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Specializations of Jordan superalgebras

C. Martı́nez and E. Zelmanov

Abstract. We construct universal associative enveloping algebras for a large class of Jordan superalge-
bras.

Especializaciones de superálgebras de Jordan

Resumen. Construimos álgebras envolventes universales asociativas para varias superálgebras de Jor-
dan.

1. Introduction
Let � be a ground field of characteristic ���� . A (linear) Jordan algebra is a vector space � with a binary
bilinear operation 	�
��������
�� satisfying the following identities:

(J1) 
�� � ��

(J2) 	�
�������
 � 
���	���
��
For an element 
���� let  !	�
�� denote the right multiplication  !	�
"�$#�%!�&%�
 in � . If 
���'�)(*��� then

by +,
�-���)(/. we denote their Jordan triple product +�
������(�. � 	�
��/�0(213
4	���(5�46���	�
�(5� .
A Jordan algebra � is called special if it is embeddable into an algebra of type 798;:=< , where 7 is an

associative algebra. The algebra >*?@	BAC� is exceptional. A homomorphism �D�E7 8;:=< is called a special-
ization of a Jordan algebra � . N. Jacobson [3] introduced the notion of a universal associative enveloping
algebra F � F!	G�4� of a Jordan algebra � and showed that the category of specializations of � is equivalent
to the category of homomorphisms of the associative algebra F!	G�4� .

Let H be a Jordan bimodule over the algebra � (see [3]). We call H a one-sided bimodule if +I�/�)HJ�K�L. �	�M�� . In this case, the mapping %N� �  POQ	B%/�R�TSVU=W�XYH is a specialization. The category of one-sided
bimodules over � is equivalent to the category of right (left) F!	G�4� -modules.

N. Jacobson [3] found universal associative enveloping algebras for all simple finite dimensional Jordan
algebras.

In this paper we study specializations and one-sided bimodules of Jordan superalgebras. Let us intro-
duce the definitions.

By a superalgebra we mean a ZQ[ � Z -graded algebra 7 � 7V\] 1^72\_ . We define ` %"` � M if %a�b72\] and` %"` �dc if %*�e7f\_ .
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For instance, if H is a vector space of countable dimension, and hi	BHP� � hi	BH!�)\] 1ahi	jHk�0\_ is the Grass-
mann algebra over H , that is, the quotient of the tensor algebra over the ideal generated by the symmetric
tensors, then hi	BH9� is a superalgebra. Its even part is the linear span of all products of even length and the
odd part is the linear span of all products of odd length.

If 7 is a superalgebra, its Grassmann enveloping algebra is the subalgebra of 7dlmhi	jHP� given byhi	�7n� � 72\] l3hi	jH9�-\] 1o7f\_�lohi	BH9�0\_ .
Let p be a homogeneous variety of algebras, that is, a class of � -algebras satisfying a certain set of

homogeneous identities and all their partial linearizations (see [20]).

Definition 1 A superalgebra 7 � 7n\] 1o7f\_ is called a p superalgebra if hi	�7n�Q�ep .

C. T. C. Wall [19] showed that every simple finite-dimensional associative superalgebra over an alge-
braically closed field � is isomorphic to the superalgebraqbrfs t 	��k� �vu9w 7 MM xzy ��7m� qbr 	B�k�{�Lx|� q3t 	B�k�,}J1 u9w M ~� MYy �)~v� qbrC�5t 	��k��� � � qbt��5r 	��k��}
or to the superalgebra� 	�U4� � u!w 7 MM 7 y ��7�� q t 	B�k� } 1 u9w M ~~ M y ��~�� q t 	��k� }R�

Jordan superalgebras were first studied by V. Kac [5] and I. Kaplansky [10,11]. In [5] V. Kac (see also
I. L. Kantor [8,9]) classified simple finite dimensional Jordan superalgebras over an algebraically closed
field of zero characteristic. In [16] this classification was extended to simple finite dimensional Jordan
superalgebras, with semisimple even part, over characteristic ��� � ; a few new exceptional superalge-
bras in characteristic 3 were added to the list. In [13] the remaining case of Jordan superalgebras with
nonsemisimple even part was tackled.

