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On the existence of group localizations
under large-cardinal axioms

Carles Casacuberta and Dirk Scevenels

Abstract. A long-standing open question in categorical group theory asks if every orthogonal pair (con-
sisting of a class of groups and a class of group homomorphisms determining each other by orthogonality
in the sense of Freyd–Kelly) is associated with a localization. This is known to be true if one assumes
the validity of a suitable large-cardinal axiom (Vopěnka’s principle), but so far no proof has been given
using the ordinary ZFC axioms of set theory. The answer is affirmative in ZFC if the orthogonal pair is
generated by a set of groups or by a set of homomorphisms. In this article we use ideas of Adámek–
Rosicḱy and Dugas–G̈obel to show that (a) there exist orthogonal pairs which are not generated by any
set of groups; (b) the statement that every orthogonal pair is generated by a set of homomorphisms cannot
be proved in ZFC, but it follows from Vop̌enka’s principle.

Existencia de localizaciones de grupos bajo axiomas de cardinales grandes

Resumen. Uno de los problemas abiertos más antiguos de la teorı́a de grupos categórica es si todo par
ortogonal (formado por una clase de grupos y una clase de homomorfismos que se determinan mutua-
mente por ortogonalidad en el sentido de Freyd–Kelly) se halla asociado a un funtor de localización. Se
sabe que esto es cierto si se acepta la validez de un cierto axioma de cardinales grandes (el principio de
Vopěnka), pero no se conoce ninguna demostración mediante los axiomas ordinarios (ZFC) de la teorı́a
de conjuntos. También es sabido que la respuesta es afirmativa en ZFC para cualquier par ortogonal gen-
erado por un conjunto de grupos o por un conjunto de homomorfismos. En este artı́culo se usan ideas de
Adámek–Rosicḱy y Dugas–G̈obel para probar que: (a) existen pares ortogonales que no están generados
por ninǵun conjunto de grupos; (b) la afirmación de que todo par ortogonal está generado por un conjunto
de homomorfismos no puede demostrarse en ZFC y sin embargo su veracidad se deduce del principio de
Vopěnka.

1. Introduction

An objectX and a morphismϕ : A → B in a categoryC are called orthogonal [15] if for every morphism
α : A → X there is a unique morphismβ : B → X such thatβ ◦ ϕ = α. For a class of morphismsS,
we denote byS⊥ the class of objects orthogonal to all morphisms inS. This is called an orthogonality
class. Such classes arise in many different contexts, especially in algebra, category theory, geometry and
topology.

One is often interested in deciding if a given orthogonality classS⊥ is reflective; that is, if the full
embeddingS⊥ ↪→ C has a left adjointL : C → S⊥. (In other words, if for every objectX in C there is a
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universal morphismX → LX to an object inS⊥.) This was called the “orthogonal subcategory problem”
by Freyd–Kelly [15]. The corresponding left adjoints are called reflectors or localizations. Their existence
and properties have been extensively discussed in the literature; see e.g. [1], [2], [7], [9], [12], [20], [23],
[25], [26], [27].

The orthogonal subcategory problem has played an important role in homotopy theory since the decade
of 1970, mainly due to the study of homological localizations of spaces and spectra. The approach of
Adams [2] led to the introduction of orthogonal pairs in [9] as a useful tool to treat localization problems
—in homotopy theory and elsewhere. Precise definitions are recalled below. In this terminology, the
orthogonal subcategory problem can be reformulated by asking if every orthogonal pair is associated with
a localization.

A fundamental advance was made by Adámek and Rosicḱy in [1] by showing that, in every locally
presentable category (as defined by Gabriel–Ulmer [17]), orthogonality classes are reflective if Vopěnka’s
principle is supposed true. This is a large-cardinal axiom which cannot be proved using ZFC (the Zermelo–
Fraenkel axioms with the axiom of choice), yet it is believed to be consistent with ZFC, after more than
thirty years of related developments in set theory; see [1, Ch. 6] or [19,§ 24].

The answer to the orthogonal subcategory problem is affirmative in ZFC if the orthogonal pair is gen-
erated by a set of objects and the category is complete and well powered. A proof of this fact can be found
in [8]. (This was previously shown by Pfenniger in unpublished work; another predecessor was [21].) On
the other hand, it has long been known that the answer is affirmative if the category is cocomplete and the
orthogonal pair is generated by a set of morphisms, provided that some additional conditions are satisfied.
The formulation of these additional conditions varies depending on the authors, but the construction of the
reflector is essentially the same everywhere and dates back to the work of Gabriel–Ulmer [17]; see also [4],
[20].

