separable Hilbert spaceH. Then there exists a bounded sequence{xn} ⊂ X such that{Txn} is orthonor-
mal,codim [Txn]∞1 = ∞ and foryn = Txn the property(1.1) holds.

Now let {Txn} ⊂ T (X) be a given orthonormal sequence. How “far”{Txn} may be extended to an
orthonormal sequence inH by using elements fromT (X)? In order to investigate this problem we put:
Y = [Txn]∞1 , X0 = T−1(Y ⊥) and

m = codim Y ⊥T (X0) , m ∈ {0} ∪ N ∪ {∞} . (2)

Theorem 1 a) If the restrictionT |X0 is non-compact then there exists an orthonormal extension of{Txn}
by images{zj} of some bounded sequence inX such that

(Y, {zj})⊥ ∩ T (X) = {0} and codim H [Y, zj ]∞1 = m . (3)

b) If T |X0 is compact then it does not exists a complete orthonormal extension of{Txn} by images of some
bounded sequence inX.

182



On a functional-analysis approach to orthogonal sequences problems

PROOF. To prove a) we consider two cases:
1) m < ∞. Then the restrictionT |X0 is an isomorphism. Let{zj} be any orthonormal basis inT (X0) (au-
tomatically infinite, becouseT |X0 is non-compact). SinceT |X0 is an isomorphism, the sequence{T−1zj}
is bounded. Next we have(Y, {zj})⊥ ∩ T (X) = ({zj})⊥ ∩ T (X0) = {0} and codim H [Y, zj ]∞1 =
codim Y ⊥T (X0) = m, and (3) holds.
2) m = ∞. Here we also consider two cases:

(i) T |X0 is an isomorphism. Let{zj} be an orthonormal basis inT (X0). The condition (3) is verified in
the same manner as in the case 1).

ii) T |X0 is not an isomorphism. In view of Proposition 2 there exists a bounded sequence{xj} ⊂ X0

such thatzj = Txj ∈ Y ⊥ ∩ T (X0) is orthonormal inH,

({Txj})⊥ ∩ T (X0) = {0} and dim Y ⊥/[zj ]∞1 = ∞ .

It is clear that{zj} is the desired extension.

To prove b) notice that the existence of a bounded sequence{xj} ⊂ X0 such that{Txj} is orthonormal,
contradicts the compactness ofT |X0 .
The proof of the theorem is complete.�

Recall that an operatorT : X → Y is calledstrictly singular if the restriction ofT to any infinite-
dimensional subspace ofX is not an isomorphism.

Corollary 1 Let T : X→H be a strictly singular operator. Suppose that{xn} is a bounded sequence in
X such that{Txn} is orthonormal andT |T−1({Txn}⊥) is non-compact. Then there exists an orthonormal
extension{Txn} ∪ {Tyn} of {Txn} with dim({Txn} ∪ {Tyn})⊥ = ∞ , sup ‖yn‖ < ∞ and such that it
has no extension to an orthonormal basis in the whole spaceH by elements ofT (X).

PROOF. PutY = [Txn]∞1 , X0 = T−1(Y ⊥). SinceT is strictly singular,codim Y ⊥T (X0) = ∞ and the
application of part (a) of Theorem 1 concludes the proof.�

A classical example of strictly singular operator is the natural embedding

C[a, b] ↪→ L2(a, b) .

Thus by Corollary 1 we have

Corollary 2 Let {en(t)} be the normalized trigonometric sequence inL2(0, 2π) and let {un} be any
subsequences whith infinite complementation. Then there exists an orthonormal extension{un}∞1 ∪{yn}∞1
such thatdim({un} ∪ {yn})⊥ = ∞, every functionyn(t) is continuous,supn maxt∈[0,2π] |yn(t)| < ∞
and there is no any orthonormal extension of{un} ∪ {yn} by using elements ofC[0, 2π].

3. Disjointness of orthonormal sequences and operator ranges

Let T : X→H be a dense embedding operator and let{en} ⊂ H be an orthonormal sequence inH. We
say that{en} andT (X) aredisjoint if

[en]∞1 ∩ T (X) = {0} . (4)

The disjointness of an orthonormal sequence and the operator range is not a rare property (see [1],
where some examples are given). We ask about a possibility of extending{en} with property (4) keeping
this property for the extended sequence.

