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On the existence of group localizations
under large-cardinal axioms

Carles Casacuberta and Dirk Scevenels

Abstract. A long-standing open question in categorical group theory asks if every orthogonal pair (con-
sisting of a class of groups and a class of group homomorphisms determining each other by orthogonality
in the sense of Freyd—Kelly) is associated with a localization. This is known to be true if one assumes
the validity of a suitable large-cardinal axiom (Maka’'s principle), but so far no proof has been given
using the ordinary ZFC axioms of set theory. The answer is affirmative in ZFC if the orthogonal pair is
generated by a set of groups or by a set of homomorphisms. In this article we use ideaantkAd
Rosicky and Dugas—@bel to show that (a) there exist orthogonal pairs which are not generated by any
set of groups; (b) the statement that every orthogonal pair is generated by a set of homomorphisms cannot
be proved in ZFC, but it follows from Vamka's principle.

Existencia de localizaciones de grupos bajo axiomas de cardinales grandes

Resumen. Uno de los problemas abiertosamiantiguos de la teiarde grupos catégica es si todo par
ortogonal (formado por una clase de grupos y una clase de homomorfismos que se determinan mutua-
mente por ortogonalidad en el sentido de Freyd—Kelly) se halla asociado a un funtor de |cmali S#ci

sabe que esto es cierto si se acepta la validez de un cierto axioma de cardinales grandes (el principio de
Vopénka), pero no se conoce ninguna demostraoiediante los axiomas ordinarios (ZFC) de laf@or

de conjuntos. TamBn es sabido que la respuesta es afirmativa en ZFC para cualquier par ortogonal gen-
erado por un conjunto de grupos o por un conjunto de homomorfismos. En @stéat usan ideas de
Adamek—-Rosick y Dugas—®bel para probar que: (a) existen pares ortogonales que o gsterados

por nindin conjunto de grupos; (b) la afirméacaide que todo par ortogonal agienerado por un conjunto

de homomorfismos no puede demostrarse en ZFC y sin embargo su veracidad se deduce del principio de
Vopénka.

1. Introduction

An objectX and a morphisnp: A — B in a categoryC are called orthogonal [15] if for every morphism
a: A — X there is a unique morphisf: B — X such that3 o ¢ = «. For a class of morphisms,
we denote byS+ the class of objects orthogonal to all morphismsSin This is called an orthogonality
class. Such classes arise in many different contexts, especially in algebra, category theory, geometry and
topology.

One is often interested in deciding if a given orthogonality cléssis reflective; that is, if the full
embeddingSt — C has a left adjoint.: C — S*. (In other words, if for every objeck in C there is a
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universal morphisnX — LX to an object inS+.) This was called the “orthogonal subcategory problem”

by Freyd—Kelly [15]. The corresponding left adjoints are called reflectors or localizations. Their existence
and properties have been extensively discussed in the literature; see e.g. [1], [2], [7], [9], [12], [20], [23],
[25], [26], [27].

The orthogonal subcategory problem has played an important role in homotopy theory since the decade
of 1970, mainly due to the study of homological localizations of spaces and spectra. The approach of
Adams [2] led to the introduction of orthogonal pairs in [9] as a useful tool to treat localization problems
—in homotopy theory and elsewhere. Precise definitions are recalled below. In this terminology, the
orthogonal subcategory problem can be reformulated by asking if every orthogonal pair is associated with
a localization.

A fundamental advance was made byaiiek and Rosigkin [1] by showing that, in every locally
presentable category (as defined by Gabriel-Ulmer [17]), orthogonality classes are reflectivenka/ep
principle is supposed true. This is a large-cardinal axiom which cannot be proved using ZFC (the Zermelo—
Fraenkel axioms with the axiom of choice), yet it is believed to be consistent with ZFC, after more than
thirty years of related developments in set theory; see [1, Ch. 6] ok [24)].

The answer to the orthogonal subcategory problem is affirmative in ZFC if the orthogonal pair is gen-
erated by a set of objects and the category is complete and well powered. A proof of this fact can be found
in [8]. (This was previously shown by Pfenniger in unpublished work; another predecessor was [21].) On
the other hand, it has long been known that the answer is affirmative if the category is cocomplete and the
orthogonal pair is generated by a set of morphisms, provided that some additional conditions are satisfied.
The formulation of these additional conditions varies depending on the authors, but the construction of the
reflector is essentially the same everywhere and dates back to the work of Gabriel-Ulmer [17]; see also [4],
[20].

