
RAC
���

Rev. R. Acad. Cien. Serie A. Mat.
VOL. 95 (1), 2001, pp. 121–143
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On some questions of topology for ��� -valued fractional
Sobolev spaces

H. Brezis and P. Mironescu

Abstract. The purpose of this paper is to describe the homotopy classes (i.e., path-connected compo-
nents) of the space ���
	 ������
����� . Here, ����������� ���"!#��� , � is a smooth, bounded, connected
open set in $�% and � ��	 � �����
� � �"&('*),+-� �
	 � �����/.0���1 )213&4� a.e. 576
Our main results assert that � ��	 � �����
� � � is path-connected if �8!"�:9 while it has the same homotopy
classes as ;=<>�*?�@��� � � if �8!BA�9 . We also present some results and open problems about density of smooth
maps in �C��	 �D�E?�����F� � .

Sobre algunas cuestiones topológicas para espacios de Sobolev
fracionarios con valores en GIH

Resumen. El propósito de este artı́culo es describir las clases de homotópı́a (i.e., componentes conexas
por arcos) del espacio ���
	 ������
��� � . Aquı́, �J�K�=�K���L�=�M!N�O� , � es un abierto, regular, acotado y
conexo de $�% y � ��	 � �����
� � �"&('*),+-� �
	 � �����/.0���1 )213&4� a.e. 576
Nuestros resultados principales establecen que � �
	 � ������� � � es conexo por arcos si �P!-�O9 aunque tenga
las mismas clases de homotopı́a que ;=<Q�E?�@��� � � si �P!#AR9 . También presentamos algunos resultados y
problemas abiertos sobre la densidad de aplicaciones regulares de � �
	 � �E?����� � � .

1. Introduction
The purpose of this paper is to describe the homotopy classes (i.e., path-connected components) of the spaceSUT V W@XZYJ[ G\H^] . Here, _-`�a�`�bdc � `"ef`dbgc Y is a smooth, bounded, connected open set in hIi andS T V W XjYJ[ G H ]lkUm3nfo S TLV W XZYJ[
p ] [@q n q k �srut vwtyxwt
Our main results are

Theorem 1 If a
ef`�z , then
S{T V W|XjYJ[ GIHE] is path-connected.

Theorem 2 If a
ef}�z , then
S{T V W|XjYJ[ GIHE] and ~�� X>�YJ[ G\HE] have the same homotopy classes in the sense of

[7]. More precisely:
a) each nfo S{T V W@XZYJ[ G\H^] is

SUT V W
-homotopic to some �No#~�� X �Y�[ GIH*] ;

b) two maps nFc���o�~�� X �YJ[ G\HE] are ~J� -homotopic if and only if they are
S{T V W

-homotopic.

Presentado por Jesús Ildefonso Dı́az
Recibido: 8 de Septiembre 2001. Aceptado: 10 de Octubre 2001.
Palabras clave / Keywords: homotopy classes, fractional Sobolev spaces, � � -valued maps.
Mathematics Subject Classifications: 46E35, 46T10, 46T30, 58D15.
c
�

2001 Real Academia de Ciencias, España.

121



H. Brezis and P. Mironescu

Here a simple consequence of the above results

Corollary 1 If _-`�a�`�bdc � `"ef`db and
Y

is simply connected, then
S�T V W=XjYJ[ G\HE] is path-connected.

Indeed, when a�eK`�z this is the content of Theorem 1. When a�e�}Uz , we use a) of Theorem 2 to connectn H c�n���o SUT V W@XZYJ[ G\H^] to � H c�����o"~�� X>�YJ[ G\HE] ; since
Y

is simply connected, we may write �7��k v>���D� for� ��of~�� X>�YJ[ hl] and then we connect � H to ��� via v>�^� � HL����� ���8� � �w�/  .
When ¡ is a compact connected manifold, the study of the topology of

S H V W@XZYJ[ ¡{] was initiated
in Brezis - Li [7] (see also White [26] for some related questions). In particular, these authors proved
Theorems 1 and 2 in the special case a¢k � . The analysis of homotopy classes for an arbitrary manifold ¡
and aNk � was subsequently tackled by Hang - Lin [15]. The passage to

S£T V W
introduces two additional

difficulties:
a) when a is not an integer, the

S{T V W
norm is not “local”;

b) when a�}�z (or more generally a�¤ �I¥ HW ), gluing two maps in
S{T V W

does not yield a map in
S�T V W

.
In our proofs, we exploit in an essential way the fact that the target manifold is G@H . (The case of a

general target is widely open.) In particular, we use the existence of a lifting of
S T V W

unimodular maps
when a�} � and a
e¦}gz (see Bourgain - Brezis - Mironescu [4]). Another important tool is the following

Composition Theorem (Brezis - Mironescu [10]) If §¨o©~�� X h [ hª] has bounded derivatives anda�} � , then �O«¬� §-® � is continuous from
S{TLV W=¯�S H V TZW into

SUTLV W
.

Remark 1 A very elegant and straightforward proof of this Composition Theorem has been given by V.
Maz’ya and T. Shaposhnikova [18].

A related question is the description, when a
e�}£z , of the homotopy classes of
S£T V W=XjYJ[ GIHE] in terms of

lifting. Here is a partial result

Theorem 3 We have
a) if a�} � c�°±}�² , and z�³Ca
ef`�° , then´ n�µ T V W kUm^n v �¶� [ � o S T V W XjYJ[ h·] ¯¦S H V TjW XjYJ[ h\] x [
b) if a
ef}C° , then ´ nuµ TLV W k�mQn v ��� [ � o S T V W XZYJ[ h·] xwt

Theorem 3 is due to Rubinstein - Sternberg [21] in the special case where aNk � c7e�k¸z and
Y

is the
solid torus in h�¹ .

When _�`da�` � c�°º}d² and z,³da
e"`d° , there is no such simple description of
´ nuµ T V W . For instance,

using the “non-lifting” results in Bourgain - Brezis - Mironescu [4], it is easy to see that´ � µ T V WB» ¼½ m v �¶� [ � o S TLV W XjYJ[ h·] xDt
Here is an example: if °¾kR²�c Y kd¿ H c�_-`ga�` � c � `Oef`�bdcuz�³Ca
ef`�² , then
a) n XÁÀ ]lk v H�ÂQÃ ÄwÃ ÅNo ´ � µ T V W ;
b) there is no � o SUT V W=X ¿ H [ h·] such that nMk v>��� for Æ satisfying ¹*� TjWW ³ÇÆ�` ¹*� TjWTZW .

However, we conjecture the following result

Conjecture 1 Assume that _-`Ca�` � c � `Oe�`gbdc�°±}Ç² and zB³�a
ef`Ç° . Then´ nuµ T V W kdn m v ��� [ � o S T V W XjYJ[ h·] xuÈ�É/Ê Ë�t
We will prove below (see Corollary 2) that “half” of Conjecture 1 holds, namely´ nuµ T V WB» n m v ��� [ � o S T V W XjYJ[ h·] xuÈ�É/Ê Ë�t

In a different but related direction, we establish some partial results concerning the density of ~-� X �YJ[ G\H^]
into

S T V W XZYJ[ G H ] .
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Theorem 4 We have, for _-`Ca�`gbdc � `Oef`�b :
a) if a
ef` � , then ~�� X �YJ[ GIHE] is dense in

S{T V W|XjYJ[ GIHE] ;
b) if � ³�a
e�`gz�c
°Ì}gz , then ~�� X �YJ[ G\HE] is not dense in

S{T V W@XZYJ[ G\HQ] ;
c) if a
e�}C° , then ~�� X �YJ[ GIHE] is dense in

S{T V W@XZYJ[ G\H^] ;
d) if a�} � and a
e�}�z , then ~�� X �YJ[ G\HE] is dense in

SUTLV W@XjYJ[ G\HE] .
There is only one missing case for which we make the following

Conjecture 2 If _Í`(a�` � c � `¾eÎ`Ïbdc�° }(²�c�z£³(a
eÎ`(° , then ~ � X7�Y�[ G H ] is dense inSUT V W@XZYJ[ G\H^] .
This problem is open even when

Y
is a ball in h ¹ . We will prove below the equivalence of Conjectures 1

and 2.
Parts of Theorem 4 were already known. Part a) is due to Escobedo [14]; so is part b), but in this case

the idea goes back to Schoen - Uhlenbeck [24] (see also Bourgain - Brezis - Mironescu [5]). For a�k � ,
part c) is due to Schoen - Uhlenbeck [24]; their argument can be adapted to the general case (see, e.g.,
Brezis - Nirenberg [12] or Brezis - Li [7]). The only new result is part d). The proof relies heavily on the
Composition Theorem and Theorems 2 and 3. We do not know any direct proof of d). We also mention
that for a�k � and

Y k4¿ H , Theorem 4 was established by Bethuel - Zheng [3]. For a general compact
connected manifold ¡ and for aJk � , the question of density of ~ � X �YJ[ ¡{] into

S H V W XjYJ[ ¡{] was settled
by Bethuel [1] and Hang - Lin [15].

Remark 2 In Theorems 2 and 4, one may replace
Y

by a manifold with or without boundary. The state-
ments are unchanged. However, the argument in the proof of Theorem 1 does not quite go through to the
case of a manifold without boundary. Nevertheless, we make the following

Conjecture 3 Let
Y

be a manifold without boundary with Ð�ÑÓÒ Y }Ïz . Then
S T V W XjYJ[ ¡{] is path-

connected for every _K`¸aÔ`4bgc � `�ed`4b with a�eR`¨z , and for every compact connected manifold¡ .

Note that the condition Ð�ÑÓÒ Y }Cz is necessary, since
S T V W X G H [ G H ] is not path-connected when a
ef} � .

Finally, we investigate the local path-connectedness of
S£T V W@XZYJ[ G\H^] . Our main result is

Theorem 5 Let _#`{aM`�bgc � `�eÕ`�b . Then
SUTLV W@XjYJ[ G\HE] is locally path-connected. Consequently,

the homotophy classes coincide with the connected components and they are open and closed.

The heart of the matter in the proof is the following

Claim. Let _#`UaN`�bgc � `CeÕ`Ub . Then there is some Ö¦¤�_ such that, if
q¶q n ¬ � q¶q È É8Ê Ë `�Ö , then n

may be connected to � in
S{TLV W

.
As a consequence of Theorem 5, we have

Corollary 2 Let _B`ga�` � c � `"ef`db . Then´ nuµ T V W » mQn v ��� [ � o S T V W XZYJ[ h·] x È É/Ê Ë kdn m v �¶� [ � o S T V W XjYJ[ h\] x È É/Ê Ë�t
Equality in Corollary 2 follows from the well-known fact that

S�T V W|¯�× � is an algebra. The inclusion
is a consequence of the fact that, clearly, we have´ n�µ T V W¸» m^n v �¶� [ � o S T V W XjYJ[ h·] x
and of the closedness of the homotopy classes.