Theorem 2 Let {en} be an orthonormal sequence with the property(4). Then there is an orthonormal
basis{xn} of H such that
(i) {x2n} ⊃ {en} , card({x2n}\{en}) = ∞ ,
(ii) [x2n−1]∞1 ∩ T (X) = [x2n]∞1 ∩ T (X) = {0} .
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This theorem follows from Corollary 3.4 of [3] (for a similar but weaker result see [2]). We give a proof
for the sake of completeness. The proof is based on

Lemma 1 Let U be a linear subspace of a Hilbert spaceH such that:U \ {0} = ∪∞n=1Un, whereUn

are convex closed bounded sets and there exists a countable dimensional dense inH subspaceZ for which
Z ∩ U = {0}. Then there are closed infinite dimensional subspacesV,W in H so thatV ⊕W = H, and
V ∩ U = W ∩ U = {0}.

PROOF. Let {zn} be an algebraic basis ofZ. We construct by induction sequences{vn} and{wn} in Z
so that for everyn:

1◦. zn ∈ Zn−1
2n−1 andv2n−1⊥Zn−1

2n−2 , whereZl
k = span (v1, . . . , vk, w1, . . . , wl).

2◦. wn⊥Zn−1
2n−1 and〈wn, Un〉 > 0, where the last formula denote〈wn, u〉 > 0 ∀u ∈ Un.

3◦. v2n⊥Zn
2n−1 and〈v2n, Un〉 > 0,

On the first step we:
1. Putv1 = z1.
2. Choose, by Hahn-Banach theorem, an elementw1 ∈ Z such thatw1⊥v1 and〈w1, U1〉 > 0.

3. SinceZ1
1 ∩ U1 = ∅, there exists an elementv2 ∈ Z such thatv2⊥Z1

1 and〈v2, U1〉 > 0.

Let the collection(v1, . . . , v2n, w1, . . . , wn) with the properties1◦ − 3◦ is constructed. Then on the
n + 1 step we

1. Choose an elementv2n+1 ∈ Z such thatzn+1 ∈ Zn
2n+1 andv2n+1⊥Zn

2n.

2. Choose an elementwn+1 ∈ Z such thatwn+1⊥Zn
2n+1 and〈wn+1, Un+1〉 > 0.

3. Choose an elementv2n+2 ∈ Z such thatz2n+2⊥Zn+1
2n+1 and〈v2n+2, Un+1〉 > 0.

PutV = [vn]∞1 andW = [wn]∞1 . By the construction, allvn andwn are orthogonal, henceV⊥W . By
1◦ , Z ⊂ U + V , henceV + W = H. The item2◦ guarantees thatV ∩ Un = ∅; the item3◦ guarantees
thatW ∩ Un = ∅ for anyn.
PROOF OFTHEOREM 2. Let P be the orthogonal projection ofH onto ({en})⊥. Then the rangeU =
PT (X) satisfies all conditions of Lemma 2.2. (see [14]). Hence there exist (infinite dimensional) subspaces
V andW such thatV ⊕W = ({en})⊥ and V ∩U = W∩U = {0}. It is easy to check thatV ∩T (X) = {0}
and(W ⊕ [en]∞1 ) ∩ T (X) = {0}. The rest of the proof is clear.�

Example 1 Let 0 < a1 < a2 < . . . < 1. Put

en(t) =
{

(an+1 − an)−1/2 t ∈ [an, an+1],
0 otherwise.

Clearly,{en} is an orthonormal sequence inL2(0, 1) and

[en]∞1 ∩ C[0, 1] = {0} .

So we can apply Theorem 2. It follows that there exists an orthonormal basis{xn} of L2(0, 1) such that

{x2n} ⊃ {en} and [x2n−1]∞1 ∩ C[0, 1] = [x2n]∞1 ∩ C[0, 1] = {0} .

Example 2 TakeH = l2. Let {in} be the sequence of prime numbers and
∑

(am)2 = 1 ,
∑

am = ∞.
Puten = (0 . . . 0, a1, 0 . . . 0, a2, 0 . . .) wherea1 is located at thein-th place,a2 is located at the(in)2-th
place,...,am is located at the(in)m-th place, and so on.