Let’s consider the examples that arise in these classifications.

If 7 � 7f\] 1m72\_ is an associative superalgebra then the superalgebra 7 8;:=< , with the new product%C��� � _� 	B%5�L1�	06 c ��� ����� �)� ��%/� is Jordan. This leads to two superalgebras:

1)
q 8;:=<rfs t 	B�k� , ��� c �LU�� c ;

2)

� 	�U4� 8�:=< , U�� � ;
If 7 is an associative superalgebra and �b#47���7 is a superinvolution, that is, 	�%/����� � % , 	B%5����� �	06 c � � ����� �)� � � % � , then >3	�7k�G��� � >o	�72\] �0�/�Y1�>o	�7f\_��G��� is a subsuperalgebra of 7k8;:=< . The following two

subalgebras of
q 8;:<rfs t are of this type:

3) AV��� rfs t 	B�k� if U ���@� is even. The superalgebra consists of matrices w 7 ~� x*y , where 7¡  � 7v�q r 	B�k�{� � � �£¢ _ ~k J� q t��/r 	��k���Jx � �L¢ _ xi {��� q t 	B�k� , � � w M ¤�¥6¦¤�¥ M§y ;

4) ¨*	�U4� �vu9w 7 ~� x*y �Lx � 7¡ )�)~C  � ~z� �   � 6 � � q3t 	��k�,} .

5) Let H � H'\] 1©H'\_ be a Zª[ � Z -graded vector space with a superform «V���V#H�¬�H��� which is
symmetric on H'\] , skewsymmetric in H�\_ and «�H'\] �)H'\_ � � 	�M�� � «�H'\_ �)H'\] � .

The superalgebra � � � c 1DH � 	�� c 1DH'\] �=1DH�\_ is Jordan.
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6) The 3-dimensional Kaplansky superalgebra, ® ? � �V¯¦1T	B�n
*1^�n��� , with the multiplication ¯�� �¯���¯,
 � _� 
4��¯,� � _� ���±° 
���I² � ¯ �
7) The 1-parametric family of 4-dimensional superalgebras x   is defined as x   � 	��V¯ _ 1i�V¯ � ��1e	B�n
Y1�n��� with the product: ¯��³ � ¯ ³ �)¯ _ ¯ � � M/�)¯ ³ 
 � _� 
4��¯ ³ � � _� ���-
�� � ¯ _ 1o´G¯ � �Yµ �dc � � .
The superalgebra x   is simple if ´*�� M . In the case ´ � 6 c , the superalgebra x ¢ _ is isomorphic toq _ s _ 	��k� .
8) The 10-dimensional Kac superalgebra (see [5]) has been proved to be exceptional in [15]. In charac-

teristic 3 this superalgebra is not simple, but it has a subalgebra of dimension 9 that is simple (the degener-
ated Kac superalgebra. There are two other examples of simple Jordan superalgebras in ch F = 3, both of
them exceptional (see [16]).

9) We will consider now Jordan superalgebras defined by a bracket.
If 7 � 72\] 1N7f\_ is an associative commutative superalgebra wit a bracket on 7 , +��K.¶#�7�¬�7v�·7 ,

the Kantor Double of 	�7C��+I��.�� is a the superalgebra � � 7�1�7¡
 with the ZQ[ � Z gradation �/\] � 7f\] 17f\_�
 , ��\_ � 7f\_¡1©72\] 
 and the multiplication in � given by: %�	B��
�� � 	�%5���G
 , 	B�{
"�G% � 	06 c � � ��� 	B�K%5�G
 ,	�%�
��K	B�{
"� � 	06 c � � �)� +�%��{�,. , and the product (in � ) of two elements of 7 is just the product of them in 7 .
A bracket on 7 is called a Jordan bracket if the Kantor Double ��	�7C��+I��.�� is a Jordan superalgebra.

Every Poisson bracket is a Jordan bracket.