If the given category has products, then a set of objects and their product generate the same orthogonal
pair, and similarly for morphisms and coproducts. Thus one may ask, without loss of generality, if every
orthogonal pair is generated by either a single object or a single morphism in categories with products or
coproducts, respectively. Localizations associated with orthogonal pairs generated by single morphisms
(here calledy-localizations) have been the subject of much research in the past decade and have led to
interesting developments in group theory and in homotopy theory; see [5], [6], [7], [10], [13], [22], [24],
among others.

In a different direction, Dugas anddBel considered in [14] the problem whether non-hereditary torsion
theories of abelian groups are singly generated or singly cogenerated. This is very much related to the
above queries, and their results provide the clue to discuss generators for orthogonal pairs in the category
of groups, as we do in this article. We prove the following facts, which summarize the current status of
knowledge.

e There are orthogonal pairs in the category of groups which are not generated by any set of groups.

e Itis impossible to prove (in ZFC) that every orthogonal pair in the category of groups is generated by
a set of homomorphisms. Indeed, the assumption that there are no measurable cardinals is consistent
with ZFC, and under this assumption we are able to exhibit a counterexample.

e \Vopénka's principle implies that every orthogonal pair in the category of groups is generated by a
set of homomorphisms. Therefore, if we assume the validity ofexiap’s principle, then every
orthogonal pair in the category of groups is associated with a localization, and every localization is
p-localization for some homomorphism

Strictly speaking, the problem whether every orthogonal pair in the category of groups is associated with
a localization remains open, since a positive answer may be given in ZFC. However, it is unreasonable to
try to find a counterexample, since the existence of a counterexample in ZFC would imply the inconsistency
of Vopénka'’s principle and other large-cardinal axioms.
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This article is a complement to [11], which answers in a similar way the question whether every ho-
motopical localization isf-localization for some may of simplicial sets. Here we develop the group-
theoretical counterpart, by providing a detailed review of former results from various sources and sup-
plementing it with Theorem 5 and Theorem 6 below, which extend analogous results from [14] to non
necessarily abelian groups.

2. Orthogonal pairs

Let C be any category. Assume given a functBr C — C equipped with a natural transformation
n: Id — FE. This is called gointed endofunctoor a coaugmented functorAssume, in addition, that
nex = Enx forall X (thatis, E is well pointed, andngx: EX — EFEX is an isomorphism for ev-
ery X. A functor E with these properties is calledempotentThe pair(E, ) is more commonly called an
idempotent monadr anidempotent triple This terminology suggests that there is a third element implicit;
indeed, one obtains a natural transformagionFE — E by taking the inverse ofigx for every X, and
thenp andn share the properties of a multiplication and a unit. An idempotent functor is also called a
localization

As in [2] or [9], we shall focus our attention on the objects isomorphi& 6 for someX, which are
called E-local objects and the morphismg: X — Y such thatEp: EX — EY is an isomorphism,
which are calledr-equivalenceslt follows from the definition tha)x : X — EX is an E-equivalence
for all X. Itis in fact a terminalE-equivalence out of, and it is also an initial morphism frol¥ to an
E-local object.

For a class of object®, we denote by?D- the class of morphisms orthogonal to all objectsthf
Similarly, for a class of morphism&1, we denote by the class of objects orthogonal to all morphisms
of M. By a slight abuse of terminologyy{- also denotes the full subcategorybver these objects.

An orthogonal pair(S, D) consists of a clasS of morphisms and a clagdof objects such tha§+ = D
andD+ = S. If (S, D) is any orthogonal pair, theR is closed under limits and is closed under colimits.
If M is any class of morphisms, thém1++, M=) is an orthogonal pair, which is said to enerated
by M. Similarly, if O is any class of objects, thé®, O+1) is the orthogonal pair generated 6y Every
localization functorE' gives rise to an orthogonal pair, by lettiggbe the class off-equivalences an®
the class of’-local objects. A clas® of objects is calledeflective[23, IV.3] if it is part of an orthogonal
pair (S, D) which is associated with a localization. Any two localization functors associated with the same
orthogonal pair are naturally isomorphic. In factff and E- are localizations onto two class&s and
D, respectively, and we assume tliat C D,, then there is a unique natural transformation — E;
compatible with the unitg; : Id — E; andn,: Id — Es.