Another consequence of Theorem 5 is

Corollary 3 Conjecture 1 Ø Conjecture 2.
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PROOF. By Corollary 2, we have´ nuµ T V W » n m v ��� [ � o S T V W XjYJ[ h·] x È É/Ê Ë�t
We prove that the reverse inclusion follows from Conjecture 1. By Proposition 1 a) below, we may taken¦k � . Let �¦o ´ � µ T V W . By Theorem 5, there is some Ù-¤g_ such that

q¶q � ¬�Ú q¶q È É/Ê Ë `ÇÙ�Û Ú o ´ � µ T V W . LetX Ú=Ü ]¢ÝÞ~�� X �Y�[ G\H^] be such that Ú=Üf � in
SUT V W

and
qÓq Ú=Ü,¬ � qÓq È É/Ê Ë `dÙ . By Theorem 2 b), we obtain

that Ú=Ü and � are homotopic in ~�� X �YJ[ G\H^] . Thus Ú=Ü k v>�¶�wß for some globally defined smooth �lÜ . Hence�No m v �¶� [ � o S T V W XjYJ[ h·] x È É8Ê Ë�t
Conversely, assume that Conjecture 2 holds. Let nào S�TLV W@XjYJ[ G\HE] . By Theorem 2 a), there is

some Ú o{~�� X �YJ[ G\H^] such that Ú o ´ nuµ T V W . By Proposition 1 b), we have n �Ú o ´ � µ T V W . Thus n �Ú om v ��� [ � o S T V W XZYJ[ h·] x È É/Ê Ë , so that clearly n �Ú o m v ��� [ � o#~ � X �Y�[ hl] x È É/Ê Ë .

Finally, n#o m Ú v ��� [ � o#~ � X �YJ[ hl] x È-É8Ê Ë , i.e. n may be approximated by smooth maps.

In the same vein, we raise the following

Open Problem 1. Let
Y

be a manifold with or without boundary. Is
S£T V W@XZYJ[ ¡{] locally path-connected

for every acje and every compact manifold ¡ ?
The case a¢k � can be settled using the methods of Hang - Lin [15]. We will return to this question in a

subsequent work; see Brezis - Mironescu [11].
The reader who is looking for more open problems may also consider the following

Open Problem 2. Let
Y ÝCh � be a smooth bounded domain. Assume _�`ga�`�bdc� `Ôef`gb and � ³�a�ef`gz (this is the range where ~�� X �YJ[ G\H^] is not dense in

S{T V W|XjYJ[ G\HE] ). Setá � kUm^nfo S T V W XZYJ[ G H ] [ n is smooth except at a finite number of points xwt
(Here, the number and location of singular points is left free). Is

á � dense in
S T V W XZYJ[ G H ] ?

Comment.
á � is known to be dense in

S{T V W@XZYJ[ G\H^] in many cases, e.g.:
a) a¢k � and � ³Ôe�`gz ; see Bethuel-Zheng [3]
b) aJk � ¬ �>â e and z�`"ef`�² ; see Bethuel [2]
c) a¢k �>â z and eMk:z ; see Rivière [20].

The paper is organized as follows

1. Introduction
2. Proof of Theorem 1
3. Proof of Theorems 2 and 3
4. Proof of Theorem 4
5. Proof of Theorem 5
Appendix A. An extension lemma
Appendix B. Good restrictions
Appendix C. Global lifting
Appendix D. Filling a hole - the fractional case
Appendix E. Slicing with norm control
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2. Proof of Theorem 1
Case 1: a�ef` �
When a
e�` � , we have the following more general result

Theorem 6 If a"¤¸_�c � `Þe:`4bgcua
ed` � and ¡ is a compact manifold, then
S�T V W@XZYJ[ ¡{] is path-

connected.

PROOF. Fix some r of¡ . For n#o S{T V W|XjYJ[ ¡{] , letãnMk¨ä nFc in
Yr c in hli,å Y t

Since a
e£` � , we have
ãn£o S T V Wæyç è X hli [ ¡{] . Let é Xjê c À ]Rk ãn X�À â X � ¬ ê ]�]ëc�_d³ ê ` � c À o Y

andé X � c À ]¦ì r . Then clearly é¸oO~ X ´ _�c � µ [ S{T V W�XjYJ[ ¡{]�] and é connects n to the constant r (here we use
only a
ef`Ç° ).

Case 2: � `ga
ef`Cz�c
°±}Cz
In this case one could adapt the tools developed in Brezis - Li [7], but we prefer a more direct approach.
Let Ù¸¤í_ be such that the projection onto î Y be well-defined and smooth in the region m À ohli [

dist
X�À c
î Y ]�`4z7Ù x . Let ïÍkàm À odh·i-å �YJ[

dist
X�À c
î Y ]N`©Ù x . We have îuï(kíî YCðÔñ

, whereñ k±m À o�hli,å YJ[
dist

XÁÀ c
î Y ]-kgÙ x .
Since � `�a�eÇ`{z , we have �>â eÕ`�a�` �=¥Þ�>â e ; thus, for nÇo S�T V W

we have tr nCo SUT �òH�Â W7V W . Letnfo SUT V W@XZYJ[ G\H^] . Fix some r o�GIH and define ��o SUT �2H
Â W7V W|X îuï [ GIH*] by

�Çk©ä tr nsc on îuïr c on
ñ t

We use the following extension result. (The first result of this kind is due to Hardt - Kinderlehrer - Lin
[16]; it corresponds to our lemma when ófk � ¬ �>â e3c>ef`�z .)

Lemma 1 Let _Þ`�óô` � c � `ôe¨`õbgc�óöe¸` � . Then any �£o S�÷�V W=X îuï [ GIH*] has an extensionÚ o SÞ÷ � H�Â W7V W@X ï [ G\H^] .
The proof is given in Appendix A; see Lemma A.1. It relies heavily on the lifting results in Bourgain -

Brezis - Mironescu [4].
Returning to the proof of Case 2, with Ú given by Lemma 1, setãn¦kùøú û n in

YÚ in ïr in h Ü å XZYÔð ï�]
Clearly,

ãnfo S TLV Wæyç è X hli [ GIHE] and
ãn is constant outside some compact set. As in the proof of Theorem 6,

we may use
ãn to connect n to r , since once more we have a
ef`�° .

Case 3: a�eMk � c=°±}�z
The idea is the same as in the previous case; however, there is an additional difficulty, since in the

limiting case aBk �>â e the trace theory is delicate - in particular, tr
S H
Â W7V W{ük ×�W

(unless eÔk � ). Instead
of trace, we work with a notion of “good restriction” developed in Appendix B; when a�k �>â z�c>e�kÞz , the
space of functions in ý H
Â � having _ as good restriction on the boundary coincides with the space ý H
Â ��
� of
Lions - Magenes [17] (see Theorem 11.7, p. 72).

Our aim is to prove that any nfo S H
Â W>V W XjYJ[ G H ] can be connected to a constant r ofG H .
Step 1: we connect n©o S H�Â W7V W@XZYJ[ G\H^] to some n H o S H
Â W>V W=XjYJ[ G\HE] having a good restriction

on î Y
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Let ÙÇ¤þ_ be such that the projection ÿ onto î Y be well-defined and smooth in the set m À oUhIi [
dist

X�À c î Y ]N`gz>ÙD] x . For _B`�ÖB`ÕÙ , set ���ªkÞm À o YJ[
dist

XÁÀ c î Y ]\kgÖ x . By Fubini, for a.e. _-`CÖB`�Ù ,
we have n q ��� o S H
Â W7V W X � � ] and

� � � � � q n X�À ] ¬ n X
	 ] q Wq À ¬ 	òq i � H�� 	 � a Ä `�b t (1)

By Lemma B.5, this implies that n has a good restriction on � � , and that Rest n q � � kôn q � �
a.e. on � � .

Let any _N`dÖ,`�Ù satisfying (1). For _N`�"`dÖ , let ��� be the smooth inverse of ÿ q ����� ���  î Y .
Let also

Y ��kºm À o YJ[
dist

X�À c
î Y ]¦¤� x . Consider a continuous family of diffeomorphisms � � � �Y Y � �7c
_�³ ê ³ � , such that � � k id and � � q � � k�� � � . Then
ê « n�®�� � is a homotopy in

S H
Â W7V W . Moreover,
if n � kôn�®�� � , then n � kgn and n H q � � kdn q ��� ®���� q � � . By (1), n H has a good restriction on î Y .

Step 2: we extend n H to h�i
Let ï�kUm À o�hli,å �YJ[

dist
XÁÀ3[ î Y ]�`ÇÙ x . As in Case 2, we fix some r o#G�H and set

��k¨ä n H c on î Yr c on
ñ t

Clearly, �Mo S H�Â W7V W@X îuï�] , so that �¦o S�÷�V W@X îuï�] for _,`dó�` �>â e . We fix any _N`dó�` �7â e . By Lemma
1, there is some Ú o S ÷ � H
Â W7V W X ï [ G H ] such that Ú q ��� kd� . We define

ãn H k øú û n H c in
YÚ c in ïr c in hli-å XjYOð ï�] t

We claim that
ãn H o S H�Â W7V Wæyç è X h�i [ G\HE] . Obviously,

ãn:o S H
Â W>V Wæyç è X h·i,å Y ] . It remains to check that
ãn H oS H�Â W7V W@XZYÔð ï�] . This is a consequence of

Lemma 2 Let _,`da�` � c � `Oe#`Rbdc a
e#} � and �M¤ga . Let n H o SUTLV W�XZY ] and Ú o S��EV W�X ï�] . Assume
that n H has a good restriction Rest n H q � � on î Y and that tr Ú q � � k Rest n H q � � . Then the map

ä n H c in
YÚ c in ï

belongs to
S{T V W@XZYOð ï�] .

Clearly, in the proof of Lemma 2 it suffices to consider the case of a flat boundary. When
Y kX ¬ � c � ]�iª�2H! X _�c � ] and ï¨k X ¬ � c � ]�i|�òH" X ¬ � c
_ö] , the proof of Lemma 2 is presented in Appendix B;

see Lemma B.4.
Returning to Case 3 and applying Lemma 2 with a:k �>â e3c#�©k ó ¥¨�7â e , we obtain that

ãn H oS H�Â W7V WæÓç
è X hli-] . As in the two previous cases, this means that n H is
S H�Â W7V W -homotopic to a constant.

Case 4: � ³ga
ef`Cz�c�°Îk �
In this case,

Y
is an interval. Recall the following result proved in Bourgain - Brezis - Mironescu [4]

(Theorem 1): if
Y

is an interval and a
ef} � , then for each nfo S�T V W�XjYJ[ G\HE] there is some � o SUTLV W@XjYJ[ h\]
such that nÔk v7�¶� . Recall also that, when a
eK}Þ° , then ~�� X h [ hª] functions § with bounded derivatives
operate on

S{T V W
; that is, the map �Õ« §,® � is continuous from

S�T V W
into itself (see, e.g., Peetre [19] fora
eÕ¤{° , Runst - Sickel [23], Corollary 2 and Remark 5 in Section 5.3.7 or Brezis - Mironescu [9] whena
eNkR° ; this is also a consequence of the Composition Theorem). By combining these two results, we find

that the homotopy
ê « v7�Á� Hë�u��� � connects nMk v7�¶� to � .

The proof of Theorem 1 is complete.
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3. Proof of Theorems 2 and 3

We start with some useful remarks. For n#o S TLV W XZYJ[ G H ] , let
´ nuµ T V W denote its homotopy class in

S T V W
.

