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Abstract. In Section 1, abstract results on preduals and on the biduality of (LF)-spaces are proved. Let
E = indn En denote an (LF)-space and putH = indn Hn for a sequence of Fréchet subspacesHn of
En with Hn ⊂ Hn+1. We investigate under which conditionsE is canonically (topologically isomorphic
to) the inductive bidual(H ′

b)
′
i or (even) the strong bidual ofH. The abstract results are applied in Section

2, mainly to weighted (LF)-spaces of holomorphic functions, but also to two other examples.

Bidualidad en Espacios (LF)

Resumen. En la Seccíon 1 se prueban resultados abstractos sobre preduales y sobre bidualidad de
espacios (LF). SeaE = indn En un espacio (LF), ponemosH = indn Hn para una sucesión de sub-
espacios de FréchetHn de En con Hn ⊂ Hn+1. Investigamos bajo qué condiciones el espacioE es
cańonicamente (topológicamente isomorfo a) el bidual inductivo(H ′

b)
′
i o (incluso) al bidual fuerte de

H. Los resultados abstractos se aplican en la Sección 2, especialmente a espacios (LF) ponderados de
funciones holomorfas, pero también a otros ejemplos.

The line of research on biduality which led to a series of papers of which this is the most recent one,
started in 1986 with a concrete question of J. Duncan on certain spaces of entire functions in one complex
variable. The first article [8] in the series mainly stayed in the framework of weighted Banach spaces of
holomorphic functions, but developed a functional analytic approach which could be generalized. In [3],
the present authors started to study biduality from a more abstract point of view, both in Fréchet and (LB)-
spaces. And while it soon became clear that there existed other applications for the abstract results, the
main, motivating examples still were weighted Fréchet and (LB)-spaces of holomorphic functions. Our
studies continued in Section 1 of [5], in which some of the results of [3] could be improved.

In the meantime, two important new developments provided a better understanding of the structure
of (LF)-spaces: In [21], [22], D. Vogt investigated regularity properties and acyclicity in (LF)-spaces in
the spirit of Palamodov and of Retakh’s condition (M), as well as their consequences for Köthe (LF)-
sequence spaces; his results had interesting applications to solution operators for linear partial differential
equations. On the other hand, J. Wengenroth [23], [24] proved the rather surprising theorem that several
strong regularity conditions like sequential retractivity and bounded retractivity coincide with Retakh’s
condition (M) for arbitrary (LF)-spaces.

These developments renewed the interest in (LF)-function spaces. As a first step towards a thorough
investigation of weighted (LF)-spaces of holomorphic functions, we extended Vogt’s results from Köthe
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(LF)-sequence spaces to weighted (LF)-spaces of continuous functions in [4], often providing different
proofs by further developing and using “projective description”. As a next step in the program, it is natural to
return to biduality questions and to see how far our former results can be utilized in the more general context
of (LF)-spaces. As we had expected, some difficulties appear at this stage, and the situation is not as ‘easy’
as it had been in the (LB)-case. But the present results do indeed yield (as we believe) rather convincing
applications to weighted (LF)-spaces of holomorphic functions, and this is their main justification. – We
should like to mention at this point that many important questions on projective description for weighted
(LF)-spaces of holomorphic functions have remained open so far, and we hope to return to this matter some
time in the not too distant future.

The organization of the article is as follows: In Section 1, the abstract results are presented. The general
framework is introduced in subsection (a). Theorem 1 in subsection (b) shows that (LF)-spaces satisfying
certain natural conditions are inductive duals of reduced projective limits of sequences of complete barrelled
(DF)-spaces. Corollary 1 in subsection (c) is our main result on biduality in (LF)-spaces, in the setting
mentioned in the abstract. Subsection (d) deals with the question when the larger spaceE is not only the
inductive, but even the strong bidual of its subspaceH.

In part A. of Section 2, the results of Section 1 are applied in the context of weighted (LF)-spaces of
holomorphic functions. At the end of the paper, as further examples, some consequences for spaces of entire
functions of uniformly bounded type on a complex Fréchet space and for K̈othe (LF)-sequence spaces are
added. – The present article exploits ideas, methods, and results from our former work on biduality, and
this makes some of the proofs appear shorter than they would really be if all the details were given.