From now on we shall work exclusively in the category of groups, although many of our statements
continue to hold in a much broader context.

Theorem 1 If an orthogonal pair(S, D) in the category of groups is generated by either
(a) a set of groups, or
(b) a set of homomorphisms, or
(c) the union of a set of homomorphisms and a proper class of epimorphisms,

then it is associated with a localization.

PROOF A proof in the case whe(iS, D) is generated by a s&, of groups is given in [8, Corollary 2.4].

The argument uses that the category of groups is complete and well powered. We repeat it here in a concise
form. For a groupt, take the inverse limit of the functor from the comma categery D, into the category

of groups, sending a homomorphiséh — D to the groupD. This inverse limitG exists because it is
indexed by a set, and comes with a natural homomorphisti — G, which is called prd®,-completion
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(profinite completion is a special case). This yields in fact a monad, but not necessarily an idempotent
one. Now look at the two homomorphismg andn¢ from G to its own proDy-completion, and lef; G

be their equalizer. This also comes with a natural homomorphisn& — E;G, which defines again a
monad. LetF>,G be the equalizer of';n; andn; F1, and repeat the same step until the sequence

o Bo1G > BoG - ByG — BG — G

stabilizes at some (possibly transfinite) ordinal, by cardinality reasons FCathis inverse limit. Ther®
is idempotent and the class Bflocal objects is preciselip.

Now suppose thatS, D) is generated by a s& of homomorphisms. Then the associated localization
functor is constructed by the “orthogonal reflection construction”, as described in [1, 1.37], by repeatedly
taking suitable push-outs and coequalizers indexed by means of the generafifigessibly transfinitely,
until the sequence

G—-LiG—-LG—: - —L,G— Lyt 1G—---

stabilizes by cardinality reasons (the length will depend on the cardinalitites of the domains and codomains
of the homomorphisms ;). This construction works because that the category of groups is locally
presentable.

A different argument, based on Freyd’s solution-set condition, is given in [15, Theorem 4.1.3]. That
argument holds in categories which are complete, cocomplete, bounded, co-well-powered, and equipped
with a proper factorization system. It is more general, as it allows the orthogonal pair to be generated by
the union of a set of morphisms and a proper class of epimorphisms, hence proving (c).

A simpler proof of the fact that the orthogonal complem®nof any class of group epimorphisms is
reflective is given in [10, Proposition 2.1]. Namely, for a graiplet T'G be the intersection of all kernels
of epimorphisms fromz onto groups inD, and letEG = G/TG. ThenE is a localization onto the
classD.

In the special case whei®, D) is generated by a class of epimorphisms of the fetmjn— 1, where
A, ranges through a clasd4 of groups, the corresponding localization is calldeteduction Thus, a
group R is A-reducedif and only if the sefHom(A,,, R) has only the trivial element for every,, in A.

For example, a group is torsion-free if and only if itisreduced whemnd is the set of all finite cyclic
groups. In this example, thd-reduction functor takes every group onto its largest torsion-free quotient.
Whenever the clasd is a set, we may consider the free prodgoof all its members and cafl-reduction

the corresponding functor; that is, a grofips G-reduced if and only iflom(G, R) has only the trivial
element.

More generally, if an orthogonal pdi§, D) is generated by a set of homomorphisms, we may take their
free producty. The associated localization is denotedhyand calledp-localization as first done in [6].
GroupsG such thatL,G is the trivial group are calleg-acyclic. In Section 4 we will need the following
fact.

Theorem 2 If ¢ is any group homomorphism, then there is a graupuch that theo-acyclic groups are
precisely the groups annihilated lgy-reduction.

PROOF Let k be any infinite cardinal such that eagkacyclic group is a directed colimit @f-acyclic
groups of cardinality smaller than The existence of such a cardinal is proved in [24, Theorem 7], using
[5, Lemma 3.2]. Then the free produGtof a set of representatives of isomorphism classes-atyclic
groups of cardinality smaller thanhas the desired property.