Proposition 1 Let _�`�a�`gbdc � `Ôe�`db . For nsc
�No SUT V W=XjYJ[ G\HE] , we have
a) n ´ �µ T V W k ´ n��µ T V W ;
b)

´ nuµ TLV W k ´ �µ T V W Ø ´ n ��Dµ TLV W k ´ � µ T V W ;
c)

´ nuµ T V W ´ �µ T V W k ´ n��µ T V W .

The proof relies on two well-known facts:
S{TLV W=¯�× � is an algebra; moreover, if n Ü  nFc�� Ü  � inSUT V W

and
qÓq n Ü qÓq $&% ³ô~Jc q¶q � Ü qÓq $&% ³Î~ , then n Ü � Ü  n�� in

SUT V W
. Here is, for example, the proof of c)

(using a)). Let first n H o ´ nuµ TLV W c�� H o ´ �Dµ T V W . If é@c(' are homotopies connecting n H to n and � H to � , thené�' connects n H � H to n�� ; thus
´ n�µ T V W ´ �Dµ T V W Ý ´ nu�Dµ TLV W . Conversely, if Ú o ´ n��µ T V W , then Ú o¦n ´ �µ T V W (by a)),

so that Ú �n"o ´ �Dµ T V W . Therefore, Ú k�n X Ú �n2]�o ´ n�µ TLV W ´ �µ T V W .
We next recall the degree theory for

S{TLV W
maps; see Brezis - Li - Mironescu - Nirenberg [8] for the

general case, White [25] when aMk � or Rubinstein - Sternberg [20] for the space ý H XjYJ[ G H ] and
Y

the
solid torus in h�¹ . Let _-`ga�`dbdc � `Ôef`db be such that a
ef}gz . Let n"o S{TLV W@X GIH) ñª[ G\HE] , where

ñ
is some open connected set in h+* . Clearly, for a.e. fo ñ c�n X-, c(�]Io S{T V W=X G\H [ G\H^] . For any such òc
n X., c/0]
is continuous, so that it has a winding number (degree) deg 0jn X., c/0].1 . The main result in [8] asserts that, ifa
e¦}gz , then this degree is constant a.e. and stable under

S£T V W
convergence.

In the particular case where a�} � , there is a formula

deg
X n X-, c(�]
],k �z32 � 4 � n X�À c(�]65 î�nî87 X�À c/0] � a Ä c

where n95M�Çkôn H � � ¬ n � � H . It then follows that, if a�} � and a
e�}�z , we have

deg
X n q 4 ��:<; ]�k>= � ; = �4 � n X�À c/0]�5 îunî87 X�À c(�] � a Ä �  t

Clearly, the above result extends to domains which are diffeomorphic to G=H6 ñ
. In the sequel, we are

interested in the following particular case: let ? be a simple closed smooth curve in
Y

and, for small ÙB¤�_ ,
let ?A@ be the Ù -tubular neighborhood of ? . We fix an orientation on ? .

Let � � G\HB O¿ @  ? @ be a diffeomorphism such that � q 4 � :&C �ED � G\HB �mQ_ x  ? be an orientation
preserving diffeomorphism; here ¿ @ is the ball of radius Ù in h·iª�2H . Then we may define deg

X n q FHG ]Ôk
deg

X n�®�� q 4 � :&I G ] ; this integer is stable under
S{T V W

convergence.
We now prove b) of Theorem 2, which we restate as

Proposition 2 Let _"`{a�`£bdc � `�eÇ`{bdcua
eÕ}{z . Let nFc��"oC~�� X �YJ[ G\HE] . Then
´ n�µ T V W k ´ �Dµ T V W if

and only if n and � are ~�� - homotopic.

PROOF. Using Proposition 1, we may assume �#k � . Suppose first that nÕoÕ~B� X �YJ[ GIHE] and � are ~J� -
homotopic. Then n and � are

S�T V W
-homotopic. Indeed, when aÔk � , this is proved in Brezis - Li [7],

Proposition A.1; however, their proof works without modification for any a . We sketch an alternative proof:
since n and � are ~ � -homotopic, there is some � od~ � X �YJ[ hl] such that nÇk v �¶� . Then

ê « v �Q� Hë�u��� �
connects n to � in

SUT V W
.

Conversely, assume that the smooth map n is
S�T V W

-homotopic to � . By continuity of the degree, we
then have deg

X n q F G ],kÎ_ for each ? . Since n is smooth, we obtain_�k deg
X n q F G ]-k deg

X n q F ]�k �zJ2 � F n95 îunî87 � a t
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Thus the closed form K¾kgnL5NM,n has the property that O F K , 7 � a�kR_ for any simple closed smooth curve? . By the general form of the Poincaré lemma, there is some � of~ � X �Y�[ h·] such that KàkPM � . One may
easily check that nMk v7���¶�w�RQ � for some constant ~ . Then

ê « v7��� Hë�u��� �¶�w�RQ � connects n to � in ~�� X �YJ[ G\H^] .
We now turn to the proof of the remaining assertions in Theorems 2 and 3.

Case 1: a�ef}C°fc�°±}gz
Step 1: each nfo S{T V W@XZYJ[ G\H^] can be connected to a smooth map ��of~�� X �Y�[ G\H*]
This is proved in Brezis - Li [7], Proposition A.2, for aBk � and eK}�° ; their arguments apply to anya and any e such that a
eC}�° . The main idea originates in the paper Schoen - Uhlenbeck [23]; see also

Brezis - Nirenberg [12], [13].
Step 2: we have

´ n�µ TLV W k±m^n v>�¶� [ � o SUT V W|XjYJ[ h·] x
Let � o SUT V W|XjYJ[ h·] . Then

ê « ¬u n v>�Á� HL����� � connects n v7�¶� to n in
S{T V W

. (Recall that, if §"of~�� X h [ hª]
has bounded derivatives and a
e�}:° , then the map �C« §N® � is continuous from

S£TLV W
into itself.) This

proves “ » ”. To prove the reverse inclusion, by Proposition 1, it suffices to show that
´ � µ T V W Ý m v ��� [ � oSUT V W@XZYJ[ h·] x .

Let �Ço ´ � µ T V W . For each
À o Y

, let ¿ Ä Ý Y
be a ball containing

À
. We recall the following lifting

result from Bourgain - Brezis - Mironescu [4] (Theorem 2): if é is simply connected in h�i and a
eO}R° ,
then for each Ú o S{T V W@X é [ GIHE] there is some S�o S{T V W@X é [ h·] such that Ú k v>�UT . Thus, for eachÀ o Y

there is some � Ä o SUT V W@X ¿ Ä [ h·] such that � q I�V k v>��� V . Note that , in ¿ Ä ¯ ¿�W , we have� Ä ¬K� W o SUTLV W@X ¿ Ä ¯ ¿ W [ z32RX¢] . Therefore, � Ä ¬�� W oY'�¡�Z X ¿ Ä ¯ ¿ W [ z32RX¢] , since a
eO}R° . It then
follows that � Ä ¬�� W is constant a.e. on ¿ Ä ¯ ¿ W ; see Brezis - Nirenberg [12], Section I.5.

By a standard continuation argument, we may thus define a (multi-valued) argument � for � in the
following way: fix some

À � o Y
. For any

À o Y
, let [ be a simple smooth path from

À � to
À

. Then,
for ÙÇ¤Î_ sufficiently small, there is a unique function �]\ o SUTLV W@X [ @ [ hl] such that � q \ G k v>�¶�_^ and�`\ q I G � Äba�� k � Ä�a q I G � Äba�� ; here, [c@ is the Ù -tubular neighborhood of [ . We then set� q I G � ÄQ� k � \ q I G � ÄQ� t

We actually claim that � is single-valued. This follows from

Lemma 3 Assume that _�`�a,`�bdc � `CeO`{bdcua
eO}Þ°fc�° }Þz . If Ú o S{T V W@X G\H� #¿ H [ G\HE] is such
that deg

X Ú q 4 � :&I � ]lkR_ , then there is some Sgo S{T V W=X G\H� �¿ H ] such that Ú k v>�UT .

Here, ¿ H is the unit ball in h·iª�2H . The proof of Lemma 3 is presented in Appendix C; see Lemma C.1.
Returning to the claim that � is single-valued, we have that deg

X � q FHG ]-k _ for each ? , since ��o ´ � µ TLV W .
By Lemma 3, a standard argument implies that � is single-valued.

The proof of Theorems 2 and 3 when a�ef}C° is complete.

Case 2: a�} � c � `Ôef`gbgcu°Ì}�²�c�zB³ga
ef`Ç°
Step 1: we have

´ nuµ T V W kUm^n v>�¶� [ � o SUT V W|XjYJ[ hl] ¯,S H V TZW@XjYJ[ h·] x For “ » ”, we use the Composition

Theorem mentioned in the Introduction, which implies that
ê « n v�Á� HL����� � connects n v>��� to n in

SUTLV W
.

For “ Ý ” it suffices to prove that
´ � µ TLV W Ý m vQ��� [ � o SUTLV W@XjYJ[ h·] ¯�S H V TjW|XjYJ[ h·] x . We proceed as

in Case 1, Step 2. Let ��o ´ � µ T V W . The corresponding lifting result we use is the following (see Bourgain
- Brezis - Mironescu [4], Lemma 4): if aÞ} � c�a
eô}(z and é is simply connected in hIi , then for
each Ú o SUT V W|X é [ G\H*] there is some S�o SUTLV W=X é [ h·] ¯ÕS H V TjW@X é [ h·] such that Ú k v>�UT . As in
Case 1, for each

À
there is some � Ä o SUT V W@X ¿ Ä [ h·] ¯KS H V TjW@X ¿ Ä [ h·] such that � q I�V k v>�¶� V . Since� Ä ¬¸� Wfo S H V H X ¿ Ä ¯ ¿�W [ z32RX¢] , we find that � Ä ¬Õ� W is constant ae. on ¿ Ä ¯ ¿�W (see [4], Theorem

B.1.). These two ingredients allow the construction of a multi-valued phase � o SÍT V W¢¯#S H V TjW for � . To
prove that � is actually single-valued, we rely on

Lemma 4 Assume that aN} � c � `ÇeK`{bdc�° }Þ²�c�z¦³�a
eK`�° . If Ú o S{T V W@X G\HY U¿ H [ G\HE] is such
that deg

X Ú q 4 � :dI � ]¦k±_ , then there is some S�o S{T V W@X G\He f¿ H [ h·] ¯fS H V TjW=X G\HY �¿ H [ h·] such that�Çk v �fT .
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The proof of Lemma 4 is given in Appendix C; see Lemma C.2.
The proof of Step 1 is complete.
Step 2: assume ad} � c � `þe¨`ºbgc�a�e¨}ºz ; then, for each n¸o S{TLV W=XZYJ[ G\H^] , there is some�No SUT V W@XZYJ[ G\HQ] ¯ ~�� XZYJ[ G\H^] such that �No ´ n�µ TLV W .
Consider the form K kông5�M,n . Then K±o S{T �2H V W|XjY ] ¯�×�TjW@XZY ] (see Bourgain - Brezis - Mironescu

[4], Lemmas D.1 and D.2). Let � o S�T V W|XjYJ[ h·] ¯#S H V TjW@XZYJ[ h·] be any solution of h � k div K in
Y

.
By the Composition Theorem, we then have v � ��� o SUT V W=XjYJ[ G\HE] , and thus �dkÌn v � �¶� o SUT V W@XZYJ[ G\H^] .
We claim that �Kog~�� XjYJ[ G\HE] . Indeed, let ¿ be any ball in

Y
. Since af} � and a
eC}Íz , there is someSgo SUTLV W@X ¿ [ h\] ¯�S H V TjW=X ¿ [ h\] such that n q I k v>�UT . It then follows that K q I kiMNS . Thus h � kjh9S

in ¿ , i.e., S ¬,� is harmonic in ¿ . Since in ¿ we have ��kôn v � �¶� k v �Á�fT � � � , we obtain that �No#~ � X ¿-] ,
so that the claim follows.