Much of the terminology relevant in the context of (LF)-spaces will be explained as we go along, at the
place where it is needed, but sometimes only references will be given. For background on general locally
convex spaces we refer the reader to [20]; many notions and results on inductive limits can be found in the
survey article [2]. For weighted (LF)-spaces of continuous and holomorphic functions see [4]; in particular,
we refer to this article for the definitions and the concept of projective description.

1. Abstract results

(a) General setting

Let (E, τ) = indn(En, τn) be an (LF)-space; i.e., the inductive limit of an increasing sequence of
Fréchet spacesEn, where we assume that the inductive limit topologyτ is Hausdorff. We denote by
in : En → E andin,n+1 : En → En+1 the canonical inclusions. For eachn let (Un,k)k be a basis of
closed absolutely convex 0-neighborhoods inEn. We assume without loss of generality that

Un,k+1 ⊂ Un,k ⊂ Un+1,k for each n, k ∈ IN.

Moreover, we suppose that the following condition holds:

(BBC) There is a locally convex (necessarily coarser) Hausdorff topologyτ̃ on E such that every
bounded subsetB of (E, τ) is contained in an absolutely convex bounded subsetC of (E, τ) which is
τ̃ -compact.

By Grothendieck’s factorization theorem this implies thatindn En is regular. We denote byB a basis
of τ̃ -compact absolutely convex bounded subsets of(E, τ). For n ∈ IN we put τ̃n := τ̃ |En. Finally, we
assume that the following two conditions hold for eachn:

(BBC)n Every bounded subset of(En, τn) is contained in an absolutely convex bounded subset of
(En, τn) which isτ̃n-compact.

(CNC)n For eachk the 0-neighborhoodUn,k of En is τ̃n-closed.

Observe that if(BBC)n is satisfied for eachn, then(BBC) holds if and only ifindn En is regular.
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(b) Predual

Our first aim is to construct a predualF of (E, τ) which can be represented as a projective limit of the
preduals of the spaces(En, τn). To do this we defineF as the space which consists of all the elements
u ∈ E′ such that the restriction ofu to every bounded subset of(E, τ) is τ̃ -continuous. The spaceF is
endowed with the Hausdorff locally convex topology of uniform convergence on the elements ofB, and
for B ∈ B, we denote bypB the seminorm defined bypB(u) := supx∈B |u(x)| for eachu ∈ F . In fact,
F is a topological subspace ofE′

b . By Mujica’s theorem (cf. [18], [19]) in the form stated in [3],F is a
complete locally convex space, and the evaluation mapJ : E → F ′, J(x)(u) := u(x) for x ∈ E, u ∈ F , is
a topological isomorphism fromE onto the inductive dualF ′

i := indU (F ′)Uo of F , whereU runs through
a basis of 0-neighborhoods inE.

We fix n and denote byBn a basis of absolutely convex̃τn-compact (henceτn-bounded) subsets ofEn.
We defineFn as the space of allu ∈ E′

n the restriction of which to every bounded subset of(En, τn) is
τ̃ -continuous, and we endow it with the locally convex topology of uniform convergence on the elements
of Bn; thus,Fn is a topological subspace of the strong dual(En)′b of (En, τn). By [3], the evaluation map
Jn : En → F ′

n, defined byJn(x)(u) := u(x) for all x ∈ En, u ∈ Fn, is a topological isomorphism of
(En, τn) onto(Fn)′b; moreover,Fn is a complete barrelled (DF)-space, which is even a boundedly retractive
(LB)-space (hence bornological) if(En, τn) is quasinormable (see [3, 5.(d)]).

The maps(in)t : E′ → (En)′ and (in,n+1)t : (En+1)′ → (En)′ are strongly continuous with
(in)t(F ) ⊂ Fn and(in,n+1)t(Fn+1) ⊂ Fn. The continuous restrictions of(in)t to F and of(in,n+1)t

to Fn+1 are denoted byπn : F → Fn and πn,n+1 : Fn+1 → Fn, respectively. Then the following
equalities hold:

(a)πn = πn,n+1πn+1 onF ,
(b) Jin = (πn)tJn onEn,
(c) Jn+1in,n+1 = (πn,n+1)tJn onEn.

As an example, we check (b) and fixx ∈ En. For allu ∈ F we have

[(πn)t(Jn(x))](u) = [Jn(x)](πn(u)) = [πn(u)](x)
= [(in)t(u)](x) = u(in(x)) = [J(in(x))](u).

