Rev. R. Acad. Cien. Serie A. Mat.
Vol. 95 (1), 2001, pp. 121-143
Matemática Aplicada / Applied Mathematics

On some questions of topology for S^{1}-valued fractional Sobolev spaces

H. Brezis and P. Mironescu

Abstract

The purpose of this paper is to describe the homotopy classes (i.e., path-connected components) of the space $W^{s, p}\left(\Omega ; S^{1}\right)$. Here, $0<s<\infty, 1<p<\infty, \Omega$ is a smooth, bounded, connected open set in \mathbb{R}^{N} and $$
W^{s, p}\left(\Omega ; S^{1}\right)=\left\{u \in W^{s, p}(\Omega ; \mathbb{C}) ;|u|=1 \text { a.e. }\right\} .
$$

Our main results assert that $W^{s, p}\left(\Omega ; S^{1}\right)$ is path-connected if $s p<2$ while it has the same homotopy classes as $C^{0}\left(\bar{\Omega} ; S^{1}\right)$ if $s p \geq 2$. We also present some results and open problems about density of smooth maps in $W^{s, p}\left(\bar{\Omega} ; S^{1}\right)$.

Sobre algunas cuestiones topológicas para espacios de Sobolev fracionarios con valores en S^{1}

Resumen. El propósito de este artículo es describir las clases de homotópía (i.e., componentes conexas por arcos) del espacio $W^{s, p}\left(\Omega ; S^{1}\right)$. Aquí, $0<s<\infty, 1<p<\infty, \Omega$ es un abierto, regular, acotado y conexo de \mathbb{R}^{N} y

$$
W^{s, p}\left(\Omega ; S^{1}\right)=\left\{u \in W^{s, p}(\Omega ; \mathbb{C}) ;|u|=1 \text { a.e. }\right\} .
$$

Nuestros resultados principales establecen que $W^{s, p}\left(\Omega ; S^{1}\right)$ es conexo por arcos si $s p<2$ aunque tenga las mismas clases de homotopía que $C^{0}\left(\bar{\Omega} ; S^{1}\right)$ si $s p \geq 2$. También presentamos algunos resultados y problemas abiertos sobre la densidad de aplicaciones regulares de $W^{s, p}\left(\bar{\Omega} ; S^{1}\right)$.

1. Introduction

The purpose of this paper is to describe the homotopy classes (i.e., path-connected components) of the space $W^{s, p}\left(\Omega ; S^{1}\right)$. Here, $0<s<\infty, 1<p<\infty, \Omega$ is a smooth, bounded, connected open set in \mathbb{R}^{N} and

$$
W^{s, p}\left(\Omega ; S^{1}\right)=\left\{u \in W^{s, p}(\Omega ; \mathbb{C}) ;|u|=1 \text { a.e. }\right\}
$$

Our main results are
Theorem 1 If $s p<2$, then $W^{s, p}\left(\Omega ; S^{1}\right)$ is path-connected.
Theorem 2 If $s p \geqslant 2$, then $W^{s, p}\left(\Omega ; S^{1}\right)$ and $C^{0}\left(\bar{\Omega} ; S^{1}\right)$ have the same homotopy classes in the sense of [7]. More precisely:
a) each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$ is $W^{s, p}$-homotopic to some $v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$;
b) two maps $u, v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ are C^{0}-homotopic if and only if they are $W^{s, p}$-homotopic.

[^0]Here a simple consequence of the above results
Corollary 1 If $0<s<\infty, 1<p<\infty$ and Ω is simply connected, then $W^{s, p}$ ($\Omega ; S^{1}$) is path-connected.
Indeed, when $s p<2$ this is the content of Theorem 1. When $s p \geqslant 2$, we use a) of Theorem 2 to connect $u_{1}, u_{2} \in W^{s, p}\left(\Omega ; S^{1}\right)$ to $v_{1}, v_{2} \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$; since Ω is simply connected, we may write $v_{j}=e^{i \varphi_{j}}$ for $\varphi_{j} \in C^{\infty}(\bar{\Omega} ; \mathbb{R})$ and then we connect v_{1} to v_{2} via $e^{i\left[(1-t) \varphi_{1}+t \varphi_{2}\right]}$.

When M is a compact connected manifold, the study of the topology of $W^{1, p}(\Omega ; M)$ was initiated in Brezis - Li [7] (see also White [26] for some related questions). In particular, these authors proved Theorems 1 and 2 in the special case $s=1$. The analysis of homotopy classes for an arbitrary manifold M and $s=1$ was subsequently tackled by Hang - Lin [15]. The passage to $W^{s, p}$ introduces two additional difficulties:
a) when s is not an integer, the $W^{s, p}$ norm is not "local";
b) when $s \geqslant 2$ (or more generally $s>1+\frac{1}{p}$), gluing two maps in $W^{s, p}$ does not yield a map in $W^{s, p}$.

In our proofs, we exploit in an essential way the fact that the target manifold is S^{1}. (The case of a general target is widely open.) In particular, we use the existence of a lifting of $W^{s, p}$ unimodular maps when $s \geqslant 1$ and $s p \geqslant 2$ (see Bourgain - Brezis - Mironescu [4]). Another important tool is the following
Composition Theorem (Brezis - Mironescu [10]) If $f \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ has bounded derivatives and $s \geqslant 1$, then $\varphi \longmapsto f \circ \varphi$ is continuous from $W^{s, p} \cap W^{1, s p}$ into $W^{s, p}$.

Remark 1 A very elegant and straightforward proof of this Composition Theorem has been given by V. Maz'ya and T. Shaposhnikova [18].
A related question is the description, when $s p \geqslant 2$, of the homotopy classes of $W^{s, p}\left(\Omega ; S^{1}\right)$ in terms of lifting. Here is a partial result
Theorem 3 We have
a) if $s \geqslant 1, N \geqslant 3$, and $2 \leqslant s p<N$, then

$$
[u]_{s, p}=\left\{u e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R}) \cap W^{1, s p}(\Omega ; \mathbb{R})\right\}
$$

b) if $s p \geqslant N$, then

$$
[u]_{s, p}=\left\{u e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}
$$

Theorem 3 is due to Rubinstein - Sternberg [21] in the special case where $s=1, p=2$ and Ω is the solid torus in \mathbb{R}^{3}.

When $0<s<1, N \geqslant 3$ and $2 \leqslant s p<N$, there is no such simple description of $[u]_{s, p}$. For instance, using the "non-lifting" results in Bourgain - Brezis - Mironescu [4], it is easy to see that

$$
[1]_{s, p} \supsetneqq\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\} .
$$

Here is an example: if $N=3, \Omega=B_{1}, 0<s<1,1<p<\infty, 2 \leqslant s p<3$, then
a) $u(x)=e^{1 /|x|^{\alpha}} \in[1]_{s, p}$;
b) there is no $\varphi \in W^{s, p}\left(B_{1} ; \mathbb{R}\right)$ such that $u=e^{i \varphi}$ for α satisfying $\frac{3-s p}{p} \leqslant \alpha<\frac{3-s p}{s p}$.

However, we conjecture the following result
Conjecture 1 Assume that $0<s<1,1<p<\infty, N \geqslant 3$ and $2 \leqslant s p<N$. Then

$$
[u]_{s, p}=u \overline{\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}}{ }^{W^{s, p}}
$$

We will prove below (see Corollary 2) that "half" of Conjecture 1 holds, namely

$$
[u]_{s, p} \supset u \overline{\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}} W^{s, p}
$$

In a different but related direction, we establish some partial results concerning the density of $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ into $W^{s, p}\left(\Omega ; S^{1}\right)$.

Theorem 4 We have, for $0<s<\infty, 1<p<\infty$:
a) if $s p<1$, then $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ is dense in $W^{s, p}\left(\Omega ; S^{1}\right)$;
b) if $1 \leqslant s p<2, N \geqslant 2$, then $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ is not dense in $W^{s, p}\left(\Omega ; S^{1}\right)$;
c) if $s p \geqslant N$, then $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ is dense in $W^{s, p}\left(\Omega ; S^{1}\right)$;
d) if $s \geqslant 1$ and $s p \geqslant 2$, then $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ is dense in $W^{s, p}\left(\Omega ; S^{1}\right)$.

There is only one missing case for which we make the following
Conjecture 2 If $0<s<1,1<p<\infty, N \geqslant 3,2 \leqslant s p<N$, then $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ is dense in $W^{s, p}\left(\Omega ; S^{1}\right)$.
This problem is open even when Ω is a ball in \mathbb{R}^{3}. We will prove below the equivalence of Conjectures 1 and 2.

Parts of Theorem 4 were already known. Part a) is due to Escobedo [14]; so is part b), but in this case the idea goes back to Schoen - Uhlenbeck [24] (see also Bourgain - Brezis - Mironescu [5]). For $s=1$, part c) is due to Schoen - Uhlenbeck [24]; their argument can be adapted to the general case (see, e.g., Brezis - Nirenberg [12] or Brezis - Li [7]). The only new result is part d). The proof relies heavily on the Composition Theorem and Theorems 2 and 3. We do not know any direct proof of d). We also mention that for $s=1$ and $\Omega=B_{1}$, Theorem 4 was established by Bethuel - Zheng [3]. For a general compact connected manifold M and for $s=1$, the question of density of $C^{\infty}(\bar{\Omega} ; M)$ into $W^{1, p}(\Omega ; M)$ was settled by Bethuel [1] and Hang - Lin [15].

Remark 2 In Theorems 2 and 4, one may replace Ω by a manifold with or without boundary. The statements are unchanged. However, the argument in the proof of Theorem 1 does not quite go through to the case of a manifold without boundary. Nevertheless, we make the following

Conjecture 3 Let Ω be a manifold without boundary with $\operatorname{dim} \Omega \geqslant 2$. Then $W^{s, p}(\Omega ; M)$ is pathconnected for every $0<s<\infty, 1<p<\infty$ with $s p<2$, and for every compact connected manifold M.

Note that the condition $\operatorname{dim} \Omega \geqslant 2$ is necessary, since $W^{s, p}\left(S^{1} ; S^{1}\right)$ is not path-connected when $s p \geqslant 1$. Finally, we investigate the local path-connectedness of $W^{s, p}\left(\Omega ; S^{1}\right)$. Our main result is

Theorem 5 Let $0<s<\infty, 1<p<\infty$. Then $W^{s, p}\left(\Omega ; S^{1}\right)$ is locally path-connected. Consequently, the homotophy classes coincide with the connected components and they are open and closed.

The heart of the matter in the proof is the following
Claim. Let $0<s<\infty, 1<p<\infty$. Then there is some $\delta>0$ such that, if $\|u-1\|_{W^{s, p}}<\delta$, then u may be connected to 1 in $W^{s, p}$.

As a consequence of Theorem 5, we have
Corollary 2 Let $0<s<1,1<p<\infty$. Then

$$
[u]_{s, p} \supset{\overline{\left\{u e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}}}^{W^{s, p}}=u{\overline{\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}}}^{W^{s, p}}
$$

Equality in Corollary 2 follows from the well-known fact that $W^{s, p} \cap L^{\infty}$ is an algebra. The inclusion is a consequence of the fact that, clearly, we have

$$
[u]_{s, p} \supset\left\{u e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}
$$

and of the closedness of the homotopy classes.
Another consequence of Theorem 5 is
Corollary 3 Conjecture $1 \Leftrightarrow$ Conjecture 2.

Proof. By Corollary 2, we have

$$
[u]_{s, p} \supset u \overline{\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}}{ }^{W^{s, p}}
$$

We prove that the reverse inclusion follows from Conjecture 1. By Proposition 1 a) below, we may take $u=1$. Let $v \in[1]_{s, p}$. By Theorem 5, there is some $\varepsilon>0$ such that $\|v-w\|_{W^{s, p}}<\varepsilon \Rightarrow w \in[1]_{s, p}$. Let $\left(w_{n}\right) \subset C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ be such that $w_{n} \rightarrow v$ in $W^{s, p}$ and $\left\|w_{n}-v\right\|_{W^{s, p}}<\varepsilon$. By Theorem 2 b), we obtain that w_{n} and 1 are homotopic in $C^{0}\left(\bar{\Omega} ; S^{1}\right)$. Thus $w_{n}=e^{i \varphi_{n}}$ for some globally defined smooth φ_{n}. Hence

$$
v \in{\overline{\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}}}^{W^{s, p}}
$$

Conversely, assume that Conjecture 2 holds. Let $u \in W^{s, p}\left(\Omega ; S^{1}\right)$. By Theorem 2 a), there is some $w \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ such that $w \in[u]_{s, p}$. By Proposition 1 b$)$, we have $u \bar{w} \in[1]_{s, p}$. Thus $u \bar{w} \in$ $\overline{\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}}{ }^{W^{s, p}}$, so that clearly $u \bar{w} \in \overline{\left\{e^{i \varphi} ; \varphi \in C^{\infty}(\bar{\Omega} ; \mathbb{R})\right\}}{ }^{W^{s, p}}$. Finally, $u \in \overline{\left\{w e^{i \varphi} ; \varphi \in C^{\infty}(\bar{\Omega} ; \mathbb{R})\right\}}{ }^{W^{s, p}}$, i.e. u may be approximated by smooth maps.

In the same vein, we raise the following
Open Problem 1. Let Ω be a manifold with or without boundary. Is $W^{s, p}(\Omega ; M)$ locally path-connected for every s, p and every compact manifold M ?

The case $s=1$ can be settled using the methods of Hang - Lin [15]. We will return to this question in a subsequent work; see Brezis - Mironescu [11].

The reader who is looking for more open problems may also consider the following
Open Problem 2. Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain. Assume $0<s<\infty$, $1<p<\infty$ and $1 \leqslant s p<2$ (this is the range where $C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ is not dense in $W^{s, p}\left(\Omega ; S^{1}\right)$). Set

$$
\mathcal{R}_{0}=\left\{u \in W^{s, p}\left(\Omega ; S^{1}\right) ; u \text { is smooth except at a finite number of points }\right\} .
$$

(Here, the number and location of singular points is left free). Is \mathcal{R}_{0} dense in $W^{s, p}\left(\Omega ; S^{1}\right)$?
Comment. \mathcal{R}_{0} is known to be dense in $W^{s, p}\left(\Omega ; S^{1}\right)$ in many cases, e.g.:
a) $s=1$ and $1 \leqslant p<2$; see Bethuel-Zheng [3]
b) $s=1-1 / p$ and $2<p<3$; see Bethuel [2]
c) $s=1 / 2$ and $p=2$; see Rivière [20].