Using Step 1 and the equality �-kgn v � ��� , we obtain that �No ´ n�µ T V W .
Step 3: for each nfo SUT V W=XjYJ[ G\HE] , there is some Ú o#~�� X �YJ[ GIHE] such that Ú o ´ n�µ TLV W .
In view of Step 2, it suffices to consider the case where n�o S�T V W=XjYJ[ GIHE] ¯ ~�� XjYJ[ G\HQ] . We use the

same homotopy as in Step 1, Case 3, in the proof of Theorem 1:
ê « n¦®6� � , where � � is a continuous

family of diffeomorphisms � � � �Y  Y � � such that � � kPk � . Clearly, �Çkôn�®�� H o�~�� X �Y�[ G\H^] .
The conclusions of Theorems 2 and 3 when a�} � c � `ReC`©bdc�° }�²�cuz"³£a
eC`£° follow from

Proposition 2 and Steps 1 and 3.
We now complete the proof of Theorem 2 with

Case 3: _B`ga�` � c � `Oef`gbdc�°±}C²�c�z�³Ca
ef`�°
In this case, all we have to prove is that, for each ngo S�T V W=XjYJ[ G\HE] , there is some ��og~�� X �Y�[ GIHE]

such that ��o ´ n�µ TLV W . The ideas we use in the proof are essentially due to Brezis - Li [7] (see l 1.3, “Filling”
a hole).

We may assume that n is defined in a neighborhood m of
�Y

; this is done by extending n by reflections
across the boundary of

Y
- the extended map is still in

S�T V W
since _�` aK` � . We next define a good

covering of
Y

: let Ù�¤Ç_ be small enough; for
À o¦h\i , we setn Äi kjo©m À ¥ Ù3p ¥ X _�c/ÙD] i [ pso"X i and

À ¥ ÙJp ¥ X _�c/ÙD] i ÝPm xDt
Define also

n Ä� crq�k � c t¶tÓt c
° ¬ � , by backward induction :
n Ä� is the union of faces of cubes in

n Ä� � H .
By Fubini, for a.e.

À oCh·i , we have n q s V� o SUT V W c_q"k � c t¶tÓt c�° ¬ � , in the following sense: since�>â e#`RaB` � , we have tr n q s Vtvu � o SUT �2H
Â W7V W for all
À

. However, for a.e.
À

, we have the better property trn q s Vtvu � k n q s Vtvu � o SUTLV W
. For any such

À
, we have

tr w^n q s Vtvu �/xzyy s Vtvu � o SUT �òH�Â W7V W , but once more for a.e. such
À

we have the better property tr w^n q s Vtvu �/xzyy s Vtvu �k�n q s Vtvu � o S T V W
, and so on. (See Appendix E for a detailed discussion).

We fix any
À

having the above property and we drop from now on the superscript
À

.
Step 1: we connect n to some smoother map n H Let {Þk ´ a
e�µ , so that zR³|{{³±° ¬ � . Sincen q s�} o SUT V W

and a�ef}~{ , there is a neighborhood ï of
n * in

n * � H and an extension
ãn"o S{T � H�Â W7V W|X ï [ GIHE]

of n q s�}
. This extension is first obtained in each cube ~ÍÝ n * � H starting from n q � Q (see Brezis - Nirenberg

[12], Appendix 3, for the existence of such an extension). We next glue together all these extensions to
obtain

ãn [ ãn belongs to
S{T � H
Â W>V W since �7â e�`Ua ¥:�7â e�` �@¥:�>â e . Moreover, the explicit construction in

[12] yields some
ãn�oÇ~�� X ï�å n * ] . We next extend

ãn to
n * � H in the following way: for each ~ÎÝ n * � H ,

let � Q be a convex smooth hypersurface in ~ ¯ ï . Since � Q is { -dimensional and {Õ}£z�c ãn q ���
may be

extended smoothly in the interior of � Q as an GIH -valued map (here, we use the fact that 2 * X GIHE]-k _ ). Letãn Q be such an extension. Then the map��k ä ãnFc outside the � Q ’sãn Q c inside � Q
belongs to

S{T � H
Â W7V W=X n * � H ] . To summarize, we have found some �Uo S�T � H
Â W7V W=X n * � H [ G\HE] such that� q s�} kgn q s�}
.
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Pick any aC`Ìa H ` min m>a ¥:�>â e3c �x and let e H be such that a H e H k{a
e ¥:� (note that � `Õe H `Þb ).
By Gagliardo - Nirenberg (see, e.g., Runst [22], Lemma 1, p.329 or Brezis - Mironescu [10], Corollary 3),
we have

SUT � H�Â W7V W=¯¦× �4Ý SUT � V W � . Thus �No S{T � V W � X n * � H ] .
We complete the construction of the smoother map n H in the following way: if {"kÍ° ¬ � , then � is

defined in
n i and we set n H kg� ; if {M`C° ¬ � , we extend � to

n i with the help of

Lemma 5 Let _Í` a H `Ïbdc � `àe H `Ïbdc � ` a H e H ` °fc ´ a H e H µ"³�q¨`(° . Then any �¸oS T � V W � X n � [ G H ] has an extension n H o S T � V W � X n i [ G H ] such that n H q s�� o S T � V W � for pòk�qc tÓt¶t c
° ¬ � .

When a H k � , Lemma 5 is due to Brezis - Li [7], Section 1.3, “Filling” a hole; for the general case, see
Lemma D.3 in Appendix D.

We summarize what we have done so far: if {Ík ´ a
e�µ , then there are some a H cje H such that a:`a H ` � c � `ge H `£bgc�a H e H k©a�e ¥Þ� and a map n H o SUT � V W � X n i [ GIH*] such that n H q s � o SUT � V W � ccq�k{0c t¶t¶t c ° ¬ � and n H q s�} k�n q s�}
. By Gagliardo - Nirenberg and the Sobolev embeddings, we have in particularn H q s � o SUT V W c_qBk�{0c t¶t¶t c ° ¬ � . Finally, n and n H are

SUT V W
- homotopic by

Lemma 6 Let _�`:a�` � c � `�eÔ`�bgc � `:a
eO`R°fc ´ a
e�µl³�q�`:° . If n q s�� o SUT V W c�n H q s�� o SUT V W c�pFkqDc t¶tÓt c
° , and n q s � kgn H q s � , then n and n H are
S T V W

-homotopic.

The case a-k � is due to Brezis - Li [7]; the proof of Lemma 6 in the general case is presented in the
Appendix D- see Lemma D.4.

Step 2: induction on
´ a
e�µ .

If {Rk ´ a
e�µ�k±° ¬ � , we have connected in the previous step n to n H o SUT � V W � X n i [ G\H^] , wherea�`ga H ` � c � `Ôe H `gb and a H e H k:a�e ¥g� }�° . Using Case 1 (i.e., a
ef}�° ) from this section, n H may
be connected in

S{T � V W � (and thus in
S{T V W

, by Gagliardo - Nirenberg and the Sobolev embeddings) to some�Nof~�� X �YJ[ GIHE] . This case is complete.
If {Nk ´ a
e�µ2k:° ¬ z , then

´ a H e H µòk:° ¬ � . By the previous case, n H can be connected in
S{T � V W � (and

thus in
S{T V W

) to some �No#~�� X �Y�[ G\HE] . Clearly, the general case follows by induction.
The proof of Theorems 2 and 3 is complete.
We end this section with two simple consequences of the above proofs; these results supplement the

description of the homotopy classes.

Corollary 4 Let _�`õag` bgc � `þe¸`õbdcua
e¨}ºz�c�° }�z . For nFc���o S{T V W@XZYJ[ G\H^] , we have´ nuµ T V W k ´ �Dµ T V W Ø deg
X n q F G ]·k deg

X � q F G ] for every ? .

Corollary 5 Let _Í` a H c a � ` bgc � `àe H cje � `Ïbdc�a H e H } z�c�a � e � } z�c�° }Ïz . For nFc��¸oS T � V W � XZYJ[ G H ] ¯¦S T � V W � XjYJ[ G H ] , we have
´ nuµ T � V W � k ´ �Dµ T � V W � Ø ´ nuµ T � V W � k ´ �µ T � V W � .

Clearly, Corollary 5 follows from Corollary 4. As for Corollary 4, let n H c�� H o#~�� X>�YJ[ G\HE] be such that´ n H µ T V W k ´ n�µ T V W and
´ � H µ T V W k ´ �Dµ TLV W . Then, by Theorem 2 b),´ nuµ T V W k ´ �Dµ TLV W Ø ´ n H µ TLV W k ´ � H µ T V W Ø ´ n H µ Q a k ´ � H µ Q a Ø deg

X n H q F ]-k deg
X � H q F ]Lc���? t (2)

Moreover, we have

deg
X n H q F ]·k deg

X � H q F ]FØ deg
X n H q FHG ]lk deg

X � H q FHG ]�Ø deg
X n q F_G ]·k deg

X � q FHG ]ëc#��?\c (3)

by standard properties of the degree.
We obtain Corollary 4 by combining (2) and (3).

130



On some questions of topology for � � -valued fractional Sobolev spaces

4. Proof of Theorem 4

According to the discussion in the Introduction, we only have to prove part d). Let aC} � c � `¸e£`bgc�° }�²�c�zM³Ua�eK`Þ° . Let nKo SUTLV W=XZYJ[ G\H^] . By Theorem 2 a), there is some �#oK~�� X �YJ[ G\H^] such
that ��o ´ nuµ T V W . By Theorem 3 b), there is some � o S{T V W=XjYJ[ h\] ¯fS H V TjW@XZYJ[ h·] such that �Nk:n v>��� . LetX ��Ü ]�Ý�~�� X �YJ[ h·] be such that ��Ü,�� in

SUT V W@¯MS H V TjW . By the Composition Theorem, the sequence of
smooth maps

X � v � ���wß ] converges to n in
S{T V W=XjYJ[ G\HE] . The proof of Theorem 4 is complete.