If the given category has products, then a set of objects and their product generate the same orthogonal
pair, and similarly for morphisms and coproducts. Thus one may ask, without loss of generality, if every
orthogonal pair is generated by either a single object or a single morphism in categories with products or
coproducts, respectively. Localizations associated with orthogonal pairs generated by single morphisms
(here calledϕ-localizations) have been the subject of much research in the past decade and have led to
interesting developments in group theory and in homotopy theory; see [5], [6], [7], [10], [13], [22], [24],
among others.

In a different direction, Dugas and Göbel considered in [14] the problem whether non-hereditary torsion
theories of abelian groups are singly generated or singly cogenerated. This is very much related to the
above queries, and their results provide the clue to discuss generators for orthogonal pairs in the category
of groups, as we do in this article. We prove the following facts, which summarize the current status of
knowledge.

• There are orthogonal pairs in the category of groups which are not generated by any set of groups.

• It is impossible to prove (in ZFC) that every orthogonal pair in the category of groups is generated by
a set of homomorphisms. Indeed, the assumption that there are no measurable cardinals is consistent
with ZFC, and under this assumption we are able to exhibit a counterexample.

• Vopěnka’s principle implies that every orthogonal pair in the category of groups is generated by a
set of homomorphisms. Therefore, if we assume the validity of Vopěnka’s principle, then every
orthogonal pair in the category of groups is associated with a localization, and every localization is
ϕ-localization for some homomorphismϕ.

Strictly speaking, the problem whether every orthogonal pair in the category of groups is associated with
a localization remains open, since a positive answer may be given in ZFC. However, it is unreasonable to
try to find a counterexample, since the existence of a counterexample in ZFC would imply the inconsistency
of Vopěnka’s principle and other large-cardinal axioms.
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This article is a complement to [11], which answers in a similar way the question whether every ho-
motopical localization isf -localization for some mapf of simplicial sets. Here we develop the group-
theoretical counterpart, by providing a detailed review of former results from various sources and sup-
plementing it with Theorem 5 and Theorem 6 below, which extend analogous results from [14] to non
necessarily abelian groups.

2. Orthogonal pairs

Let C be any category. Assume given a functorE : C → C equipped with a natural transformation
η : Id → E. This is called apointed endofunctoror a coaugmented functor. Assume, in addition, that
ηEX = EηX for all X (that is,E is well pointed), andηEX : EX → EEX is an isomorphism for ev-
eryX. A functorE with these properties is calledidempotent. The pair(E, η) is more commonly called an
idempotent monador anidempotent triple. This terminology suggests that there is a third element implicit;
indeed, one obtains a natural transformationµ : EE → E by taking the inverse ofηEX for everyX, and
thenµ andη share the properties of a multiplication and a unit. An idempotent functor is also called a
localization.

As in [2] or [9], we shall focus our attention on the objects isomorphic toEX for someX, which are
calledE-local objects, and the morphismsϕ : X → Y such thatEϕ : EX → EY is an isomorphism,
which are calledE-equivalences. It follows from the definition thatηX : X → EX is anE-equivalence
for all X. It is in fact a terminalE-equivalence out ofX, and it is also an initial morphism fromX to an
E-local object.

For a class of objectsO, we denote byO⊥ the class of morphisms orthogonal to all objects ofO.
Similarly, for a class of morphismsM, we denote byM⊥ the class of objects orthogonal to all morphisms
of M. By a slight abuse of terminology,M⊥ also denotes the full subcategory ofC over these objects.

An orthogonal pair(S,D) consists of a classS of morphisms and a classD of objects such thatS⊥ = D
andD⊥ = S. If (S,D) is any orthogonal pair, thenD is closed under limits andS is closed under colimits.
If M is any class of morphisms, then(M⊥⊥,M⊥) is an orthogonal pair, which is said to begenerated
byM. Similarly, ifO is any class of objects, then(O⊥,O⊥⊥) is the orthogonal pair generated byO. Every
localization functorE gives rise to an orthogonal pair, by lettingS be the class ofE-equivalences andD
the class ofE-local objects. A classD of objects is calledreflective[23, IV.3] if it is part of an orthogonal
pair (S,D) which is associated with a localization. Any two localization functors associated with the same
orthogonal pair are naturally isomorphic. In fact, ifE1 andE2 are localizations onto two classesD1 and
D2 respectively, and we assume thatD1 ⊆ D2, then there is a unique natural transformationE2 → E1

compatible with the unitsη1 : Id → E1 andη2 : Id → E2.
From now on we shall work exclusively in the category of groups, although many of our statements

continue to hold in a much broader context.