The paper is organized as follows

1. Introduction
2. Proof of Theorem 1
3. Proof of Theorems 2 and 3
4. Proof of Theorem 4
5. Proof of Theorem 5

Appendix A. An extension lemma
Appendix B. Good restrictions
Appendix C. Global lifting
Appendix D. Filling a hole - the fractional case
Appendix E. Slicing with norm control

2. Proof of Theorem 1

Case 1: $s p<1$
When $s p<1$, we have the following more general result
Theorem 6 If $s>0,1<p<\infty, s p<1$ and M is a compact manifold, then $W^{s, p}(\Omega ; M)$ is pathconnected.

Proof. Fix some $a \in M$. For $u \in W^{s, p}(\Omega ; M)$, let

$$
\tilde{u}= \begin{cases}u, & \text { in } \Omega \\ a, & \text { in } \mathbb{R}^{N} \backslash \Omega .\end{cases}
$$

Since $s p<1$, we have $\tilde{u} \in W_{l o c}^{s, p}\left(\mathbb{R}^{N} ; M\right)$. Let $U(t, x)=\tilde{u}(x /(1-t)), 0 \leqslant t<1, x \in \Omega$ and $U(1, x) \equiv a$. Then clearly $U \in C\left([0,1] ; W^{s, p}(\Omega ; M)\right)$ and U connects u to the constant a (here we use only $s p<N$).

Case 2: $1<s p<2, N \geqslant 2$
In this case one could adapt the tools developed in Brezis - Li [7], but we prefer a more direct approach.
Let $\varepsilon>0$ be such that the projection onto $\partial \Omega$ be well-defined and smooth in the region $\{x \in$ \mathbb{R}^{N}; dist $\left.(x, \partial \Omega)<2 \varepsilon\right\}$. Let $\omega=\left\{x \in \mathbb{R}^{N} \backslash \bar{\Omega}\right.$; dist $\left.(x, \partial \Omega)<\varepsilon\right\}$. We have $\partial \omega=\partial \Omega \cup \Lambda$, where $\Lambda=\left\{x \in \mathbb{R}^{N} \backslash \Omega ;\right.$ dist $\left.(x, \partial \Omega)=\varepsilon\right\}$.

Since $1<s p<2$, we have $1 / p<s<1+1 / p$; thus, for $u \in W^{s, p}$ we have $\operatorname{tr} u \in W^{s-1 / p, p}$. Let $u \in W^{s, p}\left(\Omega ; S^{1}\right)$. Fix some $a \in S^{1}$ and define $v \in W^{s-1 / p, p}\left(\partial \omega ; S^{1}\right)$ by

$$
v= \begin{cases}\operatorname{tr} u, & \text { on } \partial \omega \\ a, & \text { on } \Lambda .\end{cases}
$$

We use the following extension result. (The first result of this kind is due to Hardt - Kinderlehrer - Lin [16]; it corresponds to our lemma when $\sigma=1-1 / p, p<2$.)

Lemma 1 Let $0<\sigma<1,1<p<\infty, \sigma p<1$. Then any $v \in W^{\sigma, p}\left(\partial \omega ; S^{1}\right)$ has an extension $w \in W^{\sigma+1 / p, p}\left(\omega ; S^{1}\right)$.

The proof is given in Appendix A; see Lemma A.1. It relies heavily on the lifting results in Bourgain Brezis - Mironescu [4].

Returning to the proof of Case 2 , with w given by Lemma 1, set

$$
\tilde{u}= \begin{cases}u & \text { in } \Omega \\ w & \text { in } \omega \\ a & \text { in } \mathbb{R}^{n} \backslash(\Omega \cup \omega)\end{cases}
$$

Clearly, $\tilde{u} \in W_{l o c}^{s, p}\left(\mathbb{R}^{N} ; S^{1}\right)$ and \tilde{u} is constant outside some compact set. As in the proof of Theorem 6, we may use \tilde{u} to connect u to a, since once more we have $s p<N$.
Case 3: $s p=1, N \geqslant 2$
The idea is the same as in the previous case; however, there is an additional difficulty, since in the limiting case $s=1 / p$ the trace theory is delicate - in particular, $\operatorname{tr} W^{1 / p, p} \neq L^{p}$ (unless $p=1$). Instead of trace, we work with a notion of "good restriction" developed in Appendix B; when $s=1 / 2, p=2$, the space of functions in $H^{1 / 2}$ having 0 as good restriction on the boundary coincides with the space $H_{00}^{1 / 2}$ of Lions - Magenes [17] (see Theorem 11.7, p. 72).

Our aim is to prove that any $u \in W^{1 / p, p}\left(\Omega ; S^{1}\right)$ can be connected to a constant $a \in S^{1}$.
Step 1: we connect $u \in W^{1 / p, p}\left(\Omega ; S^{1}\right)$ to some $u_{1} \in W^{1 / p, p}\left(\Omega ; S^{1}\right)$ having a good restriction on $\partial \Omega$

Let $\varepsilon>0$ be such that the projection Π onto $\partial \Omega$ be well-defined and smooth in the set $\left\{x \in \mathbb{R}^{N}\right.$; dist $(x, \partial \Omega)<2 \varepsilon)\}$. For $0<\delta<\varepsilon$, set $\Sigma_{\delta}=\{x \in \Omega$; dist $(x, \partial \Omega)=\delta\}$. By Fubini, for a.e. $0<\delta<\varepsilon$, we have

$$
\begin{equation*}
\left.u\right|_{\Sigma_{\delta}} \in W^{1 / p, p}\left(\Sigma_{\delta}\right) \text { and } \int_{\Sigma_{\delta}} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+1}} d y d s_{x}<\infty \tag{1}
\end{equation*}
$$

By Lemma B.5, this implies that u has a good restriction on Σ_{δ}, and that Rest $\left.u\right|_{\sum_{\delta}}=\left.u\right|_{\Sigma_{\delta}}$ a.e. on Σ_{δ}.
Let any $0<\delta<\varepsilon$ satisfying (1). For $0<\lambda<\delta$, let Ψ_{λ} be the smooth inverse of $\left.\Pi\right|_{\Sigma_{\lambda}}: \Sigma_{\lambda} \rightarrow \partial \Omega$. Let also $\Omega_{\lambda}=\{x \in \Omega$; dist $(x, \partial \Omega)>\lambda\}$. Consider a continuous family of diffeomorphisms $\Phi_{t}: \bar{\Omega} \rightarrow$ $\overline{\Omega_{t \delta}}, 0 \leqslant t \leqslant 1$, such that $\Phi_{0}=$ id and $\left.\Phi_{t}\right|_{\partial \Omega}=\Psi_{t \delta}$. Then $t \mapsto u \circ \Phi_{t}$ is a homotopy in $W^{1 / p, p}$. Moreover, if $u_{t}=u \circ \Phi_{t}$, then $u_{0}=u$ and $\left.u_{1}\right|_{\partial \Omega}=\left.\left.u\right|_{\sum_{\delta}} \circ \Psi_{\delta}\right|_{\partial \Omega}$. By (1), u_{1} has a good restriction on $\partial \Omega$.

Step 2: we extend u_{1} to \mathbb{R}^{N}
Let $\omega=\left\{x \in \mathbb{R}^{N} \backslash \bar{\Omega} ;\right.$ dist $\left.(x ; \partial \Omega)<\varepsilon\right\}$. As in Case 2, we fix some $a \in S^{1}$ and set

$$
v= \begin{cases}u_{1}, & \text { on } \partial \Omega \\ a, & \text { on } \Lambda .\end{cases}
$$

Clearly, $v \in W^{1 / p, p}(\partial \omega)$, so that $v \in W^{\sigma, p}(\partial \omega)$ for $0<\sigma<1 / p$. We fix any $0<\sigma<1 / p$. By Lemma 1 , there is some $w \in W^{\sigma+1 / p, p}\left(\omega ; S^{1}\right)$ such that $\left.w\right|_{\partial \omega}=v$. We define

$$
\tilde{u}_{1}= \begin{cases}u_{1}, & \text { in } \Omega \\ w, & \text { in } \omega \\ a, & \text { in } \mathbb{R}^{N} \backslash(\Omega \cup \omega)\end{cases}
$$

We claim that $\tilde{u}_{1} \in W_{l o c}^{1 / p, p}\left(\mathbb{R}^{N} ; S^{1}\right)$. Obviously, $\tilde{u} \in W_{l o c}^{1 / p, p}\left(\mathbb{R}^{N} \backslash \Omega\right)$. It remains to check that $\tilde{u}_{1} \in$ $W^{1 / p, p}(\Omega \cup \omega)$. This is a consequence of

Lemma 2 Let $0<s<1,1<p<\infty, s p \geqslant 1$ and $\rho>s$. Let $u_{1} \in W^{s, p}(\Omega)$ and $w \in W^{\rho, p}(\omega)$. Assume that u_{1} has a good restriction Rest $\left.u_{1}\right|_{\partial \Omega}$ on $\partial \Omega$ and that $\left.\quad \operatorname{tr} w\right|_{\partial \Omega}=$ Rest $\left.u_{1}\right|_{\partial \Omega}$. Then the map

$$
\begin{cases}u_{1}, & \text { in } \Omega \\ w, & \text { in } \omega\end{cases}
$$

belongs to $W^{s, p}(\Omega \cup \omega)$.
Clearly, in the proof of Lemma 2 it suffices to consider the case of a flat boundary. When $\Omega=$ $(-1,1)^{N-1} \times(0,1)$ and $\omega=(-1,1)^{N-1} \times(-1,0)$, the proof of Lemma 2 is presented in Appendix B; see Lemma B.4.

Returning to Case 3 and applying Lemma 2 with $s=1 / p, \rho=\sigma+1 / p$, we obtain that $\tilde{u}_{1} \in$ $W_{l o c}^{1 / p, p}\left(\mathbb{R}^{N}\right)$. As in the two previous cases, this means that u_{1} is $W^{1 / p, p}$-homotopic to a constant.

Case 4: $1 \leqslant s p<2, N=1$
In this case, Ω is an interval. Recall the following result proved in Bourgain - Brezis - Mironescu [4] (Theorem 1): if Ω is an interval and $s p \geqslant 1$, then for each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$ there is some $\varphi \in W^{s, p}(\Omega ; \mathbb{R})$ such that $u=e^{i \varphi}$. Recall also that, when $s p \geqslant N$, then $C^{\infty}(\mathbb{R} ; \mathbb{R})$ functions f with bounded derivatives operate on $W^{s, p}$; that is, the map $\varphi \mapsto f \circ \varphi$ is continuous from $W^{s, p}$ into itself (see, e.g., Peetre [19] for $s p>N$, Runst - Sickel [23], Corollary 2 and Remark 5 in Section 5.3.7 or Brezis - Mironescu [9] when $s p=N$; this is also a consequence of the Composition Theorem). By combining these two results, we find that the homotopy $t \mapsto e^{i(1-t) \varphi}$ connects $u=e^{i \varphi}$ to 1 .

The proof of Theorem 1 is complete.

3. Proof of Theorems $\mathbf{2}$ and $\mathbf{3}$

We start with some useful remarks. For $u \in W^{s, p}\left(\Omega ; S^{1}\right)$, let $[u]_{s, p}$ denote its homotopy class in $W^{s, p}$.
Proposition 1 Let $0<s<\infty, 1<p<\infty$. For $u, v \in W^{s, p}\left(\Omega ; S^{1}\right)$, we have
a) $u[v]_{s, p}=[u v]_{s, p}$;
b) $[u]_{s, p}=[v]_{s, p} \Leftrightarrow[u \bar{v}]_{s, p}=[1]_{s, p}$;
c) $[u]_{s, p}[v]_{s, p}=[u v]_{s, p}$.

The proof relies on two well-known facts: $W^{s, p} \cap L^{\infty}$ is an algebra; moreover, if $u_{n} \rightarrow u, v_{n} \rightarrow v$ in $W^{s, p}$ and $\left\|u_{n}\right\|_{L^{\infty}} \leqslant C,\left\|v_{n}\right\|_{L^{\infty}} \leqslant C$, then $u_{n} v_{n} \rightarrow u v$ in $W^{s, p}$. Here is, for example, the proof of c) (using a)). Let first $u_{1} \in[u]_{s, p}, v_{1} \in[v]_{s, p}$. If U, V are homotopies connecting u_{1} to u and v_{1} to v, then $U V$ connects $u_{1} v_{1}$ to $u v$; thus $[u]_{s, p}[v]_{s, p} \subset[u v]_{s, p}$. Conversely, if $w \in[u v]_{s, p}$, then $w \in u[v]_{s, p}$ (by a)), so that $w \bar{u} \in[v]_{s, p}$. Therefore, $w=u(w \bar{u}) \in[u]_{s, p}[v]_{s, p}$.

We next recall the degree theory for $W^{s, p}$ maps; see Brezis - Li - Mironescu - Nirenberg [8] for the general case, White [25] when $s=1$ or Rubinstein - Sternberg [20] for the space $H^{1}\left(\Omega ; S^{1}\right)$ and Ω the solid torus in \mathbb{R}^{3}. Let $0<s<\infty, 1<p<\infty$ be such that $s p \geqslant 2$. Let $u \in W^{s, p}\left(S^{1} \times \Lambda ; S^{1}\right)$, where Λ is some open connected set in \mathbb{R}^{k}. Clearly, for a.e. $\lambda \in \Lambda, u(\cdot, \lambda) \in W^{s, p}\left(S^{1} ; S^{1}\right)$. For any such $\lambda, u(\cdot, \lambda)$ is continuous, so that it has a winding number (degree) $\operatorname{deg}(u(\cdot, \lambda))$. The main result in [8] asserts that, if $s p \geqslant 2$, then this degree is constant a.e. and stable under $W^{s, p}$ convergence.

In the particular case where $s \geqslant 1$, there is a formula

$$
\operatorname{deg}(u(\cdot, \lambda))=\frac{1}{2 \pi} \int_{S^{1}} u(x, \lambda) \wedge \frac{\partial u}{\partial \tau}(x, \lambda) d s_{x}
$$

where $u \wedge v=u_{1} v_{2}-u_{2} v_{1}$. It then follows that, if $s \geqslant 1$ and $s p \geqslant 2$, we have

$$
\operatorname{deg}\left(\left.u\right|_{S^{1} \times \Lambda}\right)=\int_{\Lambda} \int_{S^{1}} u(x, \lambda) \wedge \frac{\partial u}{\partial \tau}(x, \lambda) d s_{x} d \lambda
$$

Clearly, the above result extends to domains which are diffeomorphic to $S^{1} \times \Lambda$. In the sequel, we are interested in the following particular case: let Γ be a simple closed smooth curve in Ω and, for small $\varepsilon>0$, let Γ_{ε} be the ε-tubular neighborhood of Γ. We fix an orientation on Γ.