It is easy to verify that[en]∞1 ∩ l1 = {0} . Therefore we can apply Theorem 2. It follows that there
exists an orthonormal basis{xn} of l2 such that

{x2n} ⊃ {en} and [x2n−1]∞1 ∩ l1 = [x2n]∞1 ∩ l1 = {0} .
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4. The image of orthonormal sequence under the action of
dense embedding operator

In this section we prove a generalization of the main result from [16].

Theorem 3 LetT be a dense embedding operator acting from a separable Hilbert spaceH into a Banach
spaceX. Let{xn} ⊂ X be an arbitrary sequence and{εn} be arbitrary positive sequence numbers. Then
there exists an orthogonal sequence{en} ⊂ H such that

‖xn − Ten‖ < εn and codim [en]∞1 = ∞ .

PROOF. We denote byJ the canonical isometry ofH ontoH∗, i.e. (J x)(y) = 〈x, y〉. It is easy to see
that the adjoint operatorT ∗ is a dense embedding fromX∗ into H∗. We construct sequences{en} ⊂ H ,
{fn} ⊂ H∗ such that for everyn
(i) fi(ej) = 0 i, j = 1, . . . , n , fn 6∈ span (T ∗(X∗); {J ei , fi}n−1

1 ) ;
(ii) 〈en, ei〉 = 0 for i < n ; J en /∈ T ∗(X∗) + Fn ,

whereFn = span ({J ei}n−1
1 , {fi}n

1 ) ;
(iii) ‖xn − Ten‖ < εn .

To construct these sequences we use an inductive process. Choosef1 ∈ H∗ \ T ∗(X∗). Then the linear
subspaceTJ−1(f⊥1 ) is dense inX. It follows that there existse1 ∈ J−1(f⊥1 ), J e1 6∈ T (X∗) + F1 for
which

‖x1 − Te1‖ < ε1 .

It is easy now to check that properties (i) – (iii) hold.
Now suppose that we have constructed{ei, fi}n−1

1 with properties (i) – (iii). Sincedim H∗/T ∗(X∗) =
∞ we can choose an elementfn ∈ ({J ei}n−1

1 )⊥ ⊂ H∗, fn 6∈ span (T ∗(X∗), {J ei, fi}n−1
1 ). Be-

causeFn ∩ T ∗(X∗) = {0}, the linear subspaceTJ (F⊥n ) is dense inX. There existsen ∈ J (F⊥n ),
J en /∈ T (X∗) + Fn such that

‖xn − Ten‖ < εn .

We only need to check condition (ii). Sinceen ∈ J (F⊥n ),

〈en, ei〉 = J ei(en) = 0 for i < n .

This means that (ii) holds.
By the construction,{en} is orthogonal. In view of (i){en} ⊂ ({J (fn)})⊥. It follows from (ii) that

dim[fn]∞1 = ∞. So we havecodim [en]∞1 = ∞ and the proof is complete.�

Recall that a complete minimal sequence{xn} ⊂ X with the biorthogonal functionals{fn} ⊂ X∗ is
calledan M -basisof a Banach spaceX if {fn} is total overX (i.e. for eachx ∈ X, x 6= 0 there is ann
such thatfn(x) 6= 0).

It is well-known that each separable Banach space has anM -basis and that eachM -basis hasa stability
subsequencei.e. positive sequence{εn} so that‖xn − yn‖ < εn implies that{yn} is anM -basis inX too.
From Theorem 3 it follows

Corollary 3 Suppose thatT : H→X satisfies the conditions of Theorem3.1. There exists an orthonormal
sequence{en} ⊂ H such that{Ten} is anM -basis ofX andcodim [en]∞1 = ∞.

PROOF. To use Theorem 3 we can take anyM -basis{xn} ⊂ X and its stability sequence{εn} . �

Corollary 4 ([16]) SupposeT : H→X satisfies the conditions of the Theorem3.1. If X has a basis then
there exists an orthonormal sequence{en} ⊂ H such that{Ten} is a basis ofX andcodim [en]∞1 = ∞.

Recall that a sequence{xn} in a Banach spaceX is said to bea deficiently minimalif it becomes
minimal after deleting some finite set of elements.
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Corollary 5 Let T : H→X satisfies the conditions of Theorem3.1. Then there exists an orthonormal
sequence{en} ⊂ H such that{Ten} is not deficiently minimal inX andcodim [en]∞1 = ∞ .

PROOF. It is proved in [4] that there is a decompositionH = H1 ⊕H2 such thatT |H1 : H1→X and
T |H2 : H2→X, are dense embedding operators.