In particular, (b) and (c) imply thatπn andπn,n+1 have dense range.

We denote bỹF the projective limitprojn(Fn, πn,n+1) which, by definition, equals

{(un)n; un ∈ Fn and πn,n+1(un+1) = un for each n},

endowed with the topology induced by the product of the spaces(Fn)n. We prove that the map

π : F → F̃ , π(u) = (πn(u))n for u ∈ F,

is a topological isomorphism, and henceF andF̃ coincide canonically. In fact, it is easy to see thatπ is well-
defined, linear and continuous. On the other hand, ifu ∈ F satisfiesπn(u) = 0 for eachn, its restriction to
eachEn is 0, henceu = 0, andπ is injective. To see thatπ is surjective, we takev = (vn)n ∈ F̃ and define
u onE by settingu(x) = vn(x) if x ∈ En. Clearlyu is well-defined, continuous on(E, τ), an element of
F by the regularity ofindn En, andπ(u) = v holds. We finally show thatπ is open. Given a bounded set
B in (E, τ), we findn such thatB is bounded in(En, τn). If v = (vn)n ∈ F̃ satisfiespB(vn) ≤ 1, then
pB(π−1(v)) ≤ 1 since[π−1(v)](x) = vn(x) for all x ∈ B. This and [3, 5.(d)] complete the proof of the
following result.

Theorem 1 (a) If (E, τ) = indn(En, τn) is an (LF)-space that satisfies(BBC), (BBC)n and(CNC)n,
then there is a reduced projective sequence(Fn, πn,n+1)n of complete barrelled (DF)-spaces such thatE
coincides canonically with the inductive dualF ′

i of the projective limitF = projnFn.
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(b) If the Fŕechet spaces(En, τn) are quasinormable, then the spacesFn are boundedly retractive
(LB)-spaces.

Note that by [3, Corollary 2.(b)] the condition

(CNC) τ has a0-neighborhood base of absolutely convexτ̃ -closed sets

implies thatF ′
i equals the strong dualF ′

b, and hence thatE is topologically isomorphic toF ′
b. By [3,

Remark 4.], it is also known thatE = F ′
b holds if E = indn En is a boundedly retractive (LB)-space.

However, a similar result is not true for arbitrary (LF)-spaces; see the discussion in subsection (d) below.

(c) Biduality

We introduce the following additional setting to study biduality. For eachn we denote byHn a closed
subspace of(En, τn), and we assume thatHn ⊂ Hn+1 for eachn. We putH := (H, τ ′) := indn(Hn, τn).
Clearly (H, τ ′) is a Hausdorff (LF)-space which is continuously injected in(E, τ), but we do not assume
a priori that it is a topological subspace of(E, τ) . Let us denote byR : F → H ′

b the restriction map. If
iH is the injection fromH into E, R coincides with the restriction toF of the transpose(iH)t : E′

b → H ′
b.

ThereforeR : F → H ′
b is well-defined, linear and continuous. We investigate whenR is a topological

isomorphism onto; in case this is satisfied, we haveE = (H ′
b)
′
i canonically. We recall that a monomorphism

is a topological isomorphism onto its range.

Proposition 1 (1) The mapR is a monomorphism if and only if for every bounded subsetB of E there is

a bounded subsetC of H such thatB ⊂ C
τ̃
.

(2) If R is a monomorphism, then the following conditions are equivalent:

(a) R(F ) is dense inH ′
b,

(b) R is onto,

(c) Rt : H ′′ → F ′ is injective,

(d) for every continuous linear formu on (H, τ ′) and for every bounded subsetC of H, the restriction
of u to C is τ̃ -continuous.

(3) If R is a topological isomorphism, then(H, τ ′) is a topological subspace of(E, τ).

PROOF. (1) follows exactly as in the proof of [3, Theorem 6]. (Alternatively, it can also be proved as an
application of Grothendieck’s homomorphism theorem, cf. [16, 32.5(1)].)

(2) Assume thatR is a monomorphism. SinceF is complete,R is onto if and only if it has dense range
in H ′

b. It is well-known thatR(F ) is dense inH ′
b if and only if (c) holds. Now (b) clearly implies (d), and

(d)⇒ (b) can be shown as in the proof of [3, Theorems 6 and 7].