Let $\Phi: S^{1} \times B_{\varepsilon} \rightarrow \Gamma_{\varepsilon}$ be a diffeomorphism such that $\left.\Phi\right|_{S^{1} \times\{0\}}: S^{1} \times\{0\} \rightarrow \Gamma$ be an orientation preserving diffeomorphism; here B_{ε} is the ball of radius ε in \mathbb{R}^{N-1}. Then we may define deg $\left(\left.u\right|_{\Gamma_{\varepsilon}}\right)=$ $\operatorname{deg}\left(\left.u \circ \Phi\right|_{S^{1} \times B_{\varepsilon}}\right)$; this integer is stable under $W^{s, p}$ convergence.

We now prove b) of Theorem 2, which we restate as
Proposition 2 Let $0<s<\infty, 1<p<\infty$, sp $\geqslant 2$. Let $u, v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$. Then $[u]_{s, p}=[v]_{s, p}$ if and only if u and v are C^{0} - homotopic.

Proof. Using Proposition 1, we may assume $v=1$. Suppose first that $u \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ and 1 are C^{0} homotopic. Then u and 1 are $W^{s, p}$-homotopic. Indeed, when $s=1$, this is proved in Brezis - Li [7], Proposition A.1; however, their proof works without modification for any s. We sketch an alternative proof: since u and 1 are C^{0}-homotopic, there is some $\varphi \in C^{\infty}(\bar{\Omega} ; \mathbb{R})$ such that $u=e^{i \varphi}$. Then $t \mapsto e^{i(1-t) \varphi}$ connects u to 1 in $W^{s, p}$.

Conversely, assume that the smooth map u is $W^{s, p}$-homotopic to 1 . By continuity of the degree, we then have $\operatorname{deg}\left(\left.u\right|_{\Gamma_{\varepsilon}}\right)=0$ for each Γ. Since u is smooth, we obtain

$$
0=\operatorname{deg}\left(\left.u\right|_{\Gamma_{\varepsilon}}\right)=\operatorname{deg}\left(\left.u\right|_{\Gamma}\right)=\frac{1}{2 \pi} \int_{\Gamma} u \wedge \frac{\partial u}{\partial \tau} d s
$$

Thus the closed form $X=u \wedge D u$ has the property that $\int_{\Gamma} X \cdot \tau d s=0$ for any simple closed smooth curve Γ. By the general form of the Poincare lemma, there is some $\varphi \in C^{\infty}(\bar{\Omega} ; \mathbb{R})$ such that $X=D \varphi$. One may easily check that $u=e^{i(\varphi+C)}$ for some constant C. Then $t \mapsto e^{i(1-t)(\varphi+C)}$ connects u to 1 in $C^{0}\left(\bar{\Omega} ; S^{1}\right)$.

We now turn to the proof of the remaining assertions in Theorems 2 and 3.
Case 1: $s p \geqslant N, N \geqslant 2$
Step 1: each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$ can be connected to a smooth map $v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$
This is proved in Brezis - Li [7], Proposition A.2, for $s=1$ and $p \geqslant N$; their arguments apply to any s and any p such that $s p \geqslant N$. The main idea originates in the paper Schoen - Uhlenbeck [23]; see also Brezis - Nirenberg [12], [13].

Step 2: we have $[u]_{s, p}=\left\{u e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R})\right\}$
Let $\varphi \in W^{s, p}(\Omega ; \mathbb{R})$. Then $t \longmapsto u e^{i(1-t) \varphi}$ connects $u e^{i \varphi}$ to u in $W^{s, p}$. (Recall that, if $f \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ has bounded derivatives and $s p \geqslant N$, then the map $\varphi \mapsto f \circ \varphi$ is continuous from $W^{s, p}$ into itself.) This proves " \supset ". To prove the reverse inclusion, by Proposition 1, it suffices to show that $[1]_{s, p} \subset\left\{e^{i \varphi} ; \varphi \in\right.$ $\left.W^{s, p}(\Omega ; \mathbb{R})\right\}$.

Let $v \in[1]_{s, p}$. For each $x \in \Omega$, let $B_{x} \subset \Omega$ be a ball containing x. We recall the following lifting result from Bourgain - Brezis - Mironescu [4] (Theorem 2): if U is simply connected in \mathbb{R}^{N} and $s p \geqslant N$, then for each $w \in W^{s, p}\left(U ; S^{1}\right)$ there is some $\psi \in W^{s, p}(U ; \mathbb{R})$ such that $w=e^{i \psi}$. Thus, for each $x \in \Omega$ there is some $\varphi_{x} \in W^{s, p}\left(B_{x} ; \mathbb{R}\right)$ such that $\left.v\right|_{B_{x}}=e^{i \varphi_{x}}$. Note that, in $B_{x} \cap B_{y}$, we have $\varphi_{x}-\varphi_{y} \in W^{s, p}\left(B_{x} \cap B_{y} ; 2 \pi \mathbb{Z}\right)$. Therefore, $\varphi_{x}-\varphi_{y} \in V M O\left(B_{x} \cap B_{y} ; 2 \pi \mathbb{Z}\right)$, since $s p \geqslant N$. It then follows that $\varphi_{x}-\varphi_{y}$ is constant a.e. on $B_{x} \cap B_{y}$; see Brezis - Nirenberg [12], Section I.5.

By a standard continuation argument, we may thus define a (multi-valued) argument φ for v in the following way: fix some $x_{0} \in \Omega$. For any $x \in \Omega$, let γ be a simple smooth path from x_{0} to x. Then, for $\varepsilon>0$ sufficiently small, there is a unique function $\varphi^{\gamma} \in W^{s, p}\left(\gamma_{\varepsilon} ; \mathbb{R}\right)$ such that $\left.v\right|_{\gamma_{\varepsilon}}=e^{i \varphi^{\gamma}}$ and $\left.\varphi^{\gamma}\right|_{B_{\varepsilon}\left(x_{0}\right)}=\left.\varphi_{x_{0}}\right|_{B_{\varepsilon}\left(x_{0}\right)}$; here, γ_{ε} is the ε-tubular neighborhood of γ. We then set

$$
\left.\varphi\right|_{B_{\varepsilon}(x)}=\left.\varphi^{\gamma}\right|_{B_{\varepsilon}(x)}
$$

We actually claim that φ is single-valued. This follows from
Lemma 3 Assume that $0<s<\infty, 1<p<\infty, s p \geqslant N, N \geqslant 2$. If $w \in W^{s, p}\left(S^{1} \times B_{1} ; S^{1}\right)$ is such that $\operatorname{deg}\left(\left.w\right|_{S^{1} \times B_{1}}\right)=0$, then there is some $\psi \in W^{s, p}\left(S^{1} \times B_{1}\right)$ such that $w=e^{i \psi}$.

Here, B_{1} is the unit ball in \mathbb{R}^{N-1}. The proof of Lemma 3 is presented in Appendix C; see Lemma C.1.
Returning to the claim that φ is single-valued, we have that $\operatorname{deg}\left(\left.v\right|_{\Gamma_{\varepsilon}}\right)=0$ for each Γ, since $v \in[1]_{s, p}$.
By Lemma 3, a standard argument implies that φ is single-valued.
The proof of Theorems 2 and 3 when $s p \geqslant N$ is complete.
Case 2: $s \geqslant 1,1<p<\infty, N \geqslant 3,2 \leqslant s p<N$
Step 1: we have $[u]_{s, p}=\left\{u e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R}) \cap W^{1, s p}(\Omega ; \mathbb{R})\right\}$ For " \supset ", we use the Composition Theorem mentioned in the Introduction, which implies that $t \mapsto u e^{i(1-t) \varphi}$ connects $u e^{i \varphi}$ to u in $W^{s, p}$.

For " \subset " it suffices to prove that $[1]_{s, p} \subset\left\{e^{i \varphi} ; \varphi \in W^{s, p}(\Omega ; \mathbb{R}) \cap W^{1, s p}(\Omega ; \mathbb{R})\right\}$. We proceed as in Case 1, Step 2. Let $v \in[1]_{s, p}$. The corresponding lifting result we use is the following (see Bourgain - Brezis - Mironescu [4], Lemma 4): if $s \geqslant 1, s p \geqslant 2$ and U is simply connected in \mathbb{R}^{N}, then for each $w \in W^{s, p}\left(U ; S^{1}\right)$ there is some $\psi \in W^{s, p}(U ; \mathbb{R}) \cap W^{1, s p}(U ; \mathbb{R})$ such that $w=e^{i \psi}$. As in Case 1, for each x there is some $\varphi_{x} \in W^{s, p}\left(B_{x} ; \mathbb{R}\right) \cap W^{1, s p}\left(B_{x} ; \mathbb{R}\right)$ such that $\left.v\right|_{B_{x}}=e^{i \varphi_{x}}$. Since $\varphi_{x}-\varphi_{y} \in W^{1,1}\left(B_{x} \cap B_{y} ; 2 \pi \mathbb{Z}\right)$, we find that $\varphi_{x}-\varphi_{y}$ is constant ae. on $B_{x} \cap B_{y}$ (see [4], Theorem B.1.). These two ingredients allow the construction of a multi-valued phase $\varphi \in W^{s, p} \cap W^{1, s p}$ for v. To prove that φ is actually single-valued, we rely on

Lemma 4 Assume that $s \geqslant 1,1<p<\infty, N \geqslant 3,2 \leqslant s p<N$. If $w \in W^{s, p}\left(S^{1} \times B_{1} ; S^{1}\right)$ is such that $\operatorname{deg}\left(\left.w\right|_{S^{1} \times B_{1}}\right)=0$, then there is some $\psi \in W^{s, p}\left(S^{1} \times B_{1} ; \mathbb{R}\right) \cap W^{1, s p}\left(S^{1} \times B_{1} ; \mathbb{R}\right)$ such that $v=e^{i \psi}$.

The proof of Lemma 4 is given in Appendix C; see Lemma C.2.
The proof of Step 1 is complete.
Step 2: assume $s \geqslant 1,1<p<\infty$, sp $\geqslant 2$; then, for each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$, there is some $v \in W^{s, p}\left(\Omega ; S^{1}\right) \cap C^{\infty}\left(\Omega ; S^{1}\right)$ such that $v \in[u]_{s, p}$.

Consider the form $X=u \wedge D u$. Then $X \in W^{s-1, p}(\Omega) \cap L^{s p}(\Omega)$ (see Bourgain - Brezis - Mironescu [4], Lemmas D. 1 and D.2). Let $\varphi \in W^{s, p}(\Omega ; \mathbb{R}) \cap W^{1, s p}(\Omega ; \mathbb{R})$ be any solution of $\Delta \varphi=\operatorname{div} X$ in Ω. By the Composition Theorem, we then have $e^{-i \varphi} \in W^{s, p}\left(\Omega ; S^{1}\right)$, and thus $v=u e^{-i \varphi} \in W^{s, p}\left(\Omega ; S^{1}\right)$. We claim that $v \in C^{\infty}\left(\Omega ; S^{1}\right)$. Indeed, let B be any ball in Ω. Since $s \geqslant 1$ and $s p \geqslant 2$, there is some $\psi \in W^{s, p}(B ; \mathbb{R}) \cap W^{1, s p}(B ; \mathbb{R})$ such that $\left.u\right|_{B}=e^{i \psi}$. It then follows that $\left.X\right|_{B}=D \psi$. Thus $\Delta \varphi=\Delta \psi$ in B, i.e., $\psi-\varphi$ is harmonic in B. Since in B we have $v=u e^{-i \varphi}=e^{i(\psi-\varphi)}$, we obtain that $v \in C^{\infty}(B)$, so that the claim follows.

Using Step 1 and the equality $v=u e^{-i \varphi}$, we obtain that $v \in[u]_{s, p}$.
Step 3: for each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$, there is some $w \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ such that $w \in[u]_{s, p}$.
In view of Step 2, it suffices to consider the case where $u \in W^{s, p}\left(\Omega ; S^{1}\right) \cap C^{\infty}\left(\Omega ; S^{1}\right)$. We use the same homotopy as in Step 1, Case 3, in the proof of Theorem 1: $t \mapsto u \circ \Phi_{t}$, where Φ_{t} is a continuous family of diffeomorphisms $\Phi_{t}: \bar{\Omega} \rightarrow \overline{\Omega_{t \delta}}$ such that $\Phi_{0}=i d$. Clearly, $v=u \circ \Phi_{1} \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$.

The conclusions of Theorems 2 and 3 when $s \geqslant 1,1<p<\infty, N \geqslant 3,2 \leqslant s p<N$ follow from Proposition 2 and Steps 1 and 3.

We now complete the proof of Theorem 2 with
Case 3: $0<s<1,1<p<\infty, N \geqslant 3,2 \leqslant s p<N$
In this case, all we have to prove is that, for each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$, there is some $v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ such that $v \in[u]_{s, p}$. The ideas we use in the proof are essentially due to Brezis - $\mathrm{Li}[7]$ (see $\S 1.3$, "Filling" a hole).

We may assume that u is defined in a neighborhood \mathcal{O} of $\bar{\Omega}$; this is done by extending u by reflections across the boundary of Ω - the extended map is still in $W^{s, p}$ since $0<s<1$. We next define a good covering of Ω : let $\varepsilon>0$ be small enough; for $x \in \mathbb{R}^{N}$, we set

$$
\mathcal{C}_{N}^{x}=\bigcup\left\{x+\varepsilon l+(0, \varepsilon)^{N} ; l \in \mathbb{Z}^{N} \text { and } x+\varepsilon l+(0, \varepsilon)^{N} \subset \mathcal{O}\right\} .
$$

Define also $\mathcal{C}_{j}^{x}, j=1, \ldots, N-1$, by backward induction : \mathcal{C}_{j}^{x} is the union of faces of cubes in \mathcal{C}_{j+1}^{x}.
By Fubini, for a.e. $x \in \mathbb{R}^{N}$, we have $\left.u\right|_{\mathcal{C}_{j}^{x}} \in W^{s, p}, j=1, \ldots, N-1$, in the following sense: since $1 / p<s<1$, we have $\left.\operatorname{tr} u\right|_{\mathcal{C}_{N-1}^{x}} \in W^{s-1 / p, p}$ for all x. However, for a.e. x, we have the better property tr $\left.u\right|_{\mathcal{C}_{N-1}^{x}}=\left.u\right|_{\mathcal{C}_{N-1}^{x}} \in \quad W^{s, p}$. For any such x, we have $\left.\operatorname{tr}\left(\left.u\right|_{\mathcal{C}_{N-1}^{x}}\right)\right|_{\mathcal{C}_{N-2}^{x}} \in W^{s-1 / p, p}$, but once more for a.e. such x we have the better property $\left.\operatorname{tr}\left(\left.u\right|_{\mathcal{C}_{N-1}^{x}}\right)\right|_{\mathcal{C}_{N-2}^{x}}$ $=\left.u\right|_{\mathcal{C}_{N-2}^{x}} \in W^{s, p}$, and so on. (See Appendix E for a detailed discussion).