5. Proof of Theorem 5

We start this section with a discussion on the stability of the degree: recall that if a
ef}Cz , then deg
X n q F G ] is

well-defined and stable under
S{T V W

convergence. However, while the condition a�eÕ}�z is optimal for the
existence of the degree (see Brezis - Li - Mironescu - Nirenberg [8], Remark 1), the stability of the degree
of

S T V W
maps holds under (the weaker assumption of)

S T � V W � convergence, where a H e H } � . This property
and Corollary 4 suggest the following generalization of Theorem 5

Theorem 7 Let _#`�aM`£bdc � `geÇ`£bgcu_#`�a H `�aDc � `ge H `£bgc � ³�a H e H ³�a
e . Then for eachnfo SUT V W@XZYJ[ G\H^] there is some Ö�¤C_ such thatm^�No S T V W XjYJ[ G H ] [>qÓq � ¬ n q¶q È É � Ê Ë � `�Ö x Ý ´ n�µ T V W t
Note that

SUT V W|XjYJ[ G\HE]MÝ SUT � V W � XZYJ[ G\H^] , by Gagliardo - Nirenberg and the Sobolev embeddings, so
that Theorem 5 follows from Theorem 7 when a
ef}Cz (when a�e�`gz , there is nothing to prove, by Theorem
1).

Proof of Theorem 7
Step 1: reduction to special values of aDc a H cÁescÁe H .
We claim that it suffices to prove Theorem 7 when_-`Ca H `�a�` � ¬ X ° ¬ � ] â esc � `"ef`dbgc � `Oe H `dbgc�a
eMk:z�c�a H e H k � c
°Ì}�z t (4)

Indeed, assume Theorem 7 proved for all the values of aDc a H cÁescÁe H satisfying (4). Let _Ô`Ía � `©bdc � `e � `Ìbgc ° }àz be such that a � e � }àz (when ° k � or a � e � `Ìz , there is nothing to prove). LetnÕo SUT a V W a and let aDc a H cÁescÁe H satisfy (4) and the additional condition aM`{a � . By Gagliardo - Nirenberg
and the Sobolev embeddings, there is some Ö � ¤�_ such that¡ k m^��o SUT a V W a XjYJ[ G\HE] [Qq¶q � ¬ n qÓq È É a Ê Ë a `CÖ � x Ým^��o SUTLV W@XjYJ[ G\HE] [Qq¶q � ¬ n qÓq È É � Ê Ë � `CÖ xwt (5)

By the special case of Theorem 7, we have �Mo#¡ Ûº��o ´ nuµ T V W . By Corollary 5, we obtain ¡ Ý ´ n�µ T a V W a ,
i.e.,

´ n�µ T a V W a is open.
In conclusion, it suffices to prove Theorem 7 under assumption (4). Moreover, by Proposition 1 we may

assume nMk � .
Step 2: construction of a good covering.
We fix a small neighborhood m of

�Y
. By reflections across the boundary of

Y
, we may associate to eachnfo SUT V W@XZYJ[ G\H^] an extension

ãnfo SUT V W�X m [ GIHE] satisfyingqÓq ãn ¬ ã� q¶q È É8Ê Ë ��� � ³�~ H q¶q n ¬ � qÓq È É/Ê Ë �
�
� (6)

and q¶q ãn ¬ ã� qÓq È É � Ê Ë � ��� � ³�~ H q¶q n ¬ � qÓq È É � Ê Ë � �
�
� t (7)
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In this section, ~ H cL~ � c tÓt¶t denote constants independent of nFc���c t¶t¶t .
We fix some small ÙO¤£_ . By Lemma E.2 in Appendix E, for each ��o S£T V W=XjYJ[ GIHE] there is someÀ o¦h i (depending possibly on � ) such that the covering

n Äi has the properties� q s V� o S T V W c+qBk � c tÓt¶t c ° ¬ � (8)

and qÓq � q s V� ¬ � q¶q È É � Ê Ë � � s V� � ³g~I� qÓq � ¬ � q¶q È É � Ê Ë � ��� � ³�~I�>~ H q¶q � ¬ � qÓq È É � Ê Ë � �
�
� (9)

(the last inequality follows from (7)).
While

À
may depend on � , the covering

n Äi has two features independent of � :

the number of squares in
n Ä� has a uniform upper bound � [

(10)

if ~�H7c ~ � are two squares in
n Ä� , there is a path of squares in

n Ä� each one
having an edge in common with its neighbours, connecting ~�H to ~ � . (11)

Step 3: choice of Ö .
We rely on

Lemma 7 Let ~{k X _�c/ÙD] � and _,`Ra H ` � c � `Ke H `:bdcua H e H k �t Then for each Ö H ¤d_ there is someÖE��¤C_ such that every map ��o S{T � V W � X î2~ [ G\H^] satisfyingqÓq � ¬ � q¶q È É � Ê Ë � � � Q � `CÖ^� (12)

has a lifting � o SUT � V W � X î2~ [ hl] such thatqÓq � qÓq È É � Ê Ë � � � Q � `CÖ H t (13)

Clearly, in Lemma 7, ~ may be replaced by the unit disc. For the unit disc, the proof of Lemma 7 is
given in Appendix C; see Lemma C.3. In particular, if (12) holds, then we haveqÓq � qÓq $ � � � Q � `C~ ¹ Ö H (14)

for some ~ ¹ independent of the Ö3� s. We now take Ö H such thatÖ H `�20Ù â ~ ¹ t (15)

With Ö � provided by Lemma 7, we chooseÖ�k min m>ÖE� â ~ � c ÖE� â ~ H ~�� xwt (16)

Step 4: construction of a global lifting for � q s V� .
Let ��o SUT V W=XjYJ[ G\HE] satisfy

q¶q � ¬ � qÓq È É � Ê Ë � `�Ö . Since ÖB³gÖE� â ~ H ~�� , (9) implies that the conclusion
of Lemma 7 holds for � q � Q and every square ~ in

n Ä� . Thus, for every ~õo n Ä� , � q � Q has a lifting � Qsatisfying (14) and � Q o SUT � V W � X î2~�] .
We claim that � Q o SUT V W=X î2~�] . The statement being local, it suffices to prove that � Q o SUTLV W@XÁ× ] ,

where
×

is the union of three edges in î2~ . Since
×

is Lipschitz homeomorphic with an interval, by Theorem
1 in [4] there is some Sgo S{TLV W@XÁ× ] such that ��k v>�UT in

×
(here we use _-`Ca�` � and a
eMk:z�} � ). In

×
,

we have S ¬f� Q o XZSUT V W ¥ SUT � V W � ] XÁ×|[ zJ2RX¢] ; thus S ¬#� Q is constant a.e. in
×

(see [4], Remark B.3), so
that the claim follows.

Since a
ef¤ � and � q s V� o SUT V W c � Q o SUTLV W
, we may redefine � q s V� and � Q on null sets in order to have

continuous functions. We claim that the function � X
	 ]Ik � Q X
	 ] , if
	 oO~ is well-defined on

n ÄH (and thus
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continuous and
S{T V W

). By (11), it suffices to prove that, if ~BH>cL~ � are squares in
n Ä� having the edge � in

common, then � Q � k � Q � on � . Clearly, on � we have � Q � k � Q � ¥ z3p
2 for some pFo"X . Thusq¶q � Q � ¥ zHp
2 q¶q $ � �f� � k qÓq � Q � q¶q $ � �U� � `g~ ¹ Ö H c
by (14). It follows that z q p q 20Ù�k qÓq z3p�2 qÓq $ � �f� � ³ q¶q � Q � q¶q $ � �f� � ¥ ~ ¹ Ö H `gz~ ¹ Ö H c (17)

which implies p3kd_ by (15) and (16).
In conclusion, � q s V� has a global lifting � o S T V W X n ÄH [ h·] .
Step 5: construction of a good extension Ú of � q s V� .
Let � � o SUT � H�Â W7V W=X n Ä� [ h·] be an extension of � , � ¹ o SUT � � Â W7V W@X n Ä¹ [ h·] an extension of � � , and

so on; let � i o SUT ��� iª�2H��ÁÂ W7V W@X n Äi [ h·] be the final extension. Note that these extensions exist sinceaÔ` �¢¥ X ° ¬ � ] â e , so that trace theory applies. We set Ú k v7��� t o SUT �l� iª�2H��ÁÂ W>V W=X n Äi [ G\H^] . SinceX a ¥ X ° ¬ � ] â e2] , eMkd° ¥�� ¤�° , we obtain by Theorem 3 that Ú o ´ � µ T ��� i|�òH/�jÂ W7V W . By Corollary 5, we
also have Ú o ´ � µ T V W .

We complete the proof of Theorem 7 by proving
Step 6: Ú o ´ �Dµ T V W .
We rely on the following variant of Lemma 6

Lemma 8 Let _�`Ra-` � c � `�eÔ`�bgc � `:a
eO`R°fc ´ a�e�µ·³�q¦`R° . Let ��c Ú o S{T V W@X n i [ GIHE] be such
that � q s�� o SUT V W c Ú q s�� o SUT V W c�psk�qc tÓt¶t c
° ¬ � . Assume that � q s � and Ú q s � are

SUT V W
-homotopic. Then �

and Ú are
SUT V W

-homotopic.

The proof of Lemma 8 is given Appendix D; see Lemma D.5.
When °í}£² , we are going to apply Lemma 8 with qÔk¸z . In order to prove that � q s � and Ú q s � areSUT V W

-homotopic, it suffices to find, for each ~(o n � , a homotopy é Q from � q Q to Ú q Q preserving the
boundary condition on î2~ ; we next glue together these homotopies (this works since _�`þaO` � ). We
construct é Q using the lifting: since a
e�kRz�k dim ~ and ~ is simply connected, by Theorem 2 in [4] there
is some Sgo S{T V W@X ~ [ h·] such that ��k v7�fT in ~ . By taking traces, we find that � q � Q k v>� tr T k v>���

�
; thus

tr S ¬�� Q o XjSUT �2H
Â W7V W ¥ SUT V W ] X î2~ [ z32RXJ] . Therefore, tr S ¬�� Q is constant a.e., by Remark B.3 in [4].
We may assume that tr SÇk � Q k tr � � . Then

ê « ¬u v ����� HL����� T�� � � � � is the desired homotopy é Q .
When °¾k:z , the above argument proves directly (i.e., without the help of Lemma 8) that Ú o ´ �µ T V W .
The proof of Theorem 7 is complete.

Appendix A An extension lemma

In this appendix, we investigate, in a special case, the question whether a map in
S�÷V W@X î�ï [ G\H*] admits an

extension in
SÞ÷ � H�Â W7V W@X ï [ G\H^] .