(3) Assume thatR is an isomorphism. ThenRt : (H ′
b)
′
i → F ′

i is an isomorphism which extends the
inclusioniH . SinceH is an (LF)-space, the inclusionH → (H ′

b)
′
b is a topological isomorphism into, hence

H → (H ′
b)
′
i has closed graph. Since both spaces are (LF)-spaces, the latter inclusion is continuous. Hence

H → E = (H ′
b)
′
i is a monomorphism.�

Corollary 1 If for eachn and for each bounded subsetB of (En, τn) there is a bounded subsetC of Hn

such thatB ⊂ C
τ̃n , thenR is a topological isomorphism onto – and henceE = (H ′

b)
′
i holds canonically –

if the following condition is satisfied:
(∗) For eachm, for each continuous linear formu on Hm, and for each bounded subsetC of Hm, the
restriction ofu to C is τ̃ -continuous.

PROOF. Sinceindn En is regular under our general assumptions, the first condition here implies the condi-
tion which appears in Proposition 1.(1). HenceR is a monomorphism. To conclude, we check that 1.(2)(d)
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holds and fixu ∈ H ′ and a bounded subsetC of H. Sinceindn En is regular, there ism such thatC
is bounded inEm. By the first condition of the corollary we find a bounded subsetA of Hm such that
C is contained in the closureD of A for the topologyτ̃ . By condition(∗), the restriction ofu to A is
τ̃ -continuous. SinceA is absolutely convex, there is a unique extensionw of u to D which is τ̃ -uniformly
continuous. It is enough to show thatw andu coincide onC. We fix x ∈ C ⊂ H. There isp ≥ m such
thatx ∈ Hp. SinceA ∪ {x} is bounded inHp, u is τ̃ -continuous on this set. Let(ai)i be a net inA which
τ̃ -converges tox. Then we havew(x) = limiu(ai) = u(x), and the proof is complete.�

In our examples in the next section it will turn out that the assumptions of Corollary 1 are satisfied. In
these examples, the condition in Proposition 1.(2)(d) would be difficult to check while(∗) in Corollary 1
can be verified easily.

(d) When isE the strong bidual of H?

To discuss this question, we consider the following situation: Let(E, τ) = indn(En, τn) be an (LF)-
space which satisfies the assumptions of Theorem 1, and letF = projn Fn be its predual. LetHn be a
closed subspace of(En, τn) with Hn ⊂ Hn+1 for eachn. We assume thatR : F → H ′

b is a topological
isomorphism onto. Then(H, τ ′) is a topological subspace of(E, τ) by Proposition 1 .(3).

From now on, we suppose that(E, τ) satisfiescondition (M) of Retakhor, equivalently by [23], that
indn(En, τn) is sequentially retractiveor boundedly retractive. Then(H, τ ′) = indn(Hn, τn) also sat-
isfies condition (M), and hence it is a complete (LF)-space with the strict Mackey convergence condition
which is acyclic. Since each(Hn, τn) is distinguished in view of [3, Remark on page 120], it follows
from [22, Lemma 4.2] thatH ′

b = proj(Hn)′b holds topologically and that this space is ultrabornological.
Consequently the predualF of E is ultrabornological, hence barrelled, and quasinormable. Moreover,
since(H, τ ′) satisfies condition (M), the spaceF = H ′

b is the projective limit of a projective spectrum of
(LB)-spaces of strong P-type in the sense of Vogt [21]; see also [10].

Proposition 2 Assume that the (LF)-space(E, τ) = indn(En, τn) is boundedly retractive and satisfies
the conditions of Theorem 1. LetF be the predual ofE, and letH be a subspace ofE with the present
conditions.

(a) Then for every bounded subsetB of (E, τ) there isn ∈ IN such thatB is contained inEn and the
topologiesτ , β(E,F ) andτn coincide onB.

(b) E = F ′
b = (H ′

b)
′
b holds if and only ifF ′

b is bornological or, equivalently, ifβ(E,F ) is the strongest
locally convex topology coinciding with itself on the bounded sets.

According to our comments before the statement of the proposition, the spaceF is barrelled and quasi-
normable. Thus,F ′

b satisfies the strict Mackey convergence condition. This condition and the fact that
E = F ′

i is boundedly retractive imply (a).