We fix any x having the above property and we drop from now on the superscript x.
Step 1: we connect u to some smoother map u_{1} Let $k=[s p]$, so that $2 \leqslant k \leqslant N-1$. Since $\left.u\right|_{\mathcal{C}_{k}} \in W^{s, p}$ and $s p \geqslant k$, there is a neighborhood ω of \mathcal{C}_{k} in \mathcal{C}_{k+1} and an extension $\tilde{u} \in W^{s+1 / p, p}\left(\omega ; S^{1}\right)$ of $\left.u\right|_{\mathcal{C}_{k}}$. This extension is first obtained in each cube $C \subset \mathcal{C}_{k+1}$ starting from $\left.u\right|_{\partial C}$ (see Brezis - Nirenberg [12], Appendix 3, for the existence of such an extension). We next glue together all these extensions to obtain \tilde{u}; \tilde{u} belongs to $W^{s+1 / p, p}$ since $1 / p<s+1 / p<1+1 / p$. Moreover, the explicit construction in [12] yields some $\tilde{u} \in C^{\infty}\left(\omega \backslash \mathcal{C}_{k}\right)$. We next extend \tilde{u} to \mathcal{C}_{k+1} in the following way: for each $C \subset \mathcal{C}_{k+1}$, let Σ_{C} be a convex smooth hypersurface in $C \cap \omega$. Since Σ_{C} is k-dimensional and $k \geqslant 2,\left.\tilde{u}\right|_{\Sigma_{C}}$ may be extended smoothly in the interior of Σ_{C} as an S^{1}-valued map (here, we use the fact that $\pi_{k}\left(S^{1}\right)=0$). Let \tilde{u}_{C} be such an extension. Then the map

$$
v= \begin{cases}\tilde{u}, & \text { outside the } \Sigma_{C} ’ \text { s } \\ \tilde{u}_{C}, & \text { inside } \Sigma_{C}\end{cases}
$$

belongs to $W^{s+1 / p, p}\left(\mathcal{C}_{k+1}\right)$. To summarize, we have found some $v \in W^{s+1 / p, p}\left(\mathcal{C}_{k+1} ; S^{1}\right)$ such that $\left.v\right|_{\mathcal{C}_{k}}=\left.u\right|_{\mathcal{C}_{k}}$.

Pick any $s<s_{1}<\min \{s+1 / p, 1\}$ and let p_{1} be such that $s_{1} p_{1}=s p+1$ (note that $1<p_{1}<\infty$). By Gagliardo - Nirenberg (see, e.g., Runst [22], Lemma 1, p. 329 or Brezis - Mironescu [10], Corollary 3), we have $W^{s+1 / p, p} \cap L^{\infty} \subset W^{s_{1}, p_{1}}$. Thus $v \in W^{s_{1}, p_{1}}\left(\mathcal{C}_{k+1}\right)$.

We complete the construction of the smoother map u_{1} in the following way: if $k=N-1$, then v is defined in \mathcal{C}_{N} and we set $u_{1}=v$; if $k<N-1$, we extend v to \mathcal{C}_{N} with the help of

Lemma 5 Let $0<s_{1}<\infty, 1<p_{1}<\infty, 1<s_{1} p_{1}<N,\left[s_{1} p_{1}\right] \leqslant j<N$. Then any $v \in$ $W^{s_{1}, p_{1}}\left(\mathcal{C}_{j} ; S^{1}\right)$ has an extension $u_{1} \in W^{s_{1}, p_{1}}\left(\mathcal{C}_{N} ; S^{1}\right)$ such that $u_{1} \mid \mathcal{C}_{l} \in W^{s_{1}, p_{1}}$ for $l=j, \ldots, N-1$.

When $s_{1}=1$, Lemma 5 is due to Brezis - Li [7], Section 1.3, "Filling" a hole; for the general case, see Lemma D. 3 in Appendix D.

We summarize what we have done so far: if $k=[s p]$, then there are some s_{1}, p_{1} such that $s<$ $s_{1}<1,1<p_{1}<\infty, s_{1} p_{1}=s p+1$ and a map $u_{1} \in W^{s_{1}, p_{1}}\left(\mathcal{C}_{N} ; S^{1}\right)$ such that $u_{1} \mid \mathcal{C}_{j} \in W^{s_{1}, p_{1}}, j=$ $k, \ldots, N-1$ and $\left.u_{1}\right|_{\mathcal{C}_{k}}=\left.u\right|_{\mathcal{C}_{k}}$. By Gagliardo - Nirenberg and the Sobolev embeddings, we have in particular $u_{1} \mid \mathcal{C}_{j} \in W^{s, p}, j=k, \ldots, N-1$. Finally, u and u_{1} are $W^{s, p}$ - homotopic by

Lemma 6 Let $0<s<1,1<p<\infty, 1<s p<N,[s p] \leqslant j<N$. If $\left.u\right|_{\mathcal{C}_{l}} \in W^{s, p}, u_{1} \mid \mathcal{C}_{l} \in W^{s, p}, l=$ j, \ldots, N, and $\left.u\right|_{\mathcal{C}_{j}}=\left.u_{1}\right|_{\mathcal{C}_{j}}$, then u and u_{1} are $W^{s, p}$-homotopic.

The case $s=1$ is due to Brezis -Li [7]; the proof of Lemma 6 in the general case is presented in the Appendix D- see Lemma D.4.

Step 2: induction on $[s p]$.
If $k=[s p]=N-1$, we have connected in the previous step u to $u_{1} \in W^{s_{1}, p_{1}}\left(\mathcal{C}_{N} ; S^{1}\right)$, where $s<s_{1}<1,1<p_{1}<\infty$ and $s_{1} p_{1}=s p+1 \geqslant N$. Using Case 1 (i.e., $s p \geqslant N$) from this section, u_{1} may be connected in $W^{s_{1}, p_{1}}$ (and thus in $W^{s, p}$, by Gagliardo - Nirenberg and the Sobolev embeddings) to some $v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$. This case is complete.

If $k=[s p]=N-2$, then $\left[s_{1} p_{1}\right]=N-1$. By the previous case, u_{1} can be connected in $W^{s_{1}, p_{1}}$ (and thus in $\left.W^{s, p}\right)$ to some $v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$. Clearly, the general case follows by induction.

The proof of Theorems 2 and 3 is complete.
We end this section with two simple consequences of the above proofs; these results supplement the description of the homotopy classes.

Corollary 4 Let $0<s<\infty, 1<p<\infty, s p \geqslant 2, N \geqslant 2$. For $u, v \in W^{s, p}\left(\Omega ; S^{1}\right)$, we have $[u]_{s, p}=[v]_{s, p} \Leftrightarrow \operatorname{deg}\left(\left.u\right|_{\Gamma_{\varepsilon}}\right)=\operatorname{deg}\left(\left.v\right|_{\Gamma_{\varepsilon}}\right)$ for every Γ.

Corollary 5 Let $0<s_{1}, s_{2}<\infty, 1<p_{1}, p_{2}<\infty, s_{1} p_{1} \geqslant 2, s_{2} p_{2} \geqslant 2, N \geqslant 2$. For $u, v \in$ $W^{s_{1}, p_{1}}\left(\Omega ; S^{1}\right) \cap W^{s_{2}, p_{2}}\left(\Omega ; S^{1}\right)$, we have $[u]_{s_{1}, p_{1}}=[v]_{s_{1}, p_{1}} \Leftrightarrow[u]_{s_{2}, p_{2}}=[v]_{s_{2}, p_{2}}$.

Clearly, Corollary 5 follows from Corollary 4. As for Corollary 4, let $u_{1}, v_{1} \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ be such that $\left[u_{1}\right]_{s, p}=[u]_{s, p}$ and $\left[v_{1}\right]_{s, p}=[v]_{s, p}$. Then, by Theorem 2 b),

$$
\begin{equation*}
[u]_{s, p}=[v]_{s, p} \Leftrightarrow\left[u_{1}\right]_{s, p}=\left[v_{1}\right]_{s, p} \Leftrightarrow\left[u_{1}\right]_{C^{0}}=\left[v_{1}\right]_{C^{0}} \Leftrightarrow \operatorname{deg}\left(\left.u_{1}\right|_{\Gamma}\right)=\operatorname{deg}\left(\left.v_{1}\right|_{\Gamma}\right), \quad \forall \Gamma . \tag{2}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\operatorname{deg}\left(\left.u_{1}\right|_{\Gamma}\right)=\operatorname{deg}\left(\left.v_{1}\right|_{\Gamma}\right) \Leftrightarrow \operatorname{deg}\left(\left.u_{1}\right|_{\Gamma_{\varepsilon}}\right)=\operatorname{deg}\left(\left.v_{1}\right|_{\Gamma_{\varepsilon}}\right) \Leftrightarrow \operatorname{deg}\left(\left.u\right|_{\Gamma_{\varepsilon}}\right)=\operatorname{deg}\left(\left.v\right|_{\Gamma_{\varepsilon}}\right), \forall \Gamma \tag{3}
\end{equation*}
$$

by standard properties of the degree.
We obtain Corollary 4 by combining (2) and (3).

4. Proof of Theorem 4

According to the discussion in the Introduction, we only have to prove part d). Let $s \geqslant 1,1<p<$ $\infty, N \geqslant 3,2 \leqslant s p<N$. Let $u \in W^{s, p}\left(\Omega ; S^{1}\right)$. By Theorem 2 a), there is some $v \in C^{\infty}\left(\bar{\Omega} ; S^{1}\right)$ such that $v \in[u]_{s, p}$. By Theorem 3 b), there is some $\varphi \in W^{s, p}(\Omega ; \mathbb{R}) \cap W^{1, s p}(\Omega ; \mathbb{R})$ such that $v=u e^{i \varphi}$. Let $\left(\varphi_{n}\right) \subset C^{\infty}(\bar{\Omega} ; \mathbb{R})$ be such that $\varphi_{n} \rightarrow \varphi$ in $W^{s, p} \cap W^{1, s p}$. By the Composition Theorem, the sequence of smooth maps $\left(v e^{-i \varphi_{n}}\right)$ converges to u in $W^{s, p}\left(\Omega ; S^{1}\right)$. The proof of Theorem 4 is complete.

5. Proof of Theorem 5

We start this section with a discussion on the stability of the degree: recall that if $s p \geqslant 2$, then deg $\left(\left.u\right|_{\Gamma_{\varepsilon}}\right)$ is well-defined and stable under $W^{s, p}$ convergence. However, while the condition $s p \geqslant 2$ is optimal for the existence of the degree (see Brezis - Li - Mironescu - Nirenberg [8], Remark 1), the stability of the degree of $W^{s, p}$ maps holds under (the weaker assumption of) $W^{s_{1}, p_{1}}$ convergence, where $s_{1} p_{1} \geqslant 1$. This property and Corollary 4 suggest the following generalization of Theorem 5

Theorem 7 Let $0<s<\infty, 1<p<\infty, 0<s_{1}<s, 1<p_{1}<\infty, 1 \leqslant s_{1} p_{1} \leqslant s p$. Then for each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$ there is some $\delta>0$ such that

$$
\left\{v \in W^{s, p}\left(\Omega ; S^{1}\right) ;\|v-u\|_{W^{s_{1}, p_{1}}}<\delta\right\} \subset[u]_{s, p}
$$

Note that $W^{s, p}\left(\Omega ; S^{1}\right) \subset W^{s_{1}, p_{1}}\left(\Omega ; S^{1}\right)$, by Gagliardo - Nirenberg and the Sobolev embeddings, so that Theorem 5 follows from Theorem 7 when $s p \geqslant 2$ (when $s p<2$, there is nothing to prove, by Theorem 1).

Proof of Theorem 7

Step 1: reduction to special values of s, s_{1}, p, p_{1}.
We claim that it suffices to prove Theorem 7 when

$$
\begin{equation*}
0<s_{1}<s<1-(N-1) / p, 1<p<\infty, 1<p_{1}<\infty, s p=2, s_{1} p_{1}=1, N \geqslant 2 . \tag{4}
\end{equation*}
$$

Indeed, assume Theorem 7 proved for all the values of s, s_{1}, p, p_{1} satisfying (4). Let $0<s_{0}<\infty, 1<$ $p_{0}<\infty, N \geqslant 2$ be such that $s_{0} p_{0} \geqslant 2$ (when $N=1$ or $s_{0} p_{0}<2$, there is nothing to prove). Let $u \in W^{s_{0}, p_{0}}$ and let s, s_{1}, p, p_{1} satisfy (4) and the additional condition $s<s_{0}$. By Gagliardo - Nirenberg and the Sobolev embeddings, there is some $\delta_{0}>0$ such that

$$
\begin{align*}
M= & \left\{v \in W^{s_{0}, p_{0}}\left(\Omega ; S^{1}\right) ;\|v-u\|_{W^{s_{0}, p_{0}}}<\delta_{0}\right\} \subset \tag{5}\\
& \left\{v \in W^{s, p}\left(\Omega ; S^{1}\right) ;\|v-u\|_{W^{s_{1}, p_{1}}}<\delta\right\} .
\end{align*}
$$

By the special case of Theorem 7, we have $v \in M \Rightarrow v \in[u]_{s, p}$. By Corollary 5, we obtain $M \subset[u]_{s_{0}, p_{0}}$, i.e., $[u]_{s_{0}, p_{0}}$ is open.

In conclusion, it suffices to prove Theorem 7 under assumption (4). Moreover, by Proposition 1 we may assume $u=1$.

Step 2: construction of a good covering.
We fix a small neighborhood \mathcal{O} of $\bar{\Omega}$. By reflections across the boundary of Ω, we may associate to each $u \in W^{s, p}\left(\Omega ; S^{1}\right)$ an extension $\tilde{u} \in W^{s, p}\left(\mathcal{O} ; S^{1}\right)$ satisfying

$$
\begin{equation*}
\|\tilde{u}-\tilde{v}\|_{W^{s, p}(\mathcal{O})} \leqslant C_{1}\|u-v\|_{W^{s, p}(\Omega)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\tilde{u}-\tilde{v}\|_{W^{s_{1}, p_{1}}(\mathcal{O})} \leqslant C_{1}\|u-v\|_{W^{s_{1}, p_{1}}(\Omega)} \tag{7}
\end{equation*}
$$

In this section, C_{1}, C_{2}, \ldots denote constants independent of u, v, \ldots.
We fix some small $\varepsilon>0$. By Lemma E. 2 in Appendix E, for each $v \in W^{s, p}\left(\Omega ; S^{1}\right)$ there is some $x \in \mathbb{R}^{N}$ (depending possibly on v) such that the covering \mathcal{C}_{N}^{x} has the properties

$$
\begin{equation*}
\left.v\right|_{\mathcal{C}_{j}^{x}} \in W^{s, p}, j=1, \ldots, N-1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left.v\right|_{\mathcal{C}_{1}^{x}}-1\right\|_{W^{s_{1}, p_{1}}\left(\mathcal{C}_{1}^{x}\right)} \leqslant C_{2}\|v-1\|_{W^{s_{1}, p_{1}}(\mathcal{O})} \leqslant C_{2} C_{1}\|v-1\|_{W^{s_{1}, p_{1}}(\Omega)} \tag{9}
\end{equation*}
$$

(the last inequality follows from (7)).
While x may depend on v, the covering \mathcal{C}_{N}^{x} has two features independent of v :

$$
\begin{equation*}
\text { the number of squares in } \mathcal{C}_{2}^{x} \text { has a uniform upper bound } K \tag{10}
\end{equation*}
$$

if C^{1}, C^{2} are two squares in \mathcal{C}_{2}^{x}, there is a path of squares in \mathcal{C}_{2}^{x} each one having an edge in common with its neighbours, connecting C^{1} to C^{2}.