Lemma A.1 Let _N`dóK` � c � `KeÔ`:bgc�óöeO` � c�°õ}Rz . Let ï be a smooth bounded domain in h\i .
Then every ��o S�÷�V W=X îuï [ G\H^] has an extension Ú o S�÷ � H�Â W7V W=X ï [ G\H^] .
PROOF. We distinguish two cases: ó"³ � ¬ �7â e and óÔ¤ � ¬ �7â e .
Case ód³ � ¬ �>â e : since óöeC` � c�� may be lifted in

S�÷�V W
(see Bourgain - Brezis - Mironescu [4]), i.e.

there is some SRo S�÷�V W@X îuï [ h·] such that �Nk v>�UT . Let � o SÞ÷ � H
Â W7V W=X ï [ h·] be an extension of S . ThenÚ k v>��� o SÞ÷ � H�Â W7V W=X ï [ G\H^] (since ó ¥g�7â e�³ � and
À « v>� Ä is Lipchitz). Clearly, Ú has all the required

properties.
Case óK¤ � ¬ �7â e : the argument is similar, but somewhat more involved. The proof in [4] actually yields
a lifting which is better than

S�÷V W
; more specifically, this lifting S belongs to

S � ÷�V W Â
� for _¦` ê ³ � , see
Remark 2, p.41, in the above reference. On the other hand, since ó"¤ � ¬ �>â e , we have

ê k�e â X óöe ¥#� ]I` � .
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For this choice of
ê
, we obtain that � has a lifting Sgo SU÷�V W�¯MS HL�òH�Â � ÷QW � H�� V ÷QW � H . This S has an extension� o SÞ÷ � H
Â W7V W�¯�S H V ÷QW � H . By the Composition Theorem stated in the Introduction, the map Ú k v���

belongs to
S�÷ � H�Â W7V W|X ï [ GIH*] . Clearly, we have tr Ú kd� .

Remark A.1. The special case eÔ`Rz and ó�k � ¬ �>â e was originally treated by Hardt - Kinderlehrer -
Lin [16] via a totally different method. Their argument extends to the case ef`dz and óöe#` � , but does not
seem to apply when ef}gz .

Appendix B Good restrictions

In this appendix, we describe a natural substitute for the trace theory when aNk �7â e ; it is known that the
standard trace theory is not defined in this limiting case.

For simplicity, we consider mainly the case of a flat boundary. However, we state Lemma B.5 (used in
the proof of Theorem 1) for a general domain. We start by introducing some
Notations: let �Uk X _�c � ]�iª�2HQc Y � k��� X _�c � ]ëc Y � k��� X ¬ � c
_ö]Lc Y k Y � ðMY � k��� X ¬ � c � ] .
If � is a function defined on � , we set

ã� X�À �Pc ê ]-kô� XÁÀ ] for
XÁÀ �Zc ê ]Io Y

.

Lemma B.1 Let _�`ga�` � c � `Oef`gb . Then for nfo S{T V W=XjY � ] and for any function � defined on � ,
the following assertions are equivalent:
a) �Mo S{T V W@X ��] and � k ���� q n X�À ] ¬ ã� X�À ] q WÀ TjWi � À `db [ X�� t¶� ]
b) the map Ú H k ä nFc in

Y �ã��c in
Y � c belongs to

S{T V W=XjY ] ;
c) the map Ú �ªk©ä n ¬ ã��c in

Y �_�c in
Y � belongs to

S{T V W@XZY ] .
PROOF. Recall that, if é is a smooth or cube-like domain, then an equivalent (semi-) norm on

S©T V W=X é�]
is given by

§ « ¬� ��� i�� ½ H
� �� �C ÄH�c�R�ZÄ � �
  � �c�AD § X�À ¥ ê v �Q] ¬ § X�À ] q Wê TjW � H � À � ê¢¡E£¤ H
Â W X�� t zD]

(see, e.g., Triebel [25]).
Clearly, both b) and c) imply that �Ôo S{T V W=X ��] . Conversely, for �"o S{T V W=X ��] we have to prove the

equivalence of (B.1), b) and c). We consider the norm given by (B.2). Taking into account the fact thatÚ H c Ú � belong to
SUTLV W

in
Y � and

Y � , we see thatÚ H o S T V W XZY ]�Ø¦¥fk � ��� � ��òH q n X�À ] ¬ ã� XÁÀ ] q WX�À i ¬ ê ] TjW � H§� ê � À `db X�� t ²w]
and Ú � o S TLV W XjY ]BØ¦¥O`gb t X�� t ¨ ]
The lemma follows from the obvious inequality� ¬ zö� TZWa�e � ³©¥�³ �a
e � t

We now assume in addition that a
ef} � and derive the following

Corollary B.1 Let _-`Ca�` � c � `Ôef`gb be such that a
e�} � . Then, for every n#o S TLV W XZY � ] we have
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a) for each _-³ ê � ` � , there is at most one function � defined on � such that the mapsÚ � aH k¨ä nsc in �ª XÁê � c � ]ã�uc in �ª X ¬ � c ê � ]
and Ú �
a� k¨ä n ¬ ã�0c in �« Xjê � c � ]_�c in �« X ¬ � c ê � ]
belong to

S T V W XjY ] ;
b) for a.e. _-³ ê � ` � , the function ��kdn X-, c ê � ] has the property that Ú �
aH c Ú �
a� o S T V W XZY ] .
(As usual, the uniqueness of � is understood a.e.)

The above corollary suggests the following

Definition: let _-`Ca�` � c � `Oe�`gbdcua
ef} � c�_-³ ê � ` � . Let nfo SUT V W=XjY � ] and let � be a function
defined on � . Then � is the downward good restriction of n to m À i k ê � x if Ú � aH c Ú � a� o SUT V W|XjY ] ; we
then write �"k Rest n q �Ä t ½ �
a . Similarly, for _"` ê � ` � we may define an upward good restriction Restn q �Ä t ½ �
a kg� as the unique function � defined on � satisfying the two equivalent conditions

a)
S �
aH k©ä ã��c in �ª XÁê � c � ]nFc in �ª X _�c ê � ] o S TLV W XjY � ]

and

b)
S �
a� k©ä _�c in �« Xjê � c � ]n ¬ ã��c in �« X _�c ê � ] o S T V W XjY � ] t

If � is both an upward and a downward good restriction, we call it a good restriction and we write �Ok
Rest n q Ä t ½ �
a .
Corollary B.2 Let _,`daB` � c � `�e#`Rbgc�a�e"} � . Let n"o S{T V W@XZY � ] . Then, for a.e. _,` ê � ` � , we
have Rest n q Ä t ½ �
a kdn X-, c ê � ] .
Remark B.1 If a
eÍ¤ � , then functions n©o S�T V W@XZY � ] have traces for all _d³ ê � ³ � . However,
these traces need not be good restrictions. Here is an example: For °Ïk¸z , one may prove that the mapÀ « X�À ¬ �7â z v H ] â q À ¬ �>â z v H q belongs to

SUT V W=XjY ] if _-`�a�` � c� `Ôef`gbgcLa�ef`gz . However, if a�ef¤ � , its trace

tr n q Ä � ½ � k¨ä � c if
À H ¤ �>â z¬ � c if
À H ` �>â z

does not belong to
S{T V W|X _�c � ] , so that it is not a good restriction.

Remark B.2 In the limiting case a�k �7â e , functions in
S�T V W

do not have traces. However, they do have
good restrictions a.e.

Here is yet another simple consequence of Lemma B.1

Corollary B.3 Let _�`�a�` � c � `Ôef`dbgc�a
ef} � . Let n�¬�o SUT V W=XjY ¬\] be such that Rest n � q �Ä t ½ � k
Rest n � q �Ä t ½ � . Then the map Ú k©ä n � c in

Y �n � c in
Y � belongs to

SUT V W
.

The following results explain the connections between good restrictions and traces.

Lemma B.2 Let _f`�aM` � c � `�eÕ`�bdcua
e�¤ � . Let nÇo S{T V W@XZY � ] . Assume that there exists �fk
Rest n q �Ä t ½ � . Then ��k tr n q Ä t ½ � .

PROOF. Let Ú k ä n ¬ ã�0c in
Y �_�c in
Y � t By Lemma B.1, we have Ú o S{T V W=XjY ] . By trace theory and

continuity of the trace, we have _�k tr Ú q Ä t ½ � , so that tr n q Ä t ½ � kg� .
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Lemma B.3 Let _-`�a�` � c � `Oef`gbdc�a
ef} � . Let n"o S{T � H
Â W7V W|XjY � ] . Then, considered as a
S{TLV W

function, n has a good downward restriction to m À i kg_ x which coincides with tr n q Ä t ½ � .

PROOF. Let �,k tr n q Ä t ½ � . Then �¦o SUT V W=X ��] , by the trace theory. By Lemma B.1, it remains to prove
that � ��� q n XÁÀ ] ¬ ã� XÁÀ ] q WÀ TjWi � À `gb t X�� t® ]
Assume first that a ¥d�>â eNk � . Then (B.5) follows from the well-known Hardy inequality�#¯�� H� q n XÁÀ �jc ê ] ¬ n X�À �jc
_ö] q Wê W � ê � À ³�~N°±M,n]° W $ Ë cc��nfo S H V W XjY � ] t X�� t ² ]
Consider now the case where a ¥d�>â e ük � . Let ó#k:a ¥d�>â e . We are going to prove that� ��� q n X�À ] ¬ ã� XÁÀ ] q WÀ TjWi � À ³g~N°ën]° W È�³ Ê Ë X�� tµ´ ]
for some convenient equivalent (semi-) norm on

SU÷�V W
. It is useful to consider the norm

§ «¶��� i�� ½ H
� �� �C Ä3�c�R�ZÄ � �
  � �c� V Ä � � �
  � �c�AD

q § X�À ¥ z ê v � ] ¬ z§ XÁÀ ¥ ê v � ] ¥ § X�À ] q Wê ÷QW � H � À � ê¢¡E£¤ H�Â W X�� t · ]
(see, e.g., Triebel [24]).
For any

À �òo¸� such that n Ä�¹ kgn X�À �Zc , ]Io SÞ÷V W@X _�c � ] , the map§ Ä ¹ Xjê ]·k¨ä n X�À �jc ê ]Lc if
ê ¤�_� X�À � ]Lc if
ê `�_

belongs to
S�÷�V W@X ¬ � c � ] , by standard trace theory. Moreover, for any such

À � we have°E§ Äb¹ ° W È�³ Ê Ë � �òH V H�� ³Î~N°ën Ä�¹ ° W È�³ Ê Ë � � V H�� c X�� t º ]
i.e. � �� �C/» � � �òH V H��¼� » � �¢� � �2H V H�� V » � � �¢� � �2H V H/�rD

q § Ä�¹ X¼½ ¥ z ê ] ¬ z§ Ä�¹ Xr½ ¥ ê ] ¥ § Ä�¹ Xr½ ] q Wê ÷QW � H � ½ � ê ³
~ � �� C�» � � � V H��¼� » � �¢� � � V H�� V » � � �¢� � � V H/�rD � q n Äb¹ Xr½ ¥ z ê ] ¬ z7n Ä�¹ Xr½ ¥ ê ] ¥ n Ä�¹ X¼½ ] q Wê ÷QW � H � ½ � ê t

In particular, � k � H
Â �� � �u�� � � q § Äb¹ X¼½ ¥ z ê ] ¬ zD§ Äb¹ X¼½ ¥ ê ] ¥ § Äb¹ X¼½ ] q Wê ÷QW � H � ½ � ê ³g~N°ën Ä�¹ ° W È ÷�V W t X¼� tÓ� _w]
Since � }g~ � H
Â
¹� q n X�À �Ác ê ] ¬ � X�À ��] q Wê ÷QW � ê kR~ � H�Â ¹� q n XÁÀ �Zc ê ] ¬ � X�À �Á] q Wê TjW � H � ê c X¼� tÓ�D� ]
we find that � H
Â ¹� q n X�À �Zc ê ] ¬ � XÁÀ �Á] q Wê TjW � H � ê ³C~N°*n Äb¹ ° W È ³ Ê Ë t X¼� tÓ� zD]
On the other hand, we clearly have� HH
Â ¹ q n XÁÀ �jc ê ] ¬ � XÁÀ ��] q Wê TjW � H � ê ³g~N°ën Ä�¹ ° W $ Ë ¥ ~ q � X�À � ] q W t X¼� tÓ� ²w]
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By combining (B.12), (B.13) and integrating with respect to
À � , we obtain (B.7). The proof of Lemma B.3

is complete.