SinceF = H ′
b andE = F ′

i , E coincides withF ′
b = (H ′

b)
′
b if and only if F ′

b is bornological. The other
equivalence in (b) follows from (a).�

If, under the conditions of Proposition 2,E = indn En is an (LB)-space, thenE = F ′
b follows from

[18] and [3, Remark 4]. Moreover,E = F ′
b also holds ifF is a Schwartz space, by the classical result of

Laurent Schwartz that the strong dual of any complete Schwartz space is bornological. Note that we have
(E, τ) = F ′

b andF = (E, τ)′b topologically if each(En, τn) is reflexive. But then(E, τ) is reflexive as
well, and(H, τ ′) = (E, τ).

An example which shows thatE = F ′
b need not hold in the general situation of Proposition 2 was given

in [9]. In fact, Grothendieck [14, p. 121] had asked if the strong bidual of a strict (LF)-space coincides
topologically with the inductive limit of the strong biduals. This problem was solved in the negative in
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[9], and the same counterexample can be used in the present setting. In [10], a partial positive answer to
our question is presented: If all the steps(En, τn) of the (LF)-spaceE are quasinormable, thenF is the
projective limit of a projective spectrum of boundedly retractive (LB)-spaces of strong P-type, and then [10,
Theorem 1] implies thatE = F ′

b.

2. Examples and applications

A. Weighted (LF)-spaces of holomorphic functions

Let G be an open subset ofICN . For eachn let Vn = (vn,k)k be a sequence of strictly positive
continuous functions, calledweights, on G such that the sequenceV = (Vn)n satisfies the inequalities
vn+1,k ≤ vn,k ≤ vn,k+1 onG for all n, k. We define the Fŕechet spaces

En = HVn(G) = {f ∈ H(G); supz∈Gvn,k(z)|f(z)| < ∞ for each k}, n ∈ IN.

Without loss of generality, let us suppose that the sets

Un,k := {f ∈ HVn(G); vn,k|f | ≤ 1 on G}, k ∈ IN,

form a basis of 0-neighborhoods inHVn(G). For eachn, Hn = H(Vn)0(G) denotes the closed subspace
of HVn(G) of all the functionsf such thatvn,k|f | vanishes at infinity onG for eachk.

The weighted inductive limits of spaces of holomorphic functionsare defined, as usual (cf. [4]), by
E = VH(G) := indnHVn(G) andH = V0H(G) := indnH(Vn)0(G). We assume that the inductive
limit VH(G) is regular; this holds for example if the sequenceV satisfies thecondition(ωQ) of [4]. In the
sequel,̃τ will denote the compact open topology (onH(G)). SinceVH(G) is regular, every bounded subset
of VH(G) is contained and bounded in some Fréchet spaceHVn(G). Hence it is contained in ãτ -compact
subset ofHVn(G). (Compare with [3].) It is easy to see that the setsUn,k are closed in(HVn(G), τ̃) for
eachn andk. Therefore the conditions(BBC), (BBC)n and(CNC)n of Section 1 are satisfied for the
spaceE = VH(G).

Proposition 3 If the (LF)-spaceVH(G) is regular, then there is a projective sequence(Fn, πn,n+1)n of
complete barrelled (DF)-spaces such thatVH(G) = (projnFn)′i holds topologically in a canonical way.

Remark 1 If τn denotes the finest locally convex topology onHVn(G) which coincides with the compact
open topologỹτ on the bounded sets, thenFn = (HVn(G), τn)′b for eachn ∈ IN . (See [5, Proposi-
tion 1.3].)

The argument in [3, pp. 123] (which is due to [8]) implies that for eachm, for every continuous lin-
ear formu on H(Vm)0(G) and for every bounded subsetC of H(Vm)0(G), the restriction ofu to C is
continuous for the compact open topology.

We recall that a weightv on a balanced setG ⊂ ICN is said to beradial if v(λz) = v(z) for all z ∈ G
and all complex numbersλ of modulus1.

Proposition 4 Let G be a balanced open subset ofICN and letV = (vn,k)n,k be a (double) se-
quence of strictly positive continuous radial weights onG satisfying our general assumptions. Suppose
that H(V1)0(G) contains the polynomials and that the (LF)-spaceVH(G) is regular. Then the following
assertions hold:

(a) V0H(G) has the bounded approximation property, and the polynomials are dense inV0H(G).

(b) V0H(G)′b is the projective limit of a sequence of complete barrelled (DF)-spaces.