Step 3: choice of δ.
We rely on
Lemma 7 Let $C=(0, \varepsilon)^{2}$ and $0<s_{1}<1,1<p_{1}<\infty, s_{1} p_{1}=1$. Then for each $\delta_{1}>0$ there is some $\delta_{2}>0$ such that every map $v \in W^{s_{1}, p_{1}}\left(\partial C ; S^{1}\right)$ satisfying

$$
\begin{equation*}
\|v-1\|_{W^{s_{1}, p_{1}}(\partial C)}<\delta_{2} \tag{12}
\end{equation*}
$$

has a lifting $\varphi \in W^{s_{1}, p_{1}}(\partial C ; \mathbb{R})$ such that

$$
\begin{equation*}
\|\varphi\|_{W^{s_{1}, p_{1}}(\partial C)}<\delta_{1} . \tag{13}
\end{equation*}
$$

Clearly, in Lemma 7, C may be replaced by the unit disc. For the unit disc, the proof of Lemma 7 is given in Appendix C; see Lemma C.3. In particular, if (12) holds, then we have

$$
\begin{equation*}
\|\varphi\|_{L^{1}(\partial C)}<C_{3} \delta_{1} \tag{14}
\end{equation*}
$$

for some C_{3} independent of the δ^{\prime} s. We now take δ_{1} such that

$$
\begin{equation*}
\delta_{1}<\pi \varepsilon / C_{3} . \tag{15}
\end{equation*}
$$

With δ_{2} provided by Lemma 7, we choose

$$
\begin{equation*}
\delta=\min \left\{\delta_{2} / C_{0}, \delta_{2} / C_{1} C_{2}\right\} \tag{16}
\end{equation*}
$$

Step 4: construction of a global lifting for $\left.v\right|_{\mathcal{C}_{1}^{x}}$.
Let $v \in W^{s, p}\left(\Omega ; S^{1}\right)$ satisfy $\|v-1\|_{W^{s_{1}, p_{1}}}<\delta$. Since $\delta \leqslant \delta_{2} / C_{1} C_{2}$, (9) implies that the conclusion of Lemma 7 holds for $\left.v\right|_{\partial C}$ and every square C in \mathcal{C}_{2}^{x}. Thus, for every $C \in \mathcal{C}_{2}^{x},\left.v\right|_{\partial C}$ has a lifting φ_{C} satisfying (14) and $\varphi_{C} \in W^{s_{1}, p_{1}}(\partial C)$.

We claim that $\varphi_{C} \in W^{s, p}(\partial C)$. The statement being local, it suffices to prove that $\varphi_{C} \in W^{s, p}(L)$, where L is the union of three edges in ∂C. Since L is Lipschitz homeomorphic with an interval, by Theorem 1 in [4] there is some $\psi \in W^{s, p}(L)$ such that $v=e^{i \psi}$ in L (here we use $0<s<1$ and $s p=2 \geqslant 1$). In L, we have $\psi-\varphi_{C} \in\left(W^{s, p}+W^{s_{1}, p_{1}}\right)(L ; 2 \pi \mathbb{Z})$; thus $\psi-\varphi_{C}$ is constant a.e. in L (see [4], Remark B.3), so that the claim follows.

Since $s p>1$ and $\left.v\right|_{\mathcal{C}_{1}^{x}} \in W^{s, p}, \varphi_{C} \in W^{s, p}$, we may redefine $\left.v\right|_{\mathcal{C}_{1}^{x}}$ and φ_{C} on null sets in order to have continuous functions. We claim that the function $\varphi(y)=\varphi_{C}(y)$, if $y \in C$ is well-defined on \mathcal{C}_{1}^{x} (and thus
continuous and $W^{s, p}$). By (11), it suffices to prove that, if C^{1}, C^{2} are squares in \mathcal{C}_{2}^{x} having the edge \mathcal{E} in common, then $\varphi_{C^{1}}=\varphi_{C^{2}}$ on \mathcal{E}. Clearly, on \mathcal{E} we have $\varphi_{C^{2}}=\varphi_{C^{1}}+2 l \pi$ for some $l \in \mathbb{Z}$. Thus

$$
\left\|\varphi_{C^{1}}+2 l \pi\right\|_{L^{1}(\mathcal{E})}=\left\|\varphi_{C^{2}}\right\|_{L^{1}(\mathcal{E})}<C_{3} \delta_{1}
$$

by (14). It follows that

$$
\begin{equation*}
2|l| \pi \varepsilon=\|2 l \pi\|_{L^{1}(\mathcal{E})} \leqslant\left\|\varphi_{C^{1}}\right\|_{L^{1}(\mathcal{E})}+C_{3} \delta_{1}<2 C_{3} \delta_{1} \tag{17}
\end{equation*}
$$

which implies $l=0$ by (15) and (16).
In conclusion, $\left.v\right|_{\mathcal{C}_{1}^{x}}$ has a global lifting $\varphi \in W^{s, p}\left(\mathcal{C}_{1}^{x} ; \mathbb{R}\right)$.
Step 5: construction of a good extension w of $\left.v\right|_{\mathcal{C}_{1}^{x}}$.
Let $\varphi_{2} \in W^{s+1 / p, p}\left(\mathcal{C}_{2}^{x} ; \mathbb{R}\right)$ be an extension of $\varphi, \varphi_{3} \in W^{s+2 / p, p}\left(\mathcal{C}_{3}^{x} ; \mathbb{R}\right)$ an extension of φ_{2}, and so on; let $\varphi_{N} \in W^{s+(N-1) / p, p}\left(\mathcal{C}_{N}^{x} ; \mathbb{R}\right)$ be the final extension. Note that these extensions exist since $s<1+(N-1) / p$, so that trace theory applies. We set $w=e^{i \varphi_{N}} \in W^{s+(N-1) / p, p}\left(\mathcal{C}_{N}^{x} ; S^{1}\right)$. Since $(s+(N-1) / p) \cdot p=N+1>N$, we obtain by Theorem 3 that $w \in[1]_{s+(N-1) / p, p}$. By Corollary 5, we also have $w \in[1]_{s, p}$.

We complete the proof of Theorem 7 by proving
Step 6: $w \in[v]_{s, p}$.
We rely on the following variant of Lemma 6
Lemma 8 Let $0<s<1,1<p<\infty, 1<s p<N,[s p] \leqslant j<N$. Let $v, w \in W^{s, p}\left(\mathcal{C}_{N} ; S^{1}\right)$ be such that $\left.v\right|_{\mathcal{C}_{l}} \in W^{s, p},\left.w\right|_{\mathcal{C}_{l}} \in W^{s, p}, l=j, \ldots, N-1$. Assume that $\left.v\right|_{\mathcal{C}_{j}}$ and $\left.w\right|_{\mathcal{C}_{j}}$ are $W^{s, p}$-homotopic. Then v and w are $W^{s, p}$-homotopic.

The proof of Lemma 8 is given Appendix D; see Lemma D.5.
When $N \geqslant 3$, we are going to apply Lemma 8 with $j=2$. In order to prove that $\left.v\right|_{\mathcal{C}_{2}}$ and $\left.w\right|_{\mathcal{C}_{2}}$ are $W^{s, p}$-homotopic, it suffices to find, for each $C \in \mathcal{C}_{2}$, a homotopy U_{C} from $\left.v\right|_{C}$ to $\left.w\right|_{C}$ preserving the boundary condition on ∂C; we next glue together these homotopies (this works since $0<s<1$). We construct U_{C} using the lifting: since $s p=2=\operatorname{dim} C$ and C is simply connected, by Theorem 2 in [4] there is some $\psi \in W^{s, p}(C ; \mathbb{R})$ such that $v=e^{i \psi}$ in C. By taking traces, we find that $\left.v\right|_{\partial C}=e^{i \text { tr } \psi}=e^{i \varphi_{C}}$; thus $\operatorname{tr} \psi-\varphi_{C} \in\left(W^{s-1 / p, p}+W^{s, p}\right)(\partial C ; 2 \pi \mathbb{Z})$. Therefore, $\operatorname{tr} \psi-\varphi_{C}$ is constant a.e., by Remark B. 3 in [4]. We may assume that $\operatorname{tr} \psi=\varphi_{C}=\operatorname{tr} \varphi_{2}$. Then $t \longmapsto e^{i\left((1-t) \psi+t \varphi_{2}\right)}$ is the desired homotopy U_{C}.

When $N=2$, the above argument proves directly (i.e., without the help of Lemma 8) that $w \in[v]_{s, p}$. The proof of Theorem 7 is complete.

Appendix A An extension lemma

In this appendix, we investigate, in a special case, the question whether a map in $W^{\sigma, p}\left(\partial \omega ; S^{1}\right)$ admits an extension in $W^{\sigma+1 / p, p}\left(\omega ; S^{1}\right)$.

Lemma A. 1 Let $0<\sigma<1,1<p<\infty, \sigma p<1, N \geqslant 2$. Let ω be a smooth bounded domain in \mathbb{R}^{N}. Then every $v \in W^{\sigma, p}\left(\partial \omega ; S^{1}\right)$ has an extension $w \in W^{\sigma+1 / p, p}\left(\omega ; S^{1}\right)$.
Proof. We distinguish two cases: $\sigma \leqslant 1-1 / p$ and $\sigma>1-1 / p$.
Case $\sigma \leqslant 1-1 / p$: since $\sigma p<1, v$ may be lifted in $W^{\sigma, p}$ (see Bourgain - Brezis - Mironescu [4]), i.e. there is some $\psi \in W^{\sigma, p}(\partial \omega ; \mathbb{R})$ such that $v=e^{i \psi}$. Let $\varphi \in W^{\sigma+1 / p, p}(\omega ; \mathbb{R})$ be an extension of ψ. Then $w=e^{i \varphi} \in W^{\sigma+1 / p, p}\left(\omega ; S^{1}\right)$ (since $\sigma+1 / p \leqslant 1$ and $x \mapsto e^{i x}$ is Lipchitz). Clearly, w has all the required properties.
Case $\sigma>1-1 / p$: the argument is similar, but somewhat more involved. The proof in [4] actually yields a lifting which is better than $W^{\sigma, p}$; more specifically, this lifting ψ belongs to $W^{t \sigma, p / t}$ for $0<t \leqslant 1$, see Remark 2, p.41, in the above reference. On the other hand, since $\sigma>1-1 / p$, we have $t=p /(\sigma p+1)<1$.

For this choice of t, we obtain that v has a lifting $\psi \in W^{\sigma, p} \cap W^{1-1 /(\sigma p+1), \sigma p+1}$. This ψ has an extension $\varphi \in W^{\sigma+1 / p, p} \cap W^{1, \sigma p+1}$. By the Composition Theorem stated in the Introduction, the map $w=e^{i \varphi}$ belongs to $W^{\sigma+1 / p, p}\left(\omega ; S^{1}\right)$. Clearly, we have $\operatorname{tr} w=v$.

Remark A.1. The special case $p<2$ and $\sigma=1-1 / p$ was originally treated by Hardt - Kinderlehrer Lin [16] via a totally different method. Their argument extends to the case $p<2$ and $\sigma p<1$, but does not seem to apply when $p \geqslant 2$.

Appendix B Good restrictions

In this appendix, we describe a natural substitute for the trace theory when $s=1 / p$; it is known that the standard trace theory is not defined in this limiting case.

For simplicity, we consider mainly the case of a flat boundary. However, we state Lemma B. 5 (used in the proof of Theorem 1) for a general domain. We start by introducing some
Notations: let $Q=(0,1)^{N-1}, \Omega_{+}=Q \times(0,1), \Omega_{-}=Q \times(-1,0), \Omega=\Omega_{+} \cup \Omega_{-}=Q \times(-1,1)$. If v is a function defined on Q, we set $\tilde{v}\left(x^{\prime}, t\right)=v(x)$ for $\left(x^{\prime}, t\right) \in \Omega$.

Lemma B. 1 Let $0<s<1,1<p<\infty$. Then for $u \in W^{s, p}\left(\Omega_{+}\right)$and for any function v defined on Q, the following assertions are equivalent:
a) $v \in W^{s, p}(Q)$ and

$$
\begin{equation*}
I=\int_{\Omega_{+}} \frac{|u(x)-\tilde{v}(x)|^{p}}{x_{N}^{s p}} d x<\infty \tag{B.1}
\end{equation*}
$$

b) the map $w_{1}=\left\{\begin{array}{ll}u, & \text { in } \Omega_{+} \\ \tilde{v}, & \text { in } \Omega_{-}\end{array}\right.$, belongs to $W^{s, p}(\Omega)$;
c) the map $w_{2}=\left\{\begin{array}{ll}u-\tilde{v}, & \text { in } \Omega_{+} \\ 0, & \text { in } \Omega_{-}\end{array}\right.$belongs to $W^{s, p}(\Omega)$.