A simple consequence of Lemma B.3 is the following

Lemma B.4 Let _�`ga�` � c � `"ef`dbdc�a�ef} � and �N¤ga . Let n H o SUT V W=XZY � ] and n � o S¾�^V W=XZY � ] .
Assume that n H has a good downward restriction ��k Rest n H q �Ä t ½ � and that �fk tr n � q Ä t ½ � . Then the
map Ú k ä n H c in

Y �n0��c in
Y �

belongs to
S T V W XZY ] .

PROOF. Let n ¹ o SUT � H
Â W>V W|XjY � ] be an extension of � . Then Ú k Ú H ¥ Ú � , whereÚ H k¨ä n H c in
Y �n ¹ c in
Y �

and Ú � k¨ä _�c in
Y �n�� ¬ n ¹ c in
Y � t

By Lemma B.3 and the assumption �#k Rest n H q �Ä t ½ � , we have Rest n H q �Ä t ½ � k Rest n ¹ q �Ä t ½ � . By
Corollary B.3, we find that Ú H o SUT V W@XZY ] . It remains to prove that Ú ��o SUT V W=XjY ] . Let ó¸k minm���c a ¥d�>â e3c �x . Then Ú ��o SÞ÷�V W=XjY ] , by standard trace theory. Thus Ú ��o SUT V W=XjY ] .

We conclude this section by stating the following precised form of Corollary B.1, b) in the case of a
general boundary. We use the same notations as in the proof of Theorem 1, Case 4.

Lemma B.5 em Let nfo S H�Â W7V W@XZY ] . Then
a) for a.e. _-`�ÖB`�Ù we haven q � � o S H�Â W7V W X � � ] and

� � � � � q n X�À ] ¬ n X�	 ] q Wq À ¬ 	2q i � H�� 	 � a Ä `gb [ X¼� tÓ��¨ ]
b) for any such Ö , n has a good restriction to ��� which coincides (a.e. on ��� ) with n q � �

.

Appendix C Global lifting

In this appendix, we investigate the existence of a global lifting in some domains with non-trival topology.

Lemma C.1 Let _�`Þa�`Þbgc � `�eO`Þbdcua
eÔ}R°#c
°õ}Þz . Let nÔo SUT V W=X G\H� #¿ H [ G\H^] be such that
deg

X n q 4 � :&I � ]lkR_ . Then there is some � o S T V W X G H  �¿ H [ G H ] such that nMk v ��� .

Here, ¿ H is the unit ball in hliª�2H .
PROOF. Let � � h! �¿ H  GIH>c�� XÁê c À ]\kgn X vQ� �Lc À ] . Then �No S T V Wæyç
è X h! �¿ H [ GIHE] , where “loc” refers only
to the variable

ê
. By Theorem 2 in Bourgain - Brezis - Mironescu [4], there is some Sgo S T V Wæyç è X hP N¿ H [ h·]

such that �Kk v>�UT . We claim that S is zJ2 -periodic in the variable
ê
. Indeed, for a.e.

À od¿ H , we haven�o SUT V W|X G\HL �m À x [ GIH*] and deg
X n q 4 � :�C ÄJD ]ªk�_ . In particular, for any such

À
the map n q 4 � :&C ÄJD has a

continuous lifting ¿ Ä . On the other hand, for a.e.
À oC¿ H we have S Ä kÀS X-, c À ]Bo S TLV Wæyç è X h� Km À x [ h·] .

Thus, with  Ä XÁê ]�kÁ¿ Ä X v>� �
] , we find that for a.e.
À od¿ H the function S Ä ¬  Ä is continuous and zJ2RX

-valued; therefore it is a constant. Since  Ä is z32 -periodic, so is S Ä for a.e.
À o�¿ H . We obtain that S iszJ2 -periodic in the variable

ê
. Thus the map � � G�H9 O¿ H  h�c � X vQ� �ëc À ]�kÂS XÁê c À ] is well-defined and

belongs to
S{T V W@X G\H� �¿ H [ h·] . Moreover, we clearly have nMk v��¶� .

In the same vein, we have

137



H. Brezis and P. Mironescu

Lemma C.2 Let a,} � c � `Õe�`Ubgc�°(}:²�cuzM³Þa
e�`:° . Let nKo S{T V W@X G\H� #¿ H [ G\HE] be such that
deg

X n q 4 � :ÃI � ]lkd_ . Then there is some � o S{TLV W@X GIHÄ �¿ H [ h·] ¯�S H V TjW�X G\Hd -¿ H [ h·] such that nMk v>��� .

The proof is similar to that of Lemma C.1; one has to use Lemma 4 in [4] instead of Theorem 2 in [4].

Lemma C.3 Let � `"ef`db and Ö H ¤C_ . Then there is some Ö � ¤C_ such that every �No S H
Â W>V W|X GIH [ GIHE]
satisfying °*� ¬ � ° È �¼Å Ë*Ê Ë �

4
� � `�Ö � has a global lifting � o S H
Â W>V W=X G\H [ h·] such that ° � ° È �rÅ Ë*Ê Ë �

4
� � `CÖ H .

PROOF. Recall that if

�
is an interval, then every Ú o S H�Â W7V W@X � [ G\H^] has a lifting S4o S H�Â W7V W@X � [ h\]

(see Bourgain - Brezis - Mironescu [4], Theorem 1). Moreover, this lifting may be chosen to be (locally)
continuous with respect to Ú , i.e. for every Ú � o S H
Â W>V W�X � [ G\HE] there is some Ö � ¤Ç_ such that in the setm Ú [ ° ÚC¬OÚ � ° È �rÅ Ë*Ê Ë �UÆ �

4
� � `�Ö � x

there is a lifting ÚR« S continuous for the
S H�Â W7V W norm. (This assertion can be established using the same

argument as in Step 7 of the proof of Theorem 4 in Brezis, Nirenberg [12]; it can also be derived from the
explicit construction of S in the proof of Theorem 1 in [4]; see also Boutet de Monvel, Berthier, Georgescu,
Purice [6] when e�k:z ).
Let

� k ´ ¬ z32lc zJ20µ . To each �No S H�Â W7V W@X G\H [ G\HE] we associate the map Ú o S H
Â W7V W@X � [ GIH^] , Ú Xjê ]�kà� X v>� �
] .
By the above considerations, for every Ö ¹ ¤�_ there is some Ö±Ç�¤g_ such that, if °*� ¬ � ° È �rÅ Ë*Ê Ë �

4
� � `õÖ±Ç ,

then Ú has a lifting S such that °ES�° È �¼Å Ë*Ê Ë ��Æ � `:Ö ¹ . We claim that S is z32 -periodic if Ö ¹ is small enough.
Indeed, the function È XÁê ]JkÉS Xjê ¬ z32s] ¬ S Xjê ] belongs to

S H
Â W7V W�X ´ _�cLzJ20µ [ zJ2RXJ] , so that È is constant a.e.
(see [4], Theorem B.1). Since °EÈ&° $ � ³�°ÊS6° $ � `g~�Ö ¹ , we have È�kR_ (i.e. S is zJ2 -periodic) if ~�Ö ¹ `gzJ2 .

Thus, for Ö ¹ small enough, the map � X v � � ]�kjS Xjê ] is well-defined, belongs to
S H
Â W>V W and satisfies° � ° È �¼Å ËEÊ Ë �

4
� � `�Ö H and n¦k v>��� .

Appendix D Filling a hole - the fractional case

We adapt to fractional Sobolev spaces the technique of Brezis - Li [7], Section 1.3.
The first two results are preparations for the proofs of Lemmas 5,6 and 8 (see Lemmas D.3, D.4 and

D.5 below).

Lemma D.1 Let _Õ`þaO` � c � `{e�`ôbgc � `þa
eÞ`4° . Let ~±k X ¬ � c � ]�i and nÞo SUT V W|X î2~�] .
Then

ãnKo SUT V W=X ~�] ; here,
ãn X�À ]=k�n X�À â q ÀFq ] and

q�q
is the

× � norm in h·i . Moreover, the map n « ãn is
continuous from

S{T V W@X î0~�] into
SUT V W=X ~�] .

PROOF. Clearly, we have ° ãn`° $ Ë �fQ � ³£~ � °*nË° $ Ë � � Q � . Thus it suffices to prove, for the Gagliardo semi-
norms in

SUTLV W
, the inequality ° ãn`° W È É8Ê Ë �fQ � ³�~ H X °ën]° W È É/Ê Ë � � Q � ¥ °ën]° W $ Ë � � Q � ] t X�Ì tÓ� ]

We have�
Q
�
Q

q ãn XÁÀ ] ¬ ãn X
	 ] q Wq À ¬ 	òq i � TZW � À � 	 k � H� � H� �� Q
�� Q

q n XÁÀ ] ¬ n X�	 ] q Wq 7 À ¬ ó 	òq i � TjW 7 i|�òH ó iª�òH � a Ä � abW � 7 � ó t X�Ì t zw]
We claim that � k � H� � H� 7 iª�2H ó iª�òHq 7 À ¬ ó 	òq i � TZW � 7 � ó�³C~�� â q À ¬ 	òq i � TZW t X�Ì t ²ö]
Indeed, � k � H� � H
Â/Í� 7�iª�2H X &7u]/iª�2Hq 7 À ¬ Ã7 	òq i � TjW �  � 7 k� H� � H
Â/Í� 7 iª� TjW �2H �i|�òHq À ¬  	òq i � TZW �  � 7f³ � H ¥ � �c X�Ì t ¨ ]
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where

� H k�O H� O �� and

� � k~O H� O �� .
On the one hand, we have� H k � H� � �� 7 iª� TZW �òH uiª�2Hq À ¬  	òq i � TjW �  � 7³�~ ¹ � H� � �� 7 iª� TjW �2H  iª�2Hq À ¬ 	òq i � TjW �  � 7�³�~dÇ â q À ¬ 	òq i � TjW t X�Ì t  ]

On the other hand, we have� � k � H� � �� 7 iª� TjW �òH �iª�2Hq À ¬  	òq i � TjW �  � 7³g~ÄÎ � H� � �� 7 iª� TZW �òH �iª�2H i � TjW �  � 7Mk:~ÄÎ � H� � �� 7 iª� TZW �òH  � TZW �òH �  � 7f³g~dÏ t X�Ì t ² ]
We obtain (D.3) by combining (D.4), (D.5) and (D.6). Finally, (D.1) follows from (D.2) and (D.3).

The proof of Lemma D.1 is complete.