The referee pointed out the following alternative argument. Terminology and details can be found
in [1]. Choose a regular cardinalsuch that the domain and the codomaingcdire A-presentable. Then
the orthogonal complement gf is closed unden-directed colimits, and hence the functby, from the
category of groups to itself is accessible (as it preseivdgected colimits). Now the full subcategory
of p-acyclic groups is the pseudo-equalizerlgf and the constant functor with value the trivial group. It
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follows from the Limit Theorem of Makkai—Parsee [1, Theorem 2.77]) that this is an accessible category,
and this implies that there exists a sethcyclic groups such that everyacyclic group is a directed
colimit of these. Také&~ to be their free producHl

A group with the property stated in Theorem 2 is called a universatyclic group (although it need not
be unique). Itis a discrete analogue of the universal acyclic spaces defined by Bousfield in [5, Theorem 4.4].

3. Abelian groups and measurable cardinals

An uncountable cardinal is measurablef it admits a nontrivial, two-valued)-additive measure; that is,
if a function 1 can be defined on any s&t of cardinality A assigning to each subset &f a value 0 or 1,
in such away that(X) = 1, u(z) = 0forallz € X, andu (U;A;) = X;u(A;) if the subsets4; are
pairwise disjoint and the set of indicébas cardinality smaller thak It is well known that the existence of
measurable cardinals cannot be proved in ZFC, since every measurable cardinal is (strongly) inaccessible;
see [1, A.10] or [18, 5.27].

There is an important occurrence of measurable cardinals in infinite abelian group theory, which is
explained in Fuchs’ book [16, 94] (steming from £&). We next recall it briefly. For each cardinallet
Z" be the cartesian product efcopies of the additive group of integers, that is, the abelian group of all
functionsf: k — Z. Denote byZ<" the subgroup of those functiorfse Z* whose support (i.e., the set
of indicesi € « for which f (i) # 0) has cardinality smaller than

It is an instructive exercise to prove that

Hom(Z™ /Z<Y Z) = 0;

see e.g. [16, Lemma 94.1]. (Here, of cour&e™e is the direct sum of countably many copieszj More
generally, the following holds.

Theorem 3 If a cardinal ) is measurable, theHom(Z*/Z<*, Z) # 0. Conversely, if we assume that
Hom(Z"/Z<", Z) # 0 for some cardinak, then the smallest cardinal with this property is measurable.

PROOF. If )\ is measurable, then a nonzero homomorphisnZ* — Z with ¢(Z<*) = 0 is defined by
assigning to each functiofi: A — Z the unique integet such thatf ~*(z) has measure 1; cf. [14, p. 83]
or [16, p. 161].

Conversely, ifHom(Z"/Z<", Z) # 0 for some cardinak, then it follows from [16, Theorem 94.4]
thatx admits a nontrivial, two-valued, countably additive measure. Then, by [3, Theorem 6.1.11] or [18,
Lemma 27.1], the least such cardiralk measurablell

This tells us that the question whether there exists some cargdisath thatHom(Z*/Z<", Z) is
nonzero cannot be answered positively in ZFC, since it is impossible to prove in ZFC that measurable
cardinals exist. On the other hand, a negative answer in ZFC would imply that measurable cardinals do
not exist, and such a development is not to be expected.

In the next section we show that the question whether every orthogonal pair is generated by a set of
homomorphisms in the category of groups is undecidable in a similar manner.

4. On the existence of generators

Vopénka’s principle states th&br any proper class of models of the same language, there is one that is
elementarily embeddable into anothsee [18, p. 414] or [19, p. 335]. Among other things, this implies the
existence of arbitrarily large measurable cardinals. Henceggs principle cannot be proved in ZFC.
One of the various equivalent formulations of this principle [1, Ch. 6] saysnbdbcally presentable
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category contains a rigid proper class of objec{®\ class of objects is calledgid if it admits no other
morphisms than identities.) Thus, according to &oka’s principle, given a proper class of objedtsin
any locally presentable category, there is a nonidentity morpHism A; for some indices and;.

As explained in [1, Corollary 6.24], this statement has the following consequence: in a locally pre-
sentable category, every full subcategory which is closed under limits is reflective, and it is in fact a small-
orthogonality class (i.e., the orthogonal complement of a set of morphisms). Since in every orthogonal pair
(8, D) the clasD is closed under limits, the following holds.

Theorem 4 Suppose that V@mka’s principle is true. Then every orthogonal p&®, D) in a locally
presentable category is generated by a set of morphilins.