Proof. Recall that, if U is a smooth or cube-like domain, then an equivalent (semi-) norm on $W^{s, p}(U)$ is given by

$$
\begin{equation*}
f \longmapsto\left(\sum_{j=1}^{N} \int_{0}^{\infty} \int_{\left\{x \in U ; x+t e_{j} \in U\right\}} \frac{f\left(x+t e_{j}\right)-\left.f(x)\right|^{p}}{t^{s p+1}} d x d t\right)^{1 / p} \tag{B.2}
\end{equation*}
$$

(see, e.g., Triebel [25]).
Clearly, both b) and c) imply that $v \in W^{s, p}(Q)$. Conversely, for $v \in W^{s, p}(Q)$ we have to prove the equivalence of (B.1), b) and c). We consider the norm given by (B.2). Taking into account the fact that w_{1}, w_{2} belong to $W^{s, p}$ in Ω_{+}and Ω_{-}, we see that

$$
\begin{equation*}
w_{1} \in W^{s, p}(\Omega) \Leftrightarrow J=\int_{\Omega_{+}} \int_{-1}^{0} \frac{|u(x)-\tilde{v}(x)|^{p}}{\left(x_{N}-t\right)^{s p+1}} d t d x<\infty \tag{B.3}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{2} \in W^{s, p}(\Omega) \Leftrightarrow J<\infty \tag{B.4}
\end{equation*}
$$

The lemma follows from the obvious inequality

$$
\frac{1-2^{-s p}}{s p} I \leqslant J \leqslant \frac{1}{s p} I .
$$

We now assume in addition that $s p \geqslant 1$ and derive the following
Corollary B. 1 Let $0<s<1,1<p<\infty$ be such that $s p \geqslant 1$. Then, for every $u \in W^{s, p}\left(\Omega_{+}\right)$we have
a) for each $0 \leqslant t_{0}<1$, there is at most one function v defined on Q such that the maps

$$
w_{1}^{t_{0}}= \begin{cases}u, & \text { in } Q \times\left(t_{0}, 1\right) \\ \tilde{v}, & \text { in } Q \times\left(-1, t_{0}\right)\end{cases}
$$

and

$$
w_{2}^{t_{0}}= \begin{cases}u-\tilde{v}, & \text { in } Q \times\left(t_{0}, 1\right) \\ 0, & \text { in } Q \times\left(-1, t_{0}\right)\end{cases}
$$

belong to $W^{s, p}(\Omega)$;
b) for a.e. $0 \leqslant t_{0}<1$, the function $v=u\left(\cdot, t_{0}\right)$ has the property that $w_{1}^{t_{0}}, w_{2}^{t_{0}} \in W^{s, p}(\Omega)$.
(As usual, the uniqueness of v is understood a.e.)
The above corollary suggests the following
Definition: let $0<s<1,1<p<\infty, s p \geqslant 1,0 \leqslant t_{0}<1$. Let $u \in W^{s, p}\left(\Omega_{+}\right)$and let v be a function defined on Q. Then v is the downward good restriction of u to $\left\{x_{N}=t_{0}\right\}$ if $w_{1}^{t_{0}}, w_{2}^{t_{0}} \in W^{s, p}(\Omega)$; we then write $v=$ Rest $\left.u\right|_{x_{N}=t_{0}} ^{-}$. Similarly, for $0<t_{0}<1$ we may define an upward good restriction Rest $\left.u\right|_{x_{N}=t_{0}} ^{+}=v$ as the unique function v defined on Q satisfying the two equivalent conditions
a) $W_{1}^{t_{0}}=\left\{\begin{array}{ll}\tilde{v}, & \text { in } Q \times\left(t_{0}, 1\right) \\ u, & \text { in } Q \times\left(0, t_{0}\right)\end{array} \in W^{s, p}\left(\Omega_{+}\right)\right.$
and
b) $W_{2}^{t_{0}}=\left\{\begin{array}{ll}0, & \text { in } Q \times\left(t_{0}, 1\right) \\ u-\tilde{v}, & \text { in } Q \times\left(0, t_{0}\right)\end{array} \in W^{s, p}\left(\Omega_{+}\right)\right.$.
If v is both an upward and a downward good restriction, we call it a good restriction and we write $v=$ Rest $\left.u\right|_{x_{N}=t_{0}}$.
Corollary B. 2 Let $0<s<1,1<p<\infty$, sp $\geqslant 1$. Let $u \in W^{s, p}\left(\Omega_{+}\right)$. Then, for a.e. $0<t_{0}<1$, we have Rest $\left.u\right|_{x_{N}=t_{0}}=u\left(\cdot, t_{0}\right)$.

Remark B. 1 If $s p>1$, then functions $u \in W^{s, p}\left(\Omega_{+}\right)$have traces for all $0 \leqslant t_{0} \leqslant 1$. However, these traces need not be good restrictions. Here is an example: For $N=2$, one may prove that the map $x \mapsto\left(x-1 / 2 e_{1}\right) /\left|x-1 / 2 e_{1}\right|$ belongs to $W^{s, p}(\Omega)$ if $0<s<1$, $1<p<\infty, s p<2$. However, if $s p>1$, its trace

$$
\left.\operatorname{tr} u\right|_{x_{2}=0}=\left\{\begin{aligned}
1, & \text { if } x_{1}>1 / 2 \\
-1, & \text { if } x_{1}<1 / 2
\end{aligned}\right.
$$

does not belong to $W^{s, p}(0,1)$, so that it is not a good restriction.
Remark B. 2 In the limiting case $s=1 / p$, functions in $W^{s, p}$ do not have traces. However, they do have good restrictions a.e.

Here is yet another simple consequence of Lemma B. 1
Corollary B. 3 Let $0<s<1,1<p<\infty, s p \geqslant 1$. Let $u_{ \pm} \in W^{s, p}\left(\Omega_{ \pm}\right)$be such that Rest $\left.u_{+}\right|_{x_{N}=0} ^{-}=$ Rest $\left.u_{-}\right|_{x_{N}=0} ^{+}$. Then the map $w=\left\{\begin{array}{ll}u_{+}, & \text {in } \Omega_{+} \\ u_{-}, & \text {in } \Omega_{-}\end{array}\right.$belongs to $W^{s, p}$.

The following results explain the connections between good restrictions and traces.
Lemma B. 2 Let $0<s<1,1<p<\infty, s p>1$. Let $u \in W^{s, p}\left(\Omega_{+}\right)$. Assume that there exists $v=$ Rest $\left.u\right|_{x_{N}=0} ^{-}$. Then $v=\left.\operatorname{tr} u\right|_{x_{N}=0}$.
Proof. Let $w=\left\{\begin{array}{ll}u-\tilde{v}, & \text { in } \Omega_{+} \\ 0, & \text { in } \Omega_{-} .\end{array}\right.$By Lemma B.1, we have $w \in W^{s, p}(\Omega)$. By trace theory and continuity of the trace, we have $0=\left.\operatorname{tr} w\right|_{x_{N}=0}$, so that $\left.\operatorname{tr} u\right|_{x_{N}=0}=v$.

Lemma B. 3 Let $0<s<1,1<p<\infty$, sp $\geqslant 1$. Let $u \in W^{s+1 / p, p}\left(\Omega_{+}\right)$. Then, considered as $a W^{s, p}$ function, u has a good downward restriction to $\left\{x_{N}=0\right\}$ which coincides with $\left.\operatorname{tr} u\right|_{x_{N}=0}$.
Proof. Let $v=\left.\operatorname{tr} u\right|_{x_{N}=0}$. Then $v \in W^{s, p}(Q)$, by the trace theory. By Lemma B.1, it remains to prove that

$$
\begin{equation*}
\int_{\Omega_{+}} \frac{|u(x)-\tilde{v}(x)|^{p}}{x_{N}^{s p}} d x<\infty \tag{B.5}
\end{equation*}
$$

Assume first that $s+1 / p=1$. Then (B.5) follows from the well-known Hardy inequality

$$
\begin{equation*}
\int_{Q} \int_{0}^{1} \frac{\left|u\left(x^{\prime}, t\right)-u\left(x^{\prime}, 0\right)\right|^{p}}{t^{p}} d t d x \leqslant C\|D u\|_{L^{p}}^{p}, \forall u \in W^{1, p}\left(\Omega_{+}\right) \tag{B.6}
\end{equation*}
$$

Consider now the case where $s+1 / p \neq 1$. Let $\sigma=s+1 / p$. We are going to prove that

$$
\begin{equation*}
\int_{\Omega_{+}} \frac{|u(x)-\tilde{v}(x)|^{p}}{x_{N}^{s p}} d x \leqslant C\|u\|_{W^{\sigma, p}}^{p} \tag{B.7}
\end{equation*}
$$

for some convenient equivalent (semi-) norm on $W^{\sigma, p}$. It is useful to consider the norm

$$
\begin{equation*}
f \mapsto\left(\sum_{j=1}^{N} \int_{0}^{\infty} \int_{\left\{x \in U ; x+t e_{j} \in U, x+2 t e_{j} \in U\right\}} \frac{\left|f\left(x+2 t e_{j}\right)-2 f\left(x+t e_{j}\right)+f(x)\right|^{p}}{t^{\sigma p+1}} d x d t\right)^{1 / p} \tag{B.8}
\end{equation*}
$$

(see, e.g., Triebel [24]).
For any $x^{\prime} \in Q$ such that $u_{x^{\prime}}=u\left(x^{\prime}, \cdot\right) \in W^{\sigma, p}(0,1)$, the map

$$
f_{x^{\prime}}(t)= \begin{cases}u\left(x^{\prime}, t\right), & \text { if } t>0 \\ v\left(x^{\prime}\right), & \text { if } t<0\end{cases}
$$

belongs to $W^{\sigma, p}(-1,1)$, by standard trace theory. Moreover, for any such x^{\prime} we have

$$
\begin{equation*}
\left\|f_{x^{\prime}}\right\|_{W^{\sigma, p}(-1,1)}^{p} \leqslant C\left\|u_{x^{\prime}}\right\|_{W^{\sigma, p}(0,1)}^{p} \tag{B.9}
\end{equation*}
$$

i.e.

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\{h \in(-1,1) ; h+t \in(-1,1), h+2 t \in(-1,1)\}} \frac{\left|f_{x^{\prime}}(h+2 t)-2 f_{x^{\prime}}(h+t)+f_{x^{\prime}}(h)\right|^{p}}{t^{\sigma p+1}} d h d t \leqslant \\
& C \int_{0}^{\infty} \underset{\{h \in(0,1) ; h+t \in(0,1), h+2 t \in(0,1)\}}{\rightarrow} \int \frac{\left|u_{x^{\prime}}(h+2 t)-2 u_{x^{\prime}}(h+t)+u_{x^{\prime}}(h)\right|^{p}}{t^{\sigma p+1}} d h d t .
\end{aligned}
$$

In particular,

$$
\begin{equation*}
I=\int_{0}^{1 / 2} \int_{-2 t}^{-t} \frac{\left|f_{x^{\prime}}(h+2 t)-2 f_{x^{\prime}}(h+t)+f_{x^{\prime}}(h)\right|^{p}}{t^{\sigma p+1}} d h d t \leqslant C\left\|u_{x^{\prime}}\right\|_{W \sigma, p}^{p} . \tag{B.10}
\end{equation*}
$$

Since

$$
\begin{equation*}
I \geqslant C \int_{0}^{1 / 3} \frac{\left|u\left(x^{\prime}, t\right)-v\left(x^{\prime}\right)\right|^{p}}{t^{\sigma p}} d t=C \int_{0}^{1 / 3} \frac{\left|u\left(x^{\prime}, t\right)-v\left(x^{\prime}\right)\right|^{p}}{t^{s p+1}} d t \tag{B.11}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\int_{0}^{1 / 3} \frac{\left|u\left(x^{\prime}, t\right)-v\left(x^{\prime}\right)\right|^{p}}{t^{s p+1}} d t \leqslant C\left\|u_{x^{\prime}}\right\|_{W^{\sigma, p}}^{p} \tag{B.12}
\end{equation*}
$$

On the other hand, we clearly have

$$
\begin{equation*}
\int_{1 / 3}^{1} \frac{\left|u\left(x^{\prime}, t\right)-v\left(x^{\prime}\right)\right|^{p}}{t^{s p+1}} d t \leqslant C\left\|u_{x^{\prime}}\right\|_{L^{p}}^{p}+C\left|v\left(x^{\prime}\right)\right|^{p} \tag{B.13}
\end{equation*}
$$

By combining (B.12), (B.13) and integrating with respect to x^{\prime}, we obtain (B.7). The proof of Lemma B. 3 is complete.

A simple consequence of Lemma B. 3 is the following
Lemma B. 4 Let $0<s<1,1<p<\infty, s p \geqslant 1$ and $\rho>s$. Let $u_{1} \in W^{s, p}\left(\Omega_{+}\right)$and $u_{2} \in W^{\rho, p}\left(\Omega_{-}\right)$. Assume that u_{1} has a good downward restriction $v=$ Rest $\left.u_{1}\right|_{x_{N}=0} ^{-}$and that $v=\left.\operatorname{tr} u_{2}\right|_{x_{N}=0}$. Then the map

$$
w= \begin{cases}u_{1}, & \text { in } \Omega_{+} \\ u_{2}, & \text { in } \Omega_{-}\end{cases}
$$

belongs to $W^{s, p}(\Omega)$.
Proof. Let $u_{3} \in W^{s+1 / p, p}\left(\Omega_{-}\right)$be an extension of v. Then $w=w_{1}+w_{2}$, where

$$
w_{1}= \begin{cases}u_{1}, & \text { in } \Omega_{+} \\ u_{3}, & \text { in } \Omega_{-}\end{cases}
$$

and

$$
w_{2}= \begin{cases}0, & \text { in } \Omega_{+} \\ u_{2}-u_{3}, & \text { in } \Omega_{-}\end{cases}
$$

By Lemma B. 3 and the assumption $v=$ Rest $\left.u_{1}\right|_{x_{N}=0} ^{-}$, we have Rest $\left.u_{1}\right|_{x_{N}=0} ^{-}=$Rest $\left.u_{3}\right|_{x_{N}=0} ^{+}$. By Corollary B.3, we find that $w_{1} \in W^{s, p}(\Omega)$. It remains to prove that $w_{2} \in W^{s, p}(\Omega)$. Let $\sigma=\min$ $\{\rho, s+1 / p, 1\}$. Then $w_{2} \in W^{\sigma, p}(\Omega)$, by standard trace theory. Thus $w_{2} \in W^{s, p}(\Omega)$.

We conclude this section by stating the following precised form of Corollary B.1, b) in the case of a general boundary. We use the same notations as in the proof of Theorem 1, Case 4.

Lemma B. 5 em Let $u \in W^{1 / p, p}(\Omega)$. Then
a) for a.e. $0<\delta<\varepsilon$ we have

$$
\begin{equation*}
\left.u\right|_{\Sigma_{\delta}} \in W^{1 / p, p}\left(\Sigma_{\delta}\right) \text { and } \int_{\Sigma_{\delta}} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+1}} d y d s_{x}<\infty \tag{B.14}
\end{equation*}
$$

b) for any such δ, u has a good restriction to Σ_{δ} which coincides (a.e. on Σ_{δ}) with $\left.u\right|_{\delta}$.