By using Corollary 3 find orthonormal sequences{un} ⊂ H1 and{vn} ⊂ H2 possessing the properties
(i) {Tun} and{Tvn} areM -bases inX ,
(ii) codim H1 [un]∞1 = ∞.

Put{en} = {un} ∪ {vn}. It is easy to see that{en} satisfies the conditions of corollary.�

Remark 1 It is interesting to compare Corollary 5 with the following result [13]:
LetT be a bounded linear operator acting from a separable Banach spaceZ into a separable Banach space
X with dim Ker T = ∞. There is anM -basis inZ such that its image byT is an overcomplete sequence
in X (i.e. each its subsequence is complete inX).

Now we show how to apply Theorem 3 for the construction of special orthonormal sequences in the
whole scaleLp = Lp(0, 1) , 1 ≤ p ≤ 2 (see [17]).

Corollary 6 Let1 ≤ r < 2 be a fixed number. There exists an orthonormal sequence{en(t)} ⊂ L2 which
is a basis in every spaceLp , 1 ≤ p ≤ r but it is not complete inLp if r < p ≤ 2.

PROOF. From [2] it follows that there exists a function Banach spaceY (depending onr) such that:
1)Lp is densely embedded (by the identity embedding) inY if r < p ≤ 2.
2)Y is densely embedded (by the identity embedding) inLr.

By using a method of [4] we construct a subspaceN ⊂ L2 which is dense inLr and whose closure in
Y has infinite codimension (inY ).

Now let{xn} be a sequence which is a basis simultaneously in allLp (take for example the Haar system)
and let{εn} be a stability sequence of{xn} in all spacesLp, 1 ≤ p < r. In view of Theorem 3 there exists
an orthonormal sequence{en} ⊂ N such that‖xn − en‖Lr

≤ εn . Thus{en} is a basis in every space
Lp, 1 ≤ p ≤ r. Clearly,{en} is incomplete inY , hence in anyLp for r < p ≤ 2.

5. Properties of the sequence {Ten}
Let T be a dense embedding operator acting from a separable Hilbert spaceH into a Banach spaceX.
ThenT ∗ : X∗→H∗ is a dense embedding operator too. Take a complete sequence{φn} in H∗ such that
{φn} ⊂ T ∗(X∗). By using Gram-Schmidt’s orthogonalisation process pass from{φn} to the orthonormal
basis{gn} ⊂ T ∗(X∗). LetJ be the canonical isometry which mapsH ontoH∗ as follows:

J y(x) = 〈y, x〉 , x, y ∈ H . (5)

Put en = J−1(gn) , n = 1, 2, . . .. We claim that{Ten} is a complete minimal sequence inX. The
completeness of{Ten} is clear. Check the minimality:T ∗−1gn(Tem) = (T ∗T ∗−1gn)(em) = gn(em) =
gn(J gm) = 〈gn, gm〉 = δnm .

Thus we have found an orthonormal basis{en} in H such that{Ten} is a complete minimal sequence
in X. Our aim is to construct{en} such that{Ten} would have a stronger property. Namely{Ten} is an
M -basis inX. Let us consider the following problems:
(i) Does there exist for everyδ > 0 an orthonormal basis{en} in H such that{Ten} is anM -basis in
X , ‖Ten‖ < δ and

lim
n→∞

‖Ten‖ = 0? (6)
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(ii) Suppose thatT is non-compact. Does there exist an orthonormal basis{en} in H such that{Ten} is an
M -basis inX and

inf
n
‖Ten‖ > 0?

Let us notice that similar problems to (i) and (ii) were investigated in [12], [6], [5] and [18].
The problems similar to (i) for operators in a Hilbert space, were investigated by L. Gurvits in eighties.

As far as we know those results of L. Gurvits were not published.
Actually we will investigate (i), (ii) in an even more general form.
Let us recall that an operatorT acting from a Banach spaceX into a Banach spaceY is said to bethe

Φ+ operatorif the imageT (X) is a closed subspace inY anddim(KerT ) < ∞. It is well known thatT
is aΦ+ operator if and only if its restriction to some finite codimensional subspace is an isomorphism.

Lemma 2 LetT be a non-Φ+ operator acting from a separable Hilbert spaceH into a Banach spaceX.
Suppose{yn} is a complete sequence inH. Then for every positive{εn} there exists an orthonormal basis
{zn} in H such thatspan {zn} = span {yn} and for everyn

||Tz2n−1|| < εn .