(c) (V0H(G)′b)
′
i = VH(G) holds canonically, andV0H(G) is a topological subspace ofVH(G). If

every stepHVn(G) is quasinormable and ifV0H(G) is boundedly retractive, then(V0H(G)′b)
′
b = VH(G)

holds topologically.
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PROOF. Part (a) is a particular case of [5, Theorem 1.6.(a)]. In our present situation, [5, Theorem 1.5.(c)]
can be applied to show that for eachn and each bounded subsetB of HVn(G) there is a bounded subsetC
of H(Vn)0(G) such thatB is contained in the closure ofC in the compact open topology. Parts (b) and (c)
now follow from Propositions 1 and 3 and Corollary 1. As remarked above, the last statement in part (c) is
a consequence of [10, Theorem 1].�

The biduality ofV0H(G) andVH(G) has consequences for the projective hullsHV 0(G) andHV (G)
of these spaces and for projective description. For the definition of the systemV of weights on G, of the
corresponding spacesHV 0(G) andHV (G) of holomorphic functions, as well as for the importance of
projective description, we refer to [4].

Proposition 5 Under the hypotheses of Proposition 4, assume thatVH(G) has a basis of 0-neighbor-
hoods which are closed for the compact open topology. IfV0H(G) is a topological subspace ofHV 0(G),
thenVH(G) is a topological subspace ofHV (G), too.

PROOF. In the notation of [3], the spaceVH(G) satisfies condition (CNC), and [3, 1.2] implies that this
space is isomorphic to the strong dual ofF = (V0H(G))′b. Let U be an absolutely convex 0-neighborhood
in VH(G). There is a bounded subsetB of F such that the polarZ of B in VH(G) is contained inU .
SinceV0H(G) is a topological subspace ofHV 0(G), we can find a continuous radial and strictly positive
weightv ∈ V such that the bipolarU0 of

U1 := {f ∈ V0H(G) ; v|f | ≤ 1 on G}

is contained inZ, and hence inU . To complete the proof it is enough to show that

W := {f ∈ VH(G) ; v|f | ≤ 1 on G}

is contained inU0. To see this, fixf ∈ W . There aren and a continuous radial and strictly positive weight
w onG with supz∈Gw(z)vn,k(z) < ∞ for everyk such that|f | ≤ w onG (see [5, remark before Corollary
1.7]). For eachj, let Cj : H(G) → H(G) be the operator given by thejth Ces̀aro mean of the partial sums
of the homogeneous Taylor expansion about0 (cf. [5, Section 1]). We have|Cjf | ≤ w andv|Cjf | ≤ 1
on G for eachj. Accordingly, the sequence(Cjf)j is bounded inH(Vn)0(G), hence inV0H(G), and it
converges tof for the compact open topologỹτ . By the argument in the proof of part (a) of the remark
after [3, Theorem 6], the finest locally convex topologyτ which coincides with̃τ on the bounded subsets
of VH(G) is finer than the topologyσ(VH(G), F ). This implies thatf belongs to the closure of the setU1

in the topologyσ(VH(G), F ). The proof is complete by the bipolar theorem.�

From the present point of view, the following application of Proposition 5 to weighted (LB)-spaces
of holomorphic functions may be the most important one. We refer the reader to [7] for the definition of
regularly decreasingsequencesV = (vn)n onG.

Corollary 2 LetG be a balanced open subset ofICN . LetV = (vn)n be a regularly decreasing sequence
of strictly positive radial weights onG such thatH(v1)0(G) contains the polynomials. “Then projective
description holds forV0H(G) if and only if it holds forVH(G)”, which means:V0H(G) is a topological
subspace ofHV 0(G) if and only ifVH(G) coincides algebraically and topologically withHV (G).

PROOF. SinceV is regularly decreasing and we are in the (LB)-case (whenVH(G) always coincides with
HV (G) algebraically), the conditions of Proposition 5 are satisfied, see [6, Theorem 6.(2)(ii)]. This yields
the implication ‘⇒’. The other implication was already known by [5, Theorem 1.6(d)].�

B. Spaces of entire functions of uniformly bounded type

We denote now byE a complex Fŕechet space with an increasing fundamental sequence(pn)n of
seminorms such that the unit ballsUn of pn form a basis of0-neighborhoods inE. We denote byEn the
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Banach space which is the completion of the space(E/ker pn, p̃n) and byπn : E → En the canonical
map. An entire functiong on E is calledof uniformly bounded type, and we writeg ∈ Hub(E), if there is
n such that for allm the functiong is bounded onmUn. For eachn we set

Gn := {g ∈ Hub(E) ; g(mUn) is bounded for each m},

endowed with its canonical metrizable locally convex topology.