Appendix C Global lifting

In this appendix, we investigate the existence of a global lifting in some domains with non-trival topology.
Lemma C. 1 Let $0<s<\infty, 1<p<\infty, s p \geqslant N, N \geqslant 2$. Let $u \in W^{s, p}\left(S^{1} \times B_{1} ; S^{1}\right)$ be such that $\operatorname{deg}\left(\left.u\right|_{S^{1} \times B_{1}}\right)=0$. Then there is some $\varphi \in W^{s, p}\left(S^{1} \times B_{1} ; S^{1}\right)$ such that $u=e^{i \varphi}$.
Here, B_{1} is the unit ball in \mathbb{R}^{N-1}.
Proof. Let $v: \mathbb{R} \times B_{1} \rightarrow S^{1}, v(t, x)=u\left(e^{i t}, x\right)$. Then $v \in W_{l o c}^{s, p}\left(\mathbb{R} \times B_{1} ; S^{1}\right)$, where "loc" refers only to the variable t. By Theorem 2 in Bourgain - Brezis - Mironescu [4], there is some $\psi \in W_{\text {loc }}^{s, p}\left(\mathbb{R} \times B_{1} ; \mathbb{R}\right)$ such that $v=e^{i \psi}$. We claim that ψ is 2π-periodic in the variable t. Indeed, for a.e. $x \in B_{1}$, we have $u \in W^{s, p}\left(S^{1} \times\{x\} ; S^{1}\right)$ and deg $\left(\left.u\right|_{S^{1} \times\{x\}}\right)=0$. In particular, for any such x the map $\left.u\right|_{S^{1} \times\{x\}}$ has a continuous lifting η_{x}. On the other hand, for a.e. $x \in B_{1}$ we have $\psi_{x}=\psi(\cdot, x) \in W_{l o c}^{s, p}(\mathbb{R} \times\{x\} ; \mathbb{R})$. Thus, with $\lambda_{x}(t)=\eta_{x}\left(e^{i t}\right)$, we find that for a.e. $x \in B_{1}$ the function $\psi_{x}-\lambda_{x}$ is continuous and $2 \pi \mathbb{Z}$ -valued; therefore it is a constant. Since λ_{x} is 2π-periodic, so is ψ_{x} for a.e. $x \in B_{1}$. We obtain that ψ is 2π-periodic in the variable t. Thus the map $\varphi: S^{1} \times B_{1} \rightarrow \mathbb{R}, \varphi\left(e^{i t}, x\right)=\psi(t, x)$ is well-defined and belongs to $W^{s, p}\left(S^{1} \times B_{1} ; \mathbb{R}\right)$. Moreover, we clearly have $u=e^{i \varphi}$.

In the same vein, we have

Lemma C. 2 Let $s \geqslant 1,1<p<\infty, N \geqslant 3,2 \leqslant s p<N$. Let $u \in W^{s, p}\left(S^{1} \times B_{1} ; S^{1}\right)$ be such that $\operatorname{deg}\left(\left.u\right|_{S^{1} \times B_{1}}\right)=0$. Then there is some $\varphi \in W^{s, p}\left(S^{1} \times B_{1} ; \mathbb{R}\right) \cap W^{1, s p}\left(S^{1} \times B_{1} ; \mathbb{R}\right)$ such that $u=e^{i \varphi}$.

The proof is similar to that of Lemma C.1; one has to use Lemma 4 in [4] instead of Theorem 2 in [4].
Lemma C. 3 Let $1<p<\infty$ and $\delta_{1}>0$. Then there is some $\delta_{2}>0$ such that every $v \in W^{1 / p, p}\left(S^{1} ; S^{1}\right)$ satisfying $\|v-1\|_{W^{1 / p, p}\left(S^{1}\right)}<\delta_{2}$ has a global lifting $\varphi \in W^{1 / p, p}\left(S^{1} ; \mathbb{R}\right)$ such that $\|\varphi\|_{W^{1 / p, p}\left(S^{1}\right)}<\delta_{1}$.
Proof. Recall that if I is an interval, then every $w \in W^{1 / p, p}\left(I ; S^{1}\right)$ has a lifting $\psi \in W^{1 / p, p}(I ; \mathbb{R})$ (see Bourgain - Brezis - Mironescu [4], Theorem 1). Moreover, this lifting may be chosen to be (locally) continuous with respect to w, i.e. for every $w_{0} \in W^{1 / p, p}\left(I ; S^{1}\right)$ there is some $\delta_{0}>0$ such that in the set

$$
\left\{w ;\left\|w-w_{0}\right\|_{W^{1 / p, p}\left(I ; S^{1}\right)}<\delta_{0}\right\}
$$

there is a lifting $w \mapsto \psi$ continuous for the $W^{1 / p, p}$ norm. (This assertion can be established using the same argument as in Step 7 of the proof of Theorem 4 in Brezis, Nirenberg [12]; it can also be derived from the explicit construction of ψ in the proof of Theorem 1 in [4]; see also Boutet de Monvel, Berthier, Georgescu, Purice [6] when $p=2$).
Let $I=[-2 \pi, 2 \pi]$. To each $v \in W^{1 / p, p}\left(S^{1} ; S^{1}\right)$ we associate the map $w \in W^{1 / p, p}\left(I ; S^{1}\right), w(t)=v\left(e^{i t}\right)$. By the above considerations, for every $\delta_{3}>0$ there is some $\delta_{4}>0$ such that, if $\|v-1\|_{W^{1 / p, p}\left(S^{1}\right)}<\delta_{4}$, then w has a lifting ψ such that $\|\psi\|_{W^{1 / p, p}(I)}<\delta_{3}$. We claim that ψ is 2π-periodic if δ_{3} is small enough. Indeed, the function $\xi(t)=\psi(t-2 \pi)-\psi(t)$ belongs to $W^{1 / p, p}([0,2 \pi] ; 2 \pi \mathbb{Z})$, so that ξ is constant a.e. (see [4], Theorem B.1). Since $\|\xi\|_{L^{1}} \leqslant\|\psi\|_{L^{1}}<C \delta_{3}$, we have $\xi=0$ (i.e. ψ is 2π-periodic) if $C \delta_{3}<2 \pi$.

Thus, for δ_{3} small enough, the map $\varphi\left(e^{i t}\right)=\psi(t)$ is well-defined, belongs to $W^{1 / p, p}$ and satisfies $\|\varphi\|_{W^{1 / p, p}\left(S^{1}\right)}<\delta_{1}$ and $u=e^{i \varphi}$.

Appendix D Filling a hole - the fractional case

We adapt to fractional Sobolev spaces the technique of Brezis - Li [7], Section 1.3.
The first two results are preparations for the proofs of Lemmas 5,6 and 8 (see Lemmas D.3, D. 4 and D. 5 below).

Lemma D. 1 Let $0<s<1,1<p<\infty, 1<s p<N$. Let $C=(-1,1)^{N}$ and $u \in W^{s, p}(\partial C)$. Then $\tilde{u} \in W^{s, p}(C)$; here, $\tilde{u}(x)=u(x /|x|)$ and $\left|\mid\right.$ is the L^{∞} norm in \mathbb{R}^{N}. Moreover, the map $u \mapsto \tilde{u}$ is continuous from $W^{s, p}(\partial C)$ into $W^{s, p}(C)$.
Proof. Clearly, we have $\|\tilde{u}\|_{L^{p}(C)} \leqslant C_{0}\|u\|_{L^{p}(\partial C)}$. Thus it suffices to prove, for the Gagliardo seminorms in $W^{s, p}$, the inequality

$$
\begin{equation*}
\|\tilde{u}\|_{W^{s, p}(C)}^{p} \leqslant C_{1}\left(\|u\|_{W^{s, p}(\partial C)}^{p}+\|u\|_{L^{p}(\partial C)}^{p}\right) \tag{D.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{C} \int_{C} \frac{|\tilde{u}(x)-\tilde{u}(y)|^{p}}{|x-y|^{N+s p}} d x d y=\int_{0}^{1} \int_{0}^{1} \int_{\partial C} \int_{\partial C} \frac{|u(x)-u(y)|^{p}}{|\tau x-\sigma y|^{N+s p}} \tau^{N-1} \sigma^{N-1} d s_{x} d s_{y} d \tau d \sigma \tag{D.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
I=\int_{0}^{1} \int_{0}^{1} \frac{\tau^{N-1} \sigma^{N-1}}{|\tau x-\sigma y|^{N+s p}} d \tau d \sigma \leqslant C_{2} /|x-y|^{N+s p} \tag{D.3}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
I= & \int_{0}^{1} \int_{0}^{1 / \tau} \frac{\tau^{N-1}(\lambda \tau)^{N-1}}{|\tau x-\lambda \tau y|^{N+s p}} d \lambda d \tau= \\
& \int_{0}^{1} \int_{0}^{1 / \tau} \tau^{N-s p-1} \frac{\lambda^{N-1}}{|x-\lambda y|^{N+s p}} d \lambda d \tau \leqslant I_{1}+I_{2} \tag{D.4}
\end{align*}
$$

where $I_{1}=\int_{0}^{1} \int_{0}^{2}$ and $I_{2}=\int_{0}^{1} \int_{2}^{\infty}$.
On the one hand, we have

$$
\begin{align*}
I_{1} & =\int_{0}^{1} \int_{0}^{2} \tau^{N-s p-1} \frac{\lambda^{N-1}}{|x-\lambda y|^{N+s p}} d \lambda d \tau \\
& \leqslant C_{3} \int_{0}^{1} \int_{0}^{2} \tau^{N-s p-1} \frac{\lambda^{N-1}}{|x-y|^{N+s p}} d \lambda d \tau \leqslant C_{4} /|x-y|^{N+s p} \tag{D.5}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
I_{2} & =\int_{0}^{1} \int_{2}^{\infty} \tau^{N-s p-1} \frac{\lambda^{N-1}}{|x-\lambda y|^{N+s p}} d \lambda d \tau \tag{D.6}\\
& \leqslant C_{5} \int_{0}^{1} \int_{2}^{\infty} \tau^{N-s p-1} \frac{\lambda^{N-1}}{\lambda^{N+s p}} d \lambda d \tau=C_{5} \int_{0}^{1} \int_{2}^{\infty} \tau^{N-s p-1} \lambda^{-s p-1} d \lambda d \tau \leqslant C_{6}
\end{align*}
$$

We obtain (D.3) by combining (D.4), (D.5) and (D.6). Finally, (D.1) follows from (D.2) and (D.3).
The proof of Lemma D. 1 is complete.
Lemma D. 2 Let $0<s<1,1<p<\infty, 1<s p<N$. Let $v, w \in W^{s, p}\left(C ; S^{1}\right)$ be such that $\left.v\right|_{\partial C}=\left.w\right|_{\partial C} \in W^{s, p}(\partial C)$. Then, there is a homotopy $U \in C^{0}\left([0,1] ; W^{s, p}\left(C ; S^{1}\right)\right)$ such that $U(0, \cdot)=$ $v, U(1, \cdot)=w$ and $\left.U(t, \cdot)\right|_{\partial C}=\left.v\right|_{\partial C}, \forall t \in[0,1]$.

Proof. Let $u=\left.v\right|_{\partial C}$. It clearly suffices to prove the lemma in the special case $w=\tilde{u}$. In this case, let, for $0 \leqslant t<1$,

$$
U(t, x)= \begin{cases}v(x /(1-t)), & \text { if }|x| \leqslant 1-t \\ \tilde{u}(x), & \text { if } 1-t<|x| \leqslant 1\end{cases}
$$

set $U(1, \cdot)=\tilde{u}$. Clearly, $U \in C^{0}\left([0,1) ; W^{s, p}\left(C ; S^{1}\right)\right)$. It remains to prove that $U(t, \cdot) \rightarrow \tilde{u}$ as $t \rightarrow 1$. Let

$$
f(x)= \begin{cases}v(x), & \text { if }|x| \leqslant 1 \\ \tilde{u}(x), & \text { if }|x|>1\end{cases}
$$

and $g=f-\tilde{u}$. Then $f, \tilde{u} \in W_{l o c}^{s, p}\left(\mathbb{R}^{N}\right)$, so that $g \in W_{l o c}^{s, p}\left(\mathbb{R}^{N}\right)$. Since $g=0$ outside C, we actually have $g \in W^{s, p}\left(\mathbb{R}^{N}\right)$. Thus

$$
\begin{aligned}
& \|U(t, \cdot)-\tilde{u}\|_{W^{s, p}(C)}^{p}=\|g(\cdot /(1-t))\|_{W^{s, p}(C)}^{p} \leqslant \\
& \|g(\cdot /(1-t))\|_{W^{s, p}\left(\mathbb{R}^{N}\right)}^{p}=(1-t)^{N-s p}\|g\|_{W^{s, p}\left(\mathbb{R}^{N}\right)}^{p} \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 1$. The proof of Lemma D. 2 is complete.
We introduce a useful notation: let $u \in W^{s_{1}, p_{1}}\left(\mathcal{C}_{k}\right)$, where $0<s_{1}<1,1<p_{1}<\infty, 1<s_{1} p_{1}<N$. We extend, for each $C \in \mathcal{C}_{k+1},\left.u\right|_{\partial C}$ to C as in Lemma D.1. Let \tilde{u} be the map obtained by gluing these extensions. We next extend \tilde{u} to \mathcal{C}_{k+2} in the same manner, and so on, until we obtain a map defined in \mathcal{C}_{N}; call it $H_{k}(u)$.
Lemma D. 3 Let $0<s_{1}<1,1<p_{1}<\infty, 1<s_{1} p_{1}<N,\left[s_{1} p_{1}\right] \leqslant j<N$. Then every $v \in$ $W^{s_{1}, p_{1}}\left(\mathcal{C}_{j} ; S^{1}\right)$ has an extension $u_{1} \in W^{s_{1}, p_{1}}\left(\mathcal{C}_{N} ; S^{1}\right)$ such that $u_{1} \mid \mathcal{C}_{l} \in W^{s_{1}, p_{1}}$ for $l=j, \ldots, N-1$.
Proof. We take $u_{1}=H_{j}(v)$. We may use repeatedly Lemma D.1, since for $l=j+1, \ldots, N$ we have $1<s_{1} p_{1}<l$.
Lemma D. 4 Let $0<s<1,1<p<\infty, 1<s p<N,[s p] \leqslant j<N$. If $\left.u\right|_{\mathcal{C}_{l}} \in W^{s, p}, u_{1} \mid \mathcal{C}_{l} \in$ $W^{s, p}, l=j, \ldots, N-1$, and $\left.u\right|_{\mathcal{C}_{j}}=\left.u_{1}\right|_{\mathcal{C}_{j}}$, then u and u_{1} are $W^{s, p}$-homotopic.
Proof. We argue by backward induction on j. If $j=N-1$, then for each $C \in \mathcal{C}_{N}$ Lemma D. 2 provides a $W^{s, p}$-homotopy of $\left.u\right|_{C}$ and $\left.u_{1}\right|_{C}$ preserving the boundary condition. By gluing together these
homotopies we find that u and u_{1} are $W^{s, p}$-homotopic (here we use $1 / p<s<1$). Suppose now that the conclusion of the lemma holds for $j+1$; we prove it for j, assuming that $j \geqslant[s p]$. By assumption, u and $H_{j+1}\left(\left.u\right|_{\mathcal{C}_{j+1}}\right)$ are $W^{s, p}$-homotopic, and so are u_{1} and $H_{j+1}\left(u_{1} \mid \mathcal{C}_{j+1}\right)$. It suffices therefore to prove that $v=H_{j+1}\left(\left.u\right|_{\mathcal{C}_{j+1}}\right)$ and $v_{1}=H_{j+1}\left(u_{1} \mid \mathcal{C}_{j_{+1}}\right)$ are $W^{s, p}$-homotopic. For each $C \in \mathcal{C}_{j+1}$, we have $\left.v\right|_{\partial C}=\left.v_{1}\right|_{\partial C}=\left.u\right|_{\partial C}=\left.u_{1}\right|_{\partial C}$. By Lemma D.2, $\left.v\right|_{C}$ and $\left.v_{1}\right|_{C}$ are connected by a homotopy preserving the trace on ∂C. Gluing together these homotopies, we find that $\left.v\right|_{\mathcal{C}_{j+1}}$ and $\left.v_{1}\right|_{\mathcal{C}_{j+1}}$ are $W^{s, p}$-homotopic. If U connects $\left.v\right|_{\mathcal{C}_{j+1}}$ to $\left.v_{1}\right|_{\mathcal{C}_{j+1}}$, then Lemma D. 1 used repeatedly implies that $t \mapsto H_{j+1}(U(t))$ connects in $W^{s, p}\left(\mathcal{C}_{N} ; S^{1}\right)$ the map $H_{j+1}\left(\left.v\right|_{\mathcal{C}_{j+1}}\right)$ to $H_{j+1}\left(v_{1} \mid \mathcal{C}_{j+1}\right)$, i.e., v to v_{1}.