PROOF. PutL = span{yn}. We construct{zn} using an inductive process. SinceT is a non-Φ+ operator
it follows that there exists az1 ∈ SL such that‖Tz1‖ < ε1. There are two possible cases:
a)y1 6∈ span z1. We orthogonalizez1, y1 and obtainz2.
b) y1 ∈ span z1. Take an arbitrary elementz2 ∈ z⊥1 ∩ SL.

On the next step we choosez3 ∈ (z1, z2)⊥ ∩ SL such that‖Tz3‖ < ε2. If y2 6∈ span (z1, z2, z3) we
orthogonalize(z1, z2, z3, y2) and obtainz4. If y2 ∈ span (z1, z2, z3) we take an arbitrary elementz4 in
(z1, z2, z3)⊥ ∩ SL. Continuing in the same way we construct{zn} with desired properties.�

Proposition 3 LetT be a non-Φ+ operator acting from a separable Hilbert spaceH into a Banach space
X. Then for everyε > 0 there exists an orthonormal basis{en} ⊂ H such that for everyn

||Ten|| < ε and lim
n→∞

‖Ten‖ = 0 . (7)

PROOF. We use the sequence{zn} from Lemma 2. Let{un} be an orthonormal basis inH obtained
as a permutation of{zn} by the following way: u2k = z2k , ∀k ; next we writeN \ {2k} = {nk}
(n1 < n2 < . . .) and putunk

= z2k−1 (k = 1, 2, . . .). Construct an orthonormal basis{en} in H as

follows: put e1 = u1 , e2 = u2, . . ., en =
∑2k

2k−1+1 aniui , 2k−1 < n ≤ 2k, k = 2, 3, . . . , where

(ani)2
k

n,i=2k−1+1 is the unitary Olevskii’s matrix (see [10], p.45). In particular the following property holds

max
2k−1<n≤2k

‖Ten‖ ≤ (1 +
√

2) max
2k−1<i≤2k

‖Tui‖+ 2−
k−1
2 ‖Tu2k‖.

It is clear that for sufficiently small{εn} the sequence{en} has the desired properties. The proof is
complete.�

It turns out that for a dense embedding operatorT an orthonormal basis{en} can be chosen in such
manner that{Ten} possesses minimality properties and (7) holds.

Recall that anM -basis{xn} ⊂ X with the biorthogonal sequence{fn} ⊂ X∗ is called1-normingif
the subspacespan {fn} ⊂ X∗ is 1-norming, i.e. for everyx ∈ X

||x|| = sup{f(x) : f ∈ span {fn}, ||f || = 1} .

Theorem 4 LetT be a dense embedding operator acting from a separable Hilbert spaceH into a Banach
spaceX and ε > 0. Then there exists an orthonormal basis{en}⊂ H such that{Ten} is 1-norming
M -basis inX ,

||Ten|| < ε and ‖Ten‖→0 as n→∞ .
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PROOF. First we construct an orthonormal basis{zn} in H such that{Tzn} is a 1-normingM -basis in
X andlimn→∞ ‖Tz2n−1‖ = 0. For this aim we choose{fn} ⊂ X∗ such thatspan {fn} be a 1-norming
subspace inX∗. LetJ : H→H∗ be a canonical map: forx, z ∈ H, 〈J x, z〉 = 〈x, z〉. Putyn = J−1T ∗fn.
Apply Lemma 2 with the complete sequence{yn} and construct an orthonormal basis{zn} in H such that
span {zn} = span {yn} and ||Tz2n−1|| < εn. Check that{Tzn} is a 1-normingM -basis inX.
1) Clearly,{Tzn} is complete inX.
2) Putgn = (T ∗)−1J zn. Then

〈Tzn, gm〉 = 〈Tzn, (T ∗)−1J zm〉 = 〈zn, T ∗(T ∗)−1J zm〉 =
〈zn,J zm〉 = 〈zn, zm〉 = δnm.

3) Sincespan {zn} = span {yn}we havespan {J zn} = span {J yn}. It follows thatspan {(T ∗)−1J zn} =
span {(T ∗)−1J yn}. But (T ∗)−1J zn = gn and(T ∗)−1J yn = fn. Thereforespan {yn} = span {fn}
and{Tzn} is 1-normingM -basis.