The category of groups is locally presentable, since the isomorphism classes of finitely presented groups
form a set and every group is a directed colimit of finitely presented groups. TherefoBnRapprinciple
implies that every orthogonal pair in the category of groups is generated by a set of homomorphisms —in
fact, by a single homomorphism. In other words,

Corollary 1 If Vopénka's principle holds, then for every idempotent fundidn the category of groups
there is a homomorphism such thatl is naturally isomorphic td_.,. B

Next we show that it is impossible to prove this statement using the ordinary ZFC axioms of set theory.

Theorem 5 Let.A be the class of groupg” /Z<" for all cardinals . If the orthogonal paifS, D) asso-
ciated with.A-reduction is generated by a set of homomorphisms, then there exists a measurable cardinal.

PROOF Suppose that there is a set of homomorphisms genergfiyf@). Then their free product is a
homomorphism such that-localization coincides witbd-reduction. LetG be a universap-acyclic group,
as defined at the end of Section 2. Thigmeduction and4-reduction annihilate the same groups and hence
coincide. Since the grouf®&*/Z<* are annihilated byl-reduction, we may infer thafom (G, Z*/Z<%) #
0 for all x.

Let x be a regular cardinal that is bigger than the cardinalit¢# ofRecall that a cardina is regular if
it is infinite and cannot be expressed as a sum of cardibals \; wherea < X and)\; < A for all i. The
first infinite cardinaky, is regular and so is every successor cardinal.)d-e6f — Z*/Z<" be a nonzero
homomorphism. As in the Wald—sd_emma [14, Lemma 2.6}; can be lifted to a nonzero homomorphism
a: G — Z*", as follows. For each elemente G, pick a representativé(g) € Z* of the imageS(g).
Thus, for each pair of elemengsandh of G, the element(g) + ¢(h) — ¢(gh) lies inZ<*. Let S be the
union of the supports of the elemenrt§y) + ¢(h) — ¢(gh) for all pairs of elementg andh of G. The
assumption thatard(G) < s ensures thatard(S) <  as well, sincex is regular. Thus, if we define
a(g) by setting to zero all the componentsSrof the elemenp(g), thena(g) andé(g) map onto the same
elementinZ®/Z<", anda: G — Z" is a homomorphism.

Now, composition with a suitable projection yields a nonzero homomorpbism Z and this implies
thatZ is notG-reduced. Hencé is not.A-reduced, and this implies the existence of a measurable cardinal,
by Theorem 3R

Since the statement that all cardinals are nonmeasurable is consistent with ZFC, we conclude that it is
impossible to prove in ZFC that every orthogonal pair is generated by a set of homomorphisms. In contrast,
we next exhibit an orthogonal pair in ZFC which is not generated by any set of groups.

Theorem 6 LetB be the class of groudg”/Z<" for all nonmeasurable cardinals. Then the orthogonal
pair (S, D) associated wittB-reduction is not generated by any set of groups.

PROOF Suppose thatS, D) is generated by a set of groups, anddébe their product; that isS =
{G}+. Let C be the product of all the abelian subgroupstaf Then, since is B-reduced, we have
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Hom(Z"/Z<", C) = 0 for all nonmeasurable cardinats Therefore, the group’ is strongly cotorsion-
free, in the sense of [14]. By [14, Theorem 4.2], there is a nonzero slender dreugh thatlom (A4, C) =

0. (A torsion-free abelian groud is slenderif every homomorphisny : Z¥ — A vanishes on almost all
components; see [1§,94].) SinceHom(A, G) is trivial, the homomorphisml — 0 is in S. On the other
hand, sinced is slender, Theorem 94.4 in [16] implies tH&bm(Z~/Z<*, A) = 0 for all nonmeasurable
cardinalsx; therefore A is in D. This implies thatd = 0, so we have arrived at a contradiction that proves
our claim.l

Acknowledgement. We are indebted to Joan Bagaria anddiger Gbel for many enlightening
discussions about large cardinals and their use. The referee’s comments were also valuable. The first
author was supported by DGES grant PB97-0202 and DGR grant ACI99-34.

References

[1] Adamek, J. and RosigkJ. (1994)Locally Presentable and Accessible Categari@ambridge University Press.
London Math. Soc. Lecture Note S&B89. Cambridge.

[2] Adams, J. F. (1975).ocalisation and CompletiarLecture Notes by Z. Fiedorowicz. University of Chicago.
[3] Bell, J. L. and Slomson, A. B. (1969 odels and Ultraproducts: An IntroductiolNorth-Holland. Amsterdam.
[4] Bousfield, A. K. (1977). Constructions of factorization systems in categari€sire Appl. Algebr®, 207—220.
[5] Bousfield, A. K. (1997). Homotopical localizations of spac&ser. J. Math119, 1321-1354.