If X is a Banach space, we denote byHb(X) the Fŕechet space of all the entire functions onX which
are bounded on the bounded sets. It is easy to see that for eachn ∈ IN the mapΦ : Hb(En) → Gn,
Φ(ϕ) := ϕ ◦ πn, defines a linear topological isomorphism onto. Hence,Gn is a quasinormable Fréchet
space by [1], andHub(E), canonically topologized asindnGn, is an (LF)-space. The regularity ofHub(E)
was investigated in [13], [17]. In particular, this space is regular ifE is a quojection or ifE satisfies the
condition(QNo) of Peris.

We denote bỹτ the compact open topology. SinceE is ak-space, the space(H(E), τ̃) is semi-Montel
by [11, 3.37]. Clearly each spaceHb(En) satisfies the conditions (CNC) and (BBC); see [3, 3.D.(b)] or
[12]. Therefore, ifHub(E) is regular, all the assumptions of our Theorem 1 are satisfied, and we have the
following result. (Observe that the predual of each stepHb(En) is an (LB)-space by [3, 1.5].)

Proposition 6 LetE be a complex Fŕechet space such that the (LF)-spaceHub(E) is regular. Then there
is a reduced projective sequence(Fn)n of complete (LB)-spaces such thatHub(E) coincides canonically
with the inductive dual of the projective limitprojnFn.

C. (LF)-sequence spaces

The same method as in part A. above yields consequences for the biduality of Köthe (LF)-sequence
spaces as considered in [22]. This corresponds to weighted (LF)-spaces of continuous functions on a dis-
crete space, cf. [4].

Let I be an index set. For eachn let Vn = (vn,k)k be a (double) sequence of strictly positive weights
on I such that the sequenceV = (Vn)n satisfiesvn+1,k ≤ vn,k ≤ vn,k+1 on I for all n, k. We define the
Fréchet spaces

En = λ∞(Vn) := {x = (x(i)); supi∈Ivn,k(i)|x(i)| < ∞ for each k}, n ∈ IN.

Without loss of generality, let us suppose that the sets

Un,k := {f ∈ λ∞(Vn); vn,k|x| ≤ 1 on I}, k ∈ IN,

form a basis of 0-neighborhoods inλ∞(Vn). For eachn, Hn = λ0(Vn) denotes the closed subspace of all
the functionsx such thatvn,k|x| tends to 0 onI for eachk.

The weighted (LF)-sequence spaces are defined, as usual (cf. [22]), byE = k∞(V) := indnλ∞(Vn)
andH = k0(V) := indnλ0(Vn). The inductive limitE is regular (or complete) if and only if the sequenceV
satisfies the condition(ωQ) of [22]; see [4, 2.4, 2.7]. In the sequel,τ̃ will denote the topology of pointwise
convergence onI. If V has(ωQ), the conditions(BBC), (BBC)n and(CNC)n of Section 1 are satisfied
for the spaceE. In the present setting, Section 2 of [4] gives a concrete description of the predualF of
E, which is the strong dual ofH as a sequence space; also compare with [22, Section 5]. In fact, ifV has
condition(ωQ), thenF is an ultrabornological projective limit of complete (LB)-spaces, and the topology
β(E,F ) can be described by weighted sup-seminorms; cf. [4, 2.2]. The following result now follows from
[4, 4.5], [22, Section 5] and Corollary 1 above. Part (b) of the proposition below should be compared with
the counterexample of [10] and with our comments at the end of Section 1: Indeed it shows that certain
pathologies cannot occur in the case of sequence spaces.
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Proposition 7 (a) If V satisfies condition(ωQ) (or, equivalently,k∞(V) is regular), then we have
k∞(V) = (k0(V)′b)

′
i.

(b) If V satisfies condition (Q) of Vogt [22] (or, equivalently,k∞(V) satisfies condition (M) of Retakh),
thenk∞(V) = (k0(V)′b)

′
b.
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FB 17, Mathematik Dpto. Mateḿatica Aplicada
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