Theorem 1 If an orthogonal pair(S,D) in the category of groups is generated by either

(a) a set of groups, or

(b) a set of homomorphisms, or

(c) the union of a set of homomorphisms and a proper class of epimorphisms,

then it is associated with a localization.

PROOF. A proof in the case when(S,D) is generated by a setD0 of groups is given in [8, Corollary 2.4].
The argument uses that the category of groups is complete and well powered. We repeat it here in a concise
form. For a groupG, take the inverse limit of the functor from the comma categoryG ↓ D0 into the category
of groups, sending a homomorphismG → D to the groupD. This inverse limitĜ exists because it is
indexed by a set, and comes with a natural homomorphismη : G → Ĝ, which is called pro-D0-completion
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(profinite completion is a special case). This yields in fact a monad, but not necessarily an idempotent
one. Now look at the two homomorphismsη bG andη̂G from Ĝ to its own pro-D0-completion, and letE1G
be their equalizer. This also comes with a natural homomorphismη1 : G → E1G, which defines again a
monad. LetE2G be the equalizer ofE1η1 andη1E1, and repeat the same step until the sequence

· · · ↪→ Eα+1G ↪→ EαG ↪→ · · · ↪→ E2G ↪→ E1G ↪→ Ĝ

stabilizes at some (possibly transfinite) ordinal, by cardinality reasons. CallEG this inverse limit. ThenE
is idempotent and the class ofE-local objects is preciselyD.

Now suppose that(S,D) is generated by a setS0 of homomorphisms. Then the associated localization
functor is constructed by the “orthogonal reflection construction”, as described in [1, 1.37], by repeatedly
taking suitable push-outs and coequalizers indexed by means of the generating setS0, possibly transfinitely,
until the sequence

G → L1G → L2G → · · · → LαG → Lα+1G → · · ·
stabilizes by cardinality reasons (the length will depend on the cardinalitites of the domains and codomains
of the homomorphisms inS0). This construction works because that the category of groups is locally
presentable.

A different argument, based on Freyd’s solution-set condition, is given in [15, Theorem 4.1.3]. That
argument holds in categories which are complete, cocomplete, bounded, co-well-powered, and equipped
with a proper factorization system. It is more general, as it allows the orthogonal pair to be generated by
the union of a set of morphisms and a proper class of epimorphisms, hence proving (c).

A simpler proof of the fact that the orthogonal complementD of any class of group epimorphisms is
reflective is given in [10, Proposition 2.1]. Namely, for a groupG, let TG be the intersection of all kernels
of epimorphisms fromG onto groups inD, and letEG = G/TG. ThenE is a localization onto the
classD. ¥

In the special case when(S,D) is generated by a class of epimorphisms of the formAα → 1, where
Aα ranges through a classA of groups, the corresponding localization is calledA-reduction. Thus, a
groupR is A-reducedif and only if the setHom(Aα, R) has only the trivial element for everyAα in A.
For example, a group is torsion-free if and only if it isA-reduced whenA is the set of all finite cyclic
groups. In this example, theA-reduction functor takes every group onto its largest torsion-free quotient.
Whenever the classA is a set, we may consider the free productG of all its members and callG-reduction
the corresponding functor; that is, a groupR is G-reduced if and only ifHom(G,R) has only the trivial
element.

More generally, if an orthogonal pair(S,D) is generated by a set of homomorphisms, we may take their
free productϕ. The associated localization is denoted byLϕ and calledϕ-localization, as first done in [6].
GroupsG such thatLϕG is the trivial group are calledϕ-acyclic. In Section 4 we will need the following
fact.

Theorem 2 If ϕ is any group homomorphism, then there is a groupG such that theϕ-acyclic groups are
precisely the groups annihilated byG-reduction.

PROOF. Let κ be any infinite cardinal such that eachϕ-acyclic group is a directed colimit ofϕ-acyclic
groups of cardinality smaller thanκ. The existence of such a cardinal is proved in [24, Theorem 7], using
[5, Lemma 3.2]. Then the free productG of a set of representatives of isomorphism classes ofϕ-acyclic
groups of cardinality smaller thanκ has the desired property.