The proof of Lemma D. 4 is complete.
Lemma D. 5 Let $0<s<1,1<p<\infty, 1<s p<N,[s p] \leqslant j<N$. Let $v, w \in W^{s, p}\left(\mathcal{C}_{N} ; S^{1}\right)$ be such that $\left.v\right|_{\mathcal{C}_{l}} \in W^{s, p},\left.w\right|_{\mathcal{C}_{l}} \in W^{s, p}, l=j, \ldots, N-1$. Assume that $\left.v\right|_{\mathcal{C}_{j}}$ and $\left.w\right|_{\mathcal{C}_{j}}$ are $W^{s, p}$-homotopic. Then v and w are $W^{s, p}$-homotopic.
Proof. By Lemma D.4, v and $H_{j}\left(\left.v\right|_{\mathcal{C}_{j}}\right)$ (respectively w and $H^{j}\left(\left.w\right|_{\mathcal{C}_{j}}\right)$) are $W^{s, p}$-homotopic. If U connects $\left.v\right|_{\mathcal{C}_{j}}$ to $\left.w\right|_{\mathcal{C}_{j}}$ in $W^{s, p}$, then as in the proof of Lemma D.4, we obtain that $t \mapsto H_{j}(U(t))$ connects $H_{j}\left(\left.v\right|_{\mathcal{C}_{j}}\right)$ to $H_{j}\left(\left.w\right|_{\mathcal{C}_{j}}\right)$ in $W^{s, p}$. Thus v and w are $W^{s, p}$-homotopic.

Appendix E Slicing with norm control

In this section, we prove the existence of good coverings for $W^{s, p}$ maps. The arguments are rather standard.
Without loss of generality, we may consider maps defined in \mathbb{R}^{N}. Throughout this section, we assume $\varepsilon=1$, i.e. we consider a covering with cubes of size 1 . We start by introducing some useful notations: for $x \in C^{N}=(0,1)^{N}$ and for $j=1, \ldots, N-1$, let

$$
C_{j}=\bigcup\left\{\sum_{k=1}^{j} t_{k} e_{i_{k}}+\sum_{l=1}^{N-j} \lambda_{l} e_{j_{l}} ; t_{k} \in \mathbb{R}, \lambda_{l} \in \mathbb{Z},\left\{e_{i_{k}}\right\} \cup\left\{e_{j_{l}}\right\}=\left\{e_{1}, \ldots e_{N}\right\}\right\}
$$

and $C_{j}(x)=x+C_{j}$. (With the notations introduced in Section 3, we have $C_{j}(x)=\mathcal{C}_{j}^{x}$ when $\Omega=\mathbb{R}^{N}$). For a fixed set $\Lambda \subset\{1, . ., N\}$ such that $|\Lambda|=j$, let also

$$
C_{j}^{\Lambda}=\left\{\sum_{i \in \Lambda} t_{i} e_{i}+\sum_{j \notin \Lambda} \lambda_{j} e_{j} ; t_{i} \in \mathbb{R}, \lambda_{j} \in \mathbb{Z}\right\}
$$

so that

$$
C_{j}=\cup\left\{C_{j}^{\Lambda} ; \Lambda \subset\{1, \ldots, N\},|\Lambda|=j\right\}
$$

and with obvious notations

$$
C_{j}(x)=\cup\left\{C_{j}^{\Lambda}(x) ; \Lambda \subset\{1, \ldots, N\},|\Lambda|=j\right\} .
$$

Instead of considering a fixed (semi-) norm on $W^{s, p}, 0<s<1,1<p<\infty$, it is convenient to consider a family of equivalent norms

$$
|f|_{j}^{p}=\sum_{\substack{\Lambda \subset\{1, \ldots, N\}}} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{j}} \frac{\left|f\left(x+\sum_{i \in \Lambda} t_{i} e_{i}\right)-f(x)\right|^{p}}{|t|^{j+s p}} d t d x
$$

(see, e.g., Triebel [24]). An obvious computation yields, for the usual Gagliardo (semi-) norm on $C_{j}^{\Lambda}(x)$,

Lemma E. 1 Let $0<s<1,1<p<\infty$ and $u \in W^{s, p}$. Then

$$
\begin{equation*}
\sum_{\substack{\Lambda \subset\{1, \ldots, N\}}} \int_{C^{N}}\|u\|_{W^{s, p}\left(C_{j}^{\Lambda}(x)\right)}^{p} d x \leqslant|u|_{j}^{p} \tag{E.1}
\end{equation*}
$$

for some C independent of u.
We next define the norm $\|u\|_{W^{s, p}\left(C_{j}(x)\right)}$ by the formula

$$
\|u\|_{W^{s, p}\left(C_{j}(x)\right)}^{p}=\sum_{C \in C_{j+1}(x)}\|u\|_{W^{s, p}(\partial C)}^{p}
$$

Lemma E. 2 Let $0<s<1,1<p<\infty$. Then, for $u \in W^{s, p}$, we have
a) for a.e. $x \in C^{N},\left.u\right|_{C_{j}(x)} \in W_{l o c}^{s, p}, j=1, \ldots, N-1$;
b) there is a fat set (i.e., with positive measure) $A \subset C^{N}$ such that

$$
\begin{equation*}
\|u\|_{W^{s, p}}^{p}\left(C_{j}(x)\right) \leqslant C|u|_{j}^{p}, \quad \forall x \in A \tag{E.2}
\end{equation*}
$$

Remark E.1. Here, $\left.u\right|_{C_{j}(x)}$ are restrictions, not traces. However, when $s p>1$ we may replace restrictions by traces, by a standard argument. We obtain
Corollary E. 1 Let $0<s<1,1<p<\infty$, sp>1. Let $u \in W^{s, p}$. Then, for a.e. $x \in C^{N}$, tr $\left.u\right|_{C_{N-1}(x)} \in W^{s, p}$. Moreover, for a.e. $x \in C^{N},\left.\operatorname{tr} u\right|_{C_{N-1}(x)}$ has a trace on $C_{N-2}(x)$ which belongs to $W^{s, p}$, and so on.
Proof of Lemma E.2. In order to avoid long computations, we treat only the case $j=1, N=2$. The general case does not bring any additional difficulty. Let $C \in C_{1}(x)$; denote its lower (resp. upper, left, right) edge by C^{l} (resp. C^{u}, C^{L}, C^{R}). By (E.1), we have $\left.u\right|_{C^{l}} \in W^{s, p}$ for a.e. $x \in C^{2}$ and, for x in a fat set, $\sum_{C \in C_{1}(x)}\|u\|_{W^{s, p}\left(C^{l}\right)}^{p} \leqslant$ const. $|u|_{1}^{p}$. Similar statements hold for the other edges.

It remains to control the cross - integrals in the Gagliardo norm, e.g. to prove

$$
\begin{equation*}
I=\int_{C^{2}} \sum_{C \in C_{1}(x)} \int_{C^{l}} \int_{C^{L}} \frac{|u(y)-u(z)|^{p}}{|y-z|^{2+s p}} d y d z \leqslant \text { const. }\|u\|_{W^{s, p}}^{p} \tag{E.3}
\end{equation*}
$$

(here, we take the usual Gagliardo norm in $W^{s, p}\left(\mathbb{R}^{2}\right)$). We have

$$
\begin{aligned}
I & =\int_{C^{2}} \sum_{m \in \mathbb{Z}^{2}} \int_{0}^{1} \int_{0}^{1} \frac{\left|u\left(x+m_{1} e_{1}+m_{2} e_{2}+\tau e_{1}\right)-u\left(x+m_{1} e_{1}+m_{2} e_{2}+\sigma e_{2}\right)\right|^{p}}{\left|\tau e_{1}-\sigma e_{2}\right|^{2+s p}} d \sigma d \tau d x \\
& =\int_{\mathbb{R}^{2}} \int_{0}^{1} \int_{0}^{1} \frac{\left|u\left(y+\tau e_{1}\right)-u\left(y+\sigma e_{2}\right)\right|^{p}}{\left|\tau e_{1}-\sigma e_{2}\right|^{2+s p}} d \sigma d \tau d y \\
& =\int_{\mathbb{R}^{2}} \int_{0}^{1} \int_{0}^{1} \frac{\left|u(z)-u\left(z-\tau e_{1}+\sigma e_{2}\right)\right|^{p}}{\left|\tau e_{1}-\sigma e_{2}\right|^{2+s p}} d \sigma d \tau d z \\
& \leqslant \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{|u(z+h)-u(z)|^{p}}{|h|^{2+s p}} d h d z=\|u\|_{W^{s, p}}^{p}
\end{aligned}
$$

The proof of Lemma E. 2 is complete.
Acknowledgement. The first author (H.B.) warmly thanks Yanyan Li for useful discussions. He is partially supported by a European Grant ERB FMRX CT980201, and is also a member of the Institut Universitaire de France. This work was initiated when the second author (P.M.) was visiting Rutgers University; he thanks the Mathematics Department for its invitation and hospitality. It was completed while both authors were visiting the Isaac Newton Institute in Cambridge, which they also wish to thank

References

[1] Bethuel, F. (1991). The approximation problem for Sobolev maps between two manifolds, Acta Math., 167, 153-206.
[2] Bethuel, F. (1994). Approximation in trace spaces defined between manifolds, Nonlinear Anal. TMA, 24, 121-130.
[3] Bethuel, F. and Zheng, X. (1988). Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., 80, 60-75.
[4] Bourgain, J., Brezis, H. and Mironescu, P. (2000). Lifting in Sobolev spaces, J. d’Analyse Mathématique, 80, 37-86.
[5] Bourgain, J., Brezis, H. and Mironescu, P. (2000). On the structure of the space $H^{1 / 2}$ with values into the circle, C. R. Acad. Sci. Paris, Sér. I, 321, 119-124.
[6] Boutet de Monvel-Berthier, A., Georgescu, V. and Purice, R. (1991). A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., 142, 1-23.
[7] Brezis, H. and Li, Y. Topology and Sobolev spaces, J. Funct.Anal. (to appear).
[8] Brezis, H., Li, Y., Mironescu, P. and Nirenberg, L. (1999). Degree and Sobolev spaces, Top. Meth. Nonlinear Anal,. 13, 181-190.
[9] Brezis, H. and Mironescu, P. (2001). Composition in fractional Sobolev spaces, Discrete Contin. Dynam. Systems, 7, 241-246.
[10] Brezis, H. and Mironescu, P. Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, Journal of Evolution Equations (to appear).
[11] Brezis, H. and Mironescu, P., in preparation.
[12] Brezis, H. and Nirenberg, L. (1996). Degree Theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math., 1, 197-263.
[13] Brezis, H. and Nirenberg, L. (1996). Degree Theory and BMO, Part II: Compact manifolds with boundaries, Selecta Math., 2, 309-368.
[14] Escobedo, M. (1988). Some remarks on the density of regular mappings in Sobolev classes of S^{M}-valued functions, Rev. Mat. Univ. Complut. Madrid, 1, 127-144.
[15] Hang, F. B. and Lin, F. H. Topology of Sobolev mappings II (to appear).
[16] Hardt, R., Kinderlehrer, D. and Lin, F. H. (1988). Stable defects of minimizers of constrained variational principles, Ann. IHP, Anal. Nonlinéaire, 5, 297-322.
[17] Lions, J. L. and Magenes, E. (1972). Problèmes aux limites non homogènes, Dunod,1968; English translation, Springer.
[18] Maz'ya, V. and Shaposhnikova, T. An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces (to appear).
[19] Peetre, J. (1970). Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj), 12, 1-20.
[20] Rivière, T. Dense subsets of $H^{1 / 2}\left(S^{2} ; S^{1}\right)$, Ann. of Global Anal. and Geom. (to appear).
[21] Rubinstein, J. and Sternberg, P. (1996). Homotopy classification of minimizers of the Ginzurg-Landau energy and the existence of permanent currents, Comm. Math. Phys., 179, 257-263.
[22] Runst, T. (1986). Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type, Analysis Mathematica, 12, 313-346.
[23] Runst, T. and Sickel, W. (1996). Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter, Berlin and New York.
[24] Schoen, R. and Uhlenbeck, K. (1983). Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom., 18, 253-268.
[25] Triebel, H. (1983). Theory of function spaces, Birkhäuser, Basel and Boston.
[26] White, B. (1988). Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math., 160, 1-17.
H. Brezis

ANALYSE NUMÉRIQUE
UNIVERSITÉ P. ET M. CURIE, B.C. 187
4, Pl. Jussieu
PARIS CEDEX 05
brezis@ccr.jussieu.fr
RUTGERS UNIVERSITY
DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854
brezis@math.rutgers.edu
P. Mironescu

DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ PARIS-SUD
91405 ORSAY 75252
Petru.Mironescu@math.u-psud.fr

[^0]: Presentado por Jesús Ildefonso Díaz
 Recibido: 8 de Septiembre 2001. Aceptado: 10 de Octubre 2001.
 Palabras clave / Keywords: homotopy classes, fractional Sobolev spaces, S^{1}-valued maps.
 Mathematics Subject Classifications: 46E35, 46T10, 46T30, 58D15.
 (c) 2001 Real Academia de Ciencias, España.