[6] Casacuberta, C. (1995). Anderson localization from a modern point of vieWheCech Centennial; a Confer-
ence on Homotopy Thearfxmerican Mathematical Society. Contemp. MaB1 Providence, pp. 35-44.

[7] Casacuberta, C. (2000). On structures preserved by idempotent transformations of groups and homotopy types.
In: Crystallographic Groups and Their Generalizatiodsmerican Mathematical Society. Contemp. Ma262
Providence, pp. 39-68.

[8] Casacuberta, C., Frei, A. and Tan, G. C. (1995). Extending localization fundtdPsire Appl. Algebral03
149-165.

[9] Casacuberta, C., Peschke, G. and Pfenniger, M. (1992). On orthogonal pairs in categories and localisation. In:
Adams Memorial Symposium on Algebraic Topology volCdmbridge University Press. London Math. Soc.
Lecture Note Serl75 Cambridge, pp. 211-223.

[10] Casacuberta, C., Rdduez, J. L. and Scevenels, D. (1999). Singly generated radicals associated with varieties of
groups. In:Groups St Andrews 1997 in Bath.(Jambridge University Press. London Math. Soc. Lecture Note
Ser.260. Cambridge, pp. 202-210.

[11] Casacuberta, C., Scevenels, D. and Smith, J. H. (1999). Implications of large-cardinal principles in homotopical
localization. Preprint.

[12] Deleanu, A., Frei, A. and Hilton, P. (1975). Idempotent triples and comple¥iatth. Z.143 91-104.

[13] Dror Farjoun, E. (1996)Cellular Spaces, Null Spaces and Homotopy Localizat®pringer-Verlag. Lecture
Notes in Math1622 Berlin Heidelberg New York.

[14] Dugas, M. and @bel, R. (1985). On radicals and produd®acific J. Math.118 79-104.
[15] Freyd, P. J. and Kelly, G. M. (1972). Categories of continuous functord. [Bure Appl. Algebr&, 169-191.

[16] Fuchs, L. (1973)Infinite Abelian Groups, vol..2Academic Press. New York.

169



C. Casacuberta and D. Scevenels

[17] Gabriel, P. and Ulmer, F. (1971)okal prasentierbare Kategorierspringer-Verlag. Lecture Notes in Matk21
Berlin Heidelberg New York.

[18] Jech, T. (1978)Set TheoryAcademic Press. New York.

[19] Kanamori, A. (1994)The Higher Infinite: Large Cardinals in Set Theory from Their Beginniggsinger-Verlag.
Perspectives in Mathematical Logic. Berlin Heidelberg New York.

[20] Kelly, G. M. (1980). A unified treatment of transfinite constructions for free algebras, free monoids, colimits,
associated sheaves, and soBull. Austral. Math. Soc22, 1-83.

[21] Lambek, J. and Rattray, B. A. (1973). Localization at injectives in complete categBrazs.Amer. Math. Soc.
41, 1-9.

[22] Libman, A. (2000). Cardinality and nilpotency of localizations of groups &hchodules.Israel J. Math.117,
221-237.

[23] Mac Lane, S. (1971)Categories for the Working MathematiciaBpringer-Verlag. Graduate Texts in Ma#h.
New York Berlin Heidelberg.

[24] Rodiguez, J. L. and Scevenels, D. (2000). Universal epimorphisms for group localizdti®use Appl. Algebra
148 309-316.

[25] Rosicky, J. and Tholen, W. (1988). Orthogonal and prereflective subcateg@asers Topologie &om.
Différentielle Caggorique29, 203-215.

[26] Tholen, W. (1987). Reflective subcategori@spology Appl27, 201-212.

[27] Wolff, H. (1978). Free monads and the orthogonal subcategory probBildhure Appl. Algebrd.3, 233-242.

Carles Casacuberta Dirk Scevenels

Departament di\lgebra i Geometria  Departement Wiskunde
Universitat de Barcelona Katholieke Universiteit Leuven
Gran Via de les Corts Catalanes, 585 Celestijnenlaan 200 B
E-08007 Barcelona, Spain B-3001 Heverlee, Belgium
casac@mat.ub.es dirk.scevenels@yucom.be

170