The referee pointed out the following alternative argument. Terminology and details can be found
in [1]. Choose a regular cardinalλ such that the domain and the codomain ofϕ areλ-presentable. Then
the orthogonal complement ofϕ is closed underλ-directed colimits, and hence the functorLϕ from the
category of groups to itself is accessible (as it preservesλ-directed colimits). Now the full subcategory
of ϕ-acyclic groups is the pseudo-equalizer ofLϕ and the constant functor with value the trivial group. It
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follows from the Limit Theorem of Makkai–Paré (see [1, Theorem 2.77]) that this is an accessible category,
and this implies that there exists a set ofϕ-acyclic groups such that everyϕ-acyclic group is a directed
colimit of these. TakeG to be their free product.¥

A group with the property stated in Theorem 2 is called a universalϕ-acyclic group (although it need not
be unique). It is a discrete analogue of the universal acyclic spaces defined by Bousfield in [5, Theorem 4.4].

3. Abelian groups and measurable cardinals

An uncountable cardinalλ is measurableif it admits a nontrivial, two-valued,λ-additive measure; that is,
if a functionµ can be defined on any setX of cardinalityλ assigning to each subset ofX a value 0 or 1,
in such a way thatµ(X) = 1, µ(x) = 0 for all x ∈ X, andµ (∪iAi) = Σiµ(Ai) if the subsetsAi are
pairwise disjoint and the set of indicesi has cardinality smaller thanλ. It is well known that the existence of
measurable cardinals cannot be proved in ZFC, since every measurable cardinal is (strongly) inaccessible;
see [1, A.10] or [18, 5.27].

There is an important occurrence of measurable cardinals in infinite abelian group theory, which is
explained in Fuchs’ book [16,§ 94] (steming from Łós). We next recall it briefly. For each cardinalκ, let
Zκ be the cartesian product ofκ copies of the additive group of integers, that is, the abelian group of all
functionsf : κ → Z. Denote byZ<κ the subgroup of those functionsf ∈ Zκ whose support (i.e., the set
of indicesi ∈ κ for whichf(i) 6= 0) has cardinality smaller thanκ.

It is an instructive exercise to prove that

Hom(Zℵ0/Z<ℵ0 , Z) = 0;

see e.g. [16, Lemma 94.1]. (Here, of course,Z<ℵ0 is the direct sum of countably many copies ofZ.) More
generally, the following holds.

Theorem 3 If a cardinal λ is measurable, thenHom(Zλ/Z<λ, Z) 6= 0. Conversely, if we assume that
Hom(Zκ/Z<κ, Z) 6= 0 for some cardinalκ, then the smallest cardinal with this property is measurable.

PROOF. If λ is measurable, then a nonzero homomorphismϕ : Zλ → Z with ϕ(Z<λ) = 0 is defined by
assigning to each functionf : λ → Z the unique integerz such thatf−1(z) has measure 1; cf. [14, p. 83]
or [16, p. 161].

Conversely, ifHom(Zκ/Z<κ, Z) 6= 0 for some cardinalκ, then it follows from [16, Theorem 94.4]
thatκ admits a nontrivial, two-valued, countably additive measure. Then, by [3, Theorem 6.1.11] or [18,
Lemma 27.1], the least such cardinalκ is measurable.¥

This tells us that the question whether there exists some cardinalκ such thatHom(Zκ/Z<κ, Z) is
nonzero cannot be answered positively in ZFC, since it is impossible to prove in ZFC that measurable
cardinals exist. On the other hand, a negative answer in ZFC would imply that measurable cardinals do
not exist, and such a development is not to be expected.

In the next section we show that the question whether every orthogonal pair is generated by a set of
homomorphisms in the category of groups is undecidable in a similar manner.

4. On the existence of generators

Vopěnka’s principle states thatfor any proper class of models of the same language, there is one that is
elementarily embeddable into another; see [18, p. 414] or [19, p. 335]. Among other things, this implies the
existence of arbitrarily large measurable cardinals. Hence, Vopěnka’s principle cannot be proved in ZFC.
One of the various equivalent formulations of this principle [1, Ch. 6] says thatno locally presentable
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category contains a rigid proper class of objects. (A class of objects is calledrigid if it admits no other
morphisms than identities.) Thus, according to Vopěnka’s principle, given a proper class of objectsAi in
any locally presentable category, there is a nonidentity morphismAi → Aj for some indicesi andj.