Lemma D.2 Let _R`±a�` � c � `4eÍ`±bdc � `Ìa
e£`±° . Let ��c Ú o S T V W X ~ [ G H ] be such that� q � Q k Ú q � Q o SUT V W@X î0~�] . Then, there is a homotopy éÍo�~�� X ´ _�c � µ [LSUT V W@X ~ [ G\H^]�] such that é X _�c , ]\k�ucué X � c , ]lk Ú and é XÁê c , ] q � Q kg� q � Q cÐ� ê o ´ _�c � µ .
PROOF. Let nfk:� q � Q . It clearly suffices to prove the lemma in the special case Ú k ãn . In this case, let,
for _-³ ê ` � , é XÁê c À ]·k ä � X�À â X � ¬ ê ]
]Lc if

q À�q ³ � ¬ êãn X�À ]Lc if � ¬ ê ` q À�q ³ � [
set é X � c , ]�k ãn . Clearly, é{o#~J� X ´ _�c � ] [LSUT V W@X ~ [ G\H^]�] . It remains to prove that é Xjê c , ]  ãn as

ê  � . Let§ X�À ]lk ä � X�À ]Lc if
q À�q ³ �ãn X�À ]ëc if
q À�q ¤ �

and Ñ�kR§ ¬ ãn . Then §�c ãn"o S T V WæÓç
è X hli,] , so that Ñ�o S T V WæÓç
è X h·i,] . Since Ñ-kg_ outside ~ , we actually haveÑNo SUT V W@X h�i,] . Thus °^é Xjê c , ] ¬ ãn]° W È É8Ê Ë �fQ � k�°(Ñ X., â X � ¬ ê ]�]±° W È É/Ê Ë �fQ � ³°(Ñ X., â X � ¬ ê ]�]±° W È É/Ê Ë �µÒ t � k X � ¬ ê ] iª� TjW °(ÑR° W È É/Ê Ë �µÒ t �  _
as

ê  � . The proof of Lemma D.2 is complete.

We introduce a useful notation: let n#o S�T � V W � X n * ] , where _-`�a H ` � c � `Ôe H `gbdc � `ga H e H `�° .
We extend, for each ~ o n * � H c
n q � Q to ~ as in Lemma D.1. Let

ãn be the map obtained by gluing these
extensions. We next extend

ãn to
n * � � in the same manner, and so on, until we obtain a map defined in

n i ;
call it ý * X n2] .
Lemma D.3 Let _R`¾a H ` � c � `¨e H `Ìbgc � `àa H e H `Î°#c ´ a H e H µ�³Óq:`¾° . Then every ��oSUT � V W � X n � [ G\H*] has an extension n H o SUT � V W � X n i [ G\HE] such that n H q s�� o SUT � V W � for pòk�qc tÓt¶t c
° ¬ � .

PROOF. We take n H k£ý�� X ��] . We may use repeatedly Lemma D.1, since for pIk¾q ¥Þ� c tÓt¶t c
° we have� `�a H e H `�p .
Lemma D.4 Let _Õ`Îa�` � c � `£e:` bgc � `Îa�e�`4°#c ´ a
e�µ�³�q�`þ° . If n q s � o SUT V W c�n H q s � oSUT V W c�pòkÔqDc tÓt¶t c ° ¬ � , and n q s � k�n H q s � , then n and n H are

SUT V W
-homotopic.

PROOF. We argue by backward induction on q . If qRk ° ¬ � , then for each ~ o n i Lemma D.2
provides a

S T V W
-homotopy of n q Q and n H q Q preserving the boundary condition. By gluing together these
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homotopies we find that n and n H are
S{T V W

-homotopic (here we use �>â eR`4a�` � ). Suppose now that
the conclusion of the lemma holds for q ¥U� ; we prove it for q , assuming that qK} ´ a�e�µ . By assumption,n and ý�� � H X n q s �

�
� ] are

SUT V W
-homotopic, and so are n H and ý�� � H X n H q s �

�
� ] . It suffices therefore to prove

that �:k±ý�� � H X n q s �
�
� ] and � H kºý�� � H X n H q s �

�
� ] are

S{T V W
-homotopic. For each ~Ïo n � � H , we have� q � Q kU� H q � Q k�n q � Q kUn H q � Q . By Lemma D.2, � q Q and � H q Q are connected by a homotopy preserving

the trace on î2~ . Gluing together these homotopies, we find that � q s �
�
� and � H q s �

�
� are

SUT V W
-homotopic.

If é connects � q s �
�
� to � H q s �

�
� , then Lemma D.1 used repeatedly implies that

ê « ý�� � H X é Xjê ]�] connects
in

SUT V W@X n i [ G\HE] the map ý�� � H X � q s �
�
� ] to ý�� � H X � H q s �

�
� ] , i.e., � to � H .

The proof of Lemma D.4 is complete.

Lemma D.5 Let _�`{a,` � c � `CeK`�bgc � `Ua
eK`Þ°#c ´ a
e�µI³Pq#`�° . Let �uc Ú o SUT V W|X n i [ G\H*] be
such that � q s�� o SUT V W c Ú q s�� o SUT V W c�p|k�qDc tÓt¶t c ° ¬ � . Assume that � q s � and Ú q s � are

SUT V W
-homotopic.

Then � and Ú are
S T V W

-homotopic.
PROOF. By Lemma D.4, � and ýB� X � q s � ] (respectively Ú and ý � X Ú q s � ] ) are

SUT V W
-homotopic. If é con-

nects � q s � to Ú q s � in
SUT V W

, then as in the proof of Lemma D.4, we obtain that
ê « ý�� X é Xjê ]�] connectsý � X � q s � ] to ý � X Ú q s � ] in

SUT V W
. Thus � and Ú are

S{T V W
-homotopic.

Appendix E Slicing with norm control

In this section, we prove the existence of good coverings for
S£T V W

maps. The arguments are rather standard.
Without loss of generality, we may consider maps defined in h\i . Throughout this section, we assumeÙ�k � , i.e. we consider a covering with cubes of size 1. We start by introducing some useful notations: forÀ o�~ i k X _�c � ] i and for q�k � c tÓt¶t c
° ¬ � , let

~·�Jk�o ä ��* ½ H ê * v � } ¥ iª� �� æ ½ H  æ v � � [�ê * o�h�c( æ o"X�c*m v � } x ð m v � � x k�m v H c t¶tÓt v i x�Õ
and ~ � X�À ]·k À ¥ ~ � . (With the notations introduced in Section 3, we have ~ � X�À ]·k n Ä� when

Y kRhli ).
For a fixed set

ñ Ý:m � c t¶t c ° x such that
q ñ�q kÔq , let also

~ ;� k ä � � � ; ê � v � ¥ �� Â� ; ö� v � [�ê � o�h�c/��No!X Õ c
so that ~·�Jk ð m>~ ;� [ ñ ÝRm � c tÓt¶t c ° x c q ñ�q kÔq x c
and with obvious notations ~ � XÁÀ ]Ik ð m>~ ;� XÁÀ ] [
ñ Ý:m � c t¶tÓt c
° x c q ñJq k�q xDt

Instead of considering a fixed (semi-) norm on
S£T V W c _�`¾aK` � c � `Íe{`¾b , it is convenient to

consider a family of equivalent normsq § q W� k �ñ ÝRm � c t¶t¶t c ° xq ñ�q k§q
� Ò t � Ò � q § XÁÀ ¥�Ö � � ; ê � v � ] ¬ § X�À ] q Wq ê*q � � TjW � ê � À

(see, e.g., Triebel [24]). An obvious computation yields, for the usual Gagliardo (semi-) norm on ~ ;� X�À ] ,
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Lemma E.1 Let _�`ga�` � c � `Ôef`db and nfo S{T V W
. Then�ñ ÝRm � c t¶t¶t c ° xq ñ�q kÔq

� Q t °*nË° W È É/Ê Ë �UQA×� � Ä^���¢� À ³ q n q W� X¼Ø t¶� ]
for some ~ independent of n .

We next define the norm °*nË° È É/Ê Ë �UQ � � ÄQ��� by the formula°*nË° W È É/Ê Ë �UQ � � Ä^��� k �Q � Q �
�
� � ÄQ� °ën]° W È É/Ê Ë � � Q � t

Lemma E.2 Let _�`ga�` � c � `Ôef`db . Then, for n#o S{T V W
, we have

a) for a.e.
À o�~�iBc�n q Q � � ÄQ� o S T V WæÓç
è crqBk � c tÓt¶t c
° ¬ � ;

b) there is a fat set (i.e., with positive measure) ÙUÝC~Bi such that°*nË° W È É8Ê Ë �fQ � � ÄQ��� ³�~ q n q W� c�� À o"Ù t X¼Ø t zD]
Remark E.1. Here, n q Q � � Ä^� are restrictions, not traces. However, when a
ef¤ � we may replace restrictions
by traces, by a standard argument. We obtain

Corollary E.1 Let _R` aÕ` � c � `Íe�`¾bdcua
e{¤ � . Let n�o S T V W
. Then, for a.e.

À o�~ i , trn q Q tvu � � Ä^� o SUTLV W
. Moreover, for a.e.

À oÕ~�i , tr n q Q tvu � � ÄQ� has a trace on ~ iª� � XÁÀ ] which belongs toSUT V W
, and so on.

PROOF OF LEMMA E.2. In order to avoid long computations, we treat only the case q¦k � c °õk£z . The
general case does not bring any additional difficulty. Let ~ o�~ H X�À ] ; denote its lower (resp. upper, left,
right) edge by ~ æ

(resp. ~6Ú�cu~ $ c�~�Û ). By (E.1), we have n q Q � o SUT V W
for a.e.

À o"~ � and, for
À

in a fat
set, Ö Q � Q2�
� ÄQ� °ën]° W È É/Ê Ë �fQ � � ³ const.

q n q W H . Similar statements hold for the other edges.
It remains to control the cross - integrals in the Gagliardo norm, e.g. to prove� k � Q � �Q � Q0� � Ä^� � Q � � QvÜ

q n X�	 ] ¬ n X�Ý ] q Wq 	 ¬ Ý�q � � TjW � 	 � Ý ³ const. °*nË° W È É/Ê Ë X¼Ø t ²w]
(here, we take the usual Gagliardo norm in

S�T V W@X h � ] ). We have� k � Q � �Þ �3ß � � H� � H� q n XÁÀ ¥§à H v H ¥§à � v � ¥ 7 v H ] ¬ n XÁÀ ¥áà H v H ¥§à � v � ¥ ó v �>] q Wq 7 v H ¬ ó v � q � � TjW � ó � 7 � Àk � Ò � � H� � H� q n X
	 ¥ 7 v H ] ¬ n X
	 ¥ ó v � ] q Wq 7 v H ¬ ó v � q � � TjW � ó � 7 � 	k � Ò � � H� � H� q n X�Ý ] ¬ n X�Ý ¬ 7 v H ¥ ó v � ] q Wq 7 v H ¬ ó v � q � � TjW � ó � 7 � Ý³ � Ò � � Ò � q n X¼Ý ¥ ½ ] ¬ n X¼Ý ] q Wq ½Fq � � TjW � ½ � Ý k�°*nË° W È É8Ê Ë t
The proof of Lemma E.2 is complete.
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