To finish the proof we apply the method of construction of the orthonormal basis{en} from Proposi-
tion 3. The orthonormal basis{en} has all desired properties. The proof is complete.�

In order to investigate problem (ii) we make use of the measure of non-compactness (see [9]). LetT be
an operator acting from a Banach spaceX into a Banach spaceY . DefineC(T ) = inf{‖T |M‖ : M is a
finite codimensional subspace inX}. It is known (see [9]) thatT is compact if and only ifC(T ) = 0.

Lemma 3 LetT be a non-compact operator acting from a separable Hilbert spaceH into a Banach space
X. Suppose that{xn} is a complete sequence inH. Then there exists an orthonormal basis{zn} in H
such thatspan {zn} = span {yn} and

inf
n
‖Tz2n−1‖ > 0 .

PROOF. We use an inductive process. PutL = span {yn}. On the first step we takez1 ∈ SL such that
‖Tz1‖ > C(T )

2 . As it was done in the proof of Lemma 2 we consider two cases:
a)If y2 6∈ span z1 we orthogonalizez1, y2 and obtainz2.
b)If y2 ∈ span z1 we choose an arbitrary elementz2 ∈ z⊥1 ∩ SL.
On the second step we takez3 ∈ (z1, z2)⊥ ∩ SL such that‖Tz3‖ > C(T )

2 .
We continue the construction in the same manner as it was done in the proof of Lemma 2. The proof is

complete.�
Now we are ready to prove the following

Theorem 5 LetT be a non-compact dense embedding operator acting from a separable Hilbert spaceH
into a Banach spaceX. Then there exists an orthonormal basis{en} in H such that{Ten} is 1-norming
M -basis inX and

inf
n
‖Ten‖ > 0 .

PROOF. By using Lemma 3 and the method of the proof of Theorem 4 construct an orthonormal basis
{zn} in H such that{Tzn} is a 1-normingM -basis inX , and

inf
n
‖Tz2n−1‖ = δ > 0 .

Enumerate the sequence{z2n} in such a way that{z2n} = {un} ∪ {vn} , ‖Tun‖ < δ/4 and‖Tvn‖ ≥
δ/4. Put

{en} = {vn} ∪ {(z2n−1 − un)/2} ∪ {(z2n−1 + un)/2} .

It is clear that‖Ten‖ > δ/4 and that{en} has all desired properties.
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[12] Ovsepian, R. I. and Pełczyński A. (1975). On the existence of fundamental total and bounded biorthogonal se-
quence in every separable Banach space and related construction of uniformly bounded orthogonal systems in
L2, Studia Math., 54, 149–159.

[13] Plans, A. and Leris, D. (1996). On the action of a linear operator over sequences in a Banach space,Math. Nachr.
180, 285–297.

[14] Plichko, A. N. (1981). Choice in Banach space of subspaces with special properties and certain properties of
quasicomplements,Funkt. Anal. i Prilozhen.15 (1), 82–83 (in Russian). English transl. inFunct. Anal. and Appl.
15, 67-68.

[15] Plichko, A. N. and Razenkov, A. (1996). On three problems from the Scottish Book connected with orthogonal
systems,Colloquium Mathematicum70, 227–233.

[16] Plichko, A. N. and Shevchik, V. V. (1990). Perturbation of a basis in a pair of Banach spaces,J. Soviet Math.48,
201–203.

[17] Rjazanov, B. V. and Slepchenko, A. N. (1970). Orthogonal bases inLp, Math. USSR Izvestija4, 1169–1181.

[18] Shevchik, V. V. (1987). The action of an embedding operator on minimal sequences in Banach space,Soviet
Math. Dokl.35, 643–646.

[19] Slepchenko, A. N. (1969). On orthogonal bases inL1, Mat. Zametki6, 749–758 (in Russian). English transl. in
Math. Notes6, 914-919.

V. P. Fonf A. M. Plichko V. V. Shevchik
Department of Mathematics Department of Mathematics Sebastian-Kneipp Gasse 7
Ben-Gurion University of the Negev Pedagogical University Augsburg 86152
P.O.Box 653 Beer-Sheva 84105 Shevchenko str. 1 Germany
Israel Ukraine shevchyk@t-online.de
fonf@black.bgu.ac.il aplichko@kspu.kr.ua

189