As explained in [1, Corollary 6.24], this statement has the following consequence: in a locally pre-
sentable category, every full subcategory which is closed under limits is reflective, and it is in fact a small-
orthogonality class (i.e., the orthogonal complement of a set of morphisms). Since in every orthogonal pair
(S,D) the classD is closed under limits, the following holds.

Theorem 4 Suppose that Vopěnka’s principle is true. Then every orthogonal pair(S,D) in a locally
presentable category is generated by a set of morphisms.¥

The category of groups is locally presentable, since the isomorphism classes of finitely presented groups
form a set and every group is a directed colimit of finitely presented groups. Therefore, Vopěnka’s principle
implies that every orthogonal pair in the category of groups is generated by a set of homomorphisms —in
fact, by a single homomorphism. In other words,

Corollary 1 If Vopěnka’s principle holds, then for every idempotent functorL in the category of groups
there is a homomorphismϕ such thatL is naturally isomorphic toLϕ. ¥

Next we show that it is impossible to prove this statement using the ordinary ZFC axioms of set theory.

Theorem 5 LetA be the class of groupsZκ/Z<κ for all cardinalsκ. If the orthogonal pair(S,D) asso-
ciated withA-reduction is generated by a set of homomorphisms, then there exists a measurable cardinal.

PROOF. Suppose that there is a set of homomorphisms generating(S,D). Then their free productϕ is a
homomorphism such thatϕ-localization coincides withA-reduction. LetG be a universalϕ-acyclic group,
as defined at the end of Section 2. ThenG-reduction andA-reduction annihilate the same groups and hence
coincide. Since the groupsZκ/Z<κ are annihilated byA-reduction, we may infer thatHom(G, Zκ/Z<κ) 6=
0 for all κ.

Let κ be a regular cardinal that is bigger than the cardinality ofG. (Recall that a cardinalλ is regular if
it is infinite and cannot be expressed as a sum of cardinalsΣi<αλi whereα < λ andλi < λ for all i. The
first infinite cardinalℵ0 is regular and so is every successor cardinal.) Letβ : G → Zκ/Z<κ be a nonzero
homomorphism. As in the Wald–Łoś Lemma [14, Lemma 2.6],β can be lifted to a nonzero homomorphism
α : G → Zκ, as follows. For each elementg ∈ G, pick a representativeφ(g) ∈ Zκ of the imageβ(g).
Thus, for each pair of elementsg andh of G, the elementφ(g) + φ(h) − φ(gh) lies inZ<κ. Let S be the
union of the supports of the elementsφ(g) + φ(h) − φ(gh) for all pairs of elementsg andh of G. The
assumption thatcard(G) < κ ensures thatcard(S) < κ as well, sinceκ is regular. Thus, if we define
α(g) by setting to zero all the components inS of the elementφ(g), thenα(g) andφ(g) map onto the same
element inZκ/Z<κ, andα : G → Zκ is a homomorphism.

Now, composition with a suitable projection yields a nonzero homomorphismG → Z and this implies
thatZ is notG-reduced. Hence,Z is notA-reduced, and this implies the existence of a measurable cardinal,
by Theorem 3.¥

Since the statement that all cardinals are nonmeasurable is consistent with ZFC, we conclude that it is
impossible to prove in ZFC that every orthogonal pair is generated by a set of homomorphisms. In contrast,
we next exhibit an orthogonal pair in ZFC which is not generated by any set of groups.

Theorem 6 LetB be the class of groupsZκ/Z<κ for all nonmeasurable cardinalsκ. Then the orthogonal
pair (S,D) associated withB-reduction is not generated by any set of groups.

PROOF. Suppose that(S,D) is generated by a set of groups, and letG be their product; that is,S =
{G}⊥. Let C be the product of all the abelian subgroups ofG. Then, sinceG is B-reduced, we have
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Hom(Zκ/Z<κ, C) = 0 for all nonmeasurable cardinalsκ. Therefore, the groupC is strongly cotorsion-
free, in the sense of [14]. By [14, Theorem 4.2], there is a nonzero slender groupA such thatHom(A,C) =
0. (A torsion-free abelian groupA is slenderif every homomorphismf : Zℵ0 → A vanishes on almost all
components; see [16,§ 94].) SinceHom(A,G) is trivial, the homomorphismA → 0 is in S. On the other
hand, sinceA is slender, Theorem 94.4 in [16] implies thatHom(Zκ/Z<κ, A) = 0 for all nonmeasurable
cardinalsκ; therefore,A is inD. This implies thatA = 0, so we have arrived at a contradiction that proves
our claim.¥
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