10) Let Z be a unital associative commutative algebra with a derivation W�#QZ��¸Z . Consider the
superalgebra

� ®o	jZ¦��W5� � 7a1 q , where 7 � ��\] � Z¹1�º ?³�» _'¼ ³ Z ,
q � ��\_ � 
"Z½1�º ?³�» _ 
 ³ Z are freeZ -modules of rank 4. The multiplication on 7 is Z -linear and ¼ ³ ¼ª¾ � M/��µ¦��3¿ � ¼ �_ � ¼ �� ��c � ¼ �? � 6 c .

Denote 
 ³ � ³ � M/��
 _ � � � 6$
 � � _ � 
'? 
 _ � ? � 6$
�? � _ � 
 � �À6$
 � � ? � 
�? � � � 
 _ .
The bimodule structure and the bracket on

q
are defined via the following tables:

g ¼ª¾�Á

�Â 
£	BÂ Á � 
 ¾ 	BÂ Á5Ã �

 ³ Â 
 ³ 	BÂ Á � 
 ³ � ¾ 	BÂ Á �


 Á 
 ¾KÁ

'Â Â ÃKÁ 6�Â Á5Ã 6 ¼ ¾ 	jÂ Á �

 ³ Â ¼ ³ 	jÂ Á � M

The superalgebra
� ®o	jZ¦��W5� is simple if and only if Z does not contain proper d-invariant ideals.

In [5], [8] it was shown that simple finite dimensional Jordan superalgebras over an algebraically closed
field � of zero characteristic are those of examples 1) - 8) and the Kantor Double (example 9) of the

Grassmann algebra with the bracket +�Â'� Á . �mÄ 	-6 c � � Å���Æ ÂÆ'Ç ³ Æ ÁÆ'Ç ³ .
The examples 9), 10) are related to infinite dimensional superconformal Lie superalgebras (see [6], [7]).

In particular, the superalgebras
� ®o	�Z$�)xR� correspond to an important superconformal algebra discovered

in [1] and [2].

In [13] it was shown that the only simple finite dimensional Jordan superalgebras over an algebraically
closed field of characteristic �¹� � with nonsemisimple even part are superalgebras 9),10) built on truncated
polynomials.
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2. Universal enveloping algebras
In what follows the ground field � is assumed to be algebraically closed.

1. Let F be a universal associative enveloping algebra of a special Jordan superalgebra � , È�#=���ÉF
a universal specialization. The algebra F is equipped with a natural superinvolution � leaving all elements
from ÈL	G�4� fixed. Then ÈL	G�4�ªÊN>3	jF$�G�/� . We call a superalgebra � reflexive if È£	0�� � >3	�F§�G��� .
Theorem 1 All superalgebras of examples 1) - 4) are reflexive except the following ones:

q 8;:=<_ s _ 	B�k� ,AV���4	 c � � �£Ë�x½	-6 � � , ¨i	 � � . Hence,ÌÍÍÎ ÍÍÏ F!	 q 8;:<rfs t 	B�k�-�YË q rfs t 	B�k�=Ð q rfs t 	��k� for 	����-U4�¡�� 	 c � c ��ÑF!	 � 8;:< 	�U4�-� � � 	�U4�Ð � 	�U4�{�ÒU�� � ÑF!	�Ó����4	�����U4�-��Ë q rfs t 	��k���±	����-U4�¡�� 	 c � � ��ÑF!	B¨i	�U4�-��Ë q t�s t 	B�k�{�ÒU��^Ô �
2. Let Z be an associative commutative algebra with a derivation x|#�Z©�ÕZ . Let Ö � «�Z¦��x|� and

let Èa# � ®o	�Z$�)xR�Y� q � s � 	BÖ�� be the embedding found in [12]
The embedding È extends the embedding of Kantor doubles of brackets of vector type found in [14]

Theorem 2 F!	 � ®D	jZ¦��xR��� � q � s � 	BÖ�� , the embedding È is universal.

3. The superalgebra of
� ®o	jZ¦��x¶� spanned over � by the elements c � ¼ _ � ¼ � , ¼ ? �-
4�-
 _ ��
 � �-
 ? is iso-

morphic to ¨i	 � � .
Theorem 3 The restriction of the embedding È (see above) to ¨i	 � � is a universal specialization;F!	B¨*	 � ���YË q � s � 	��i° ´j²����
where �i° ´j² is a polynomial algebra in one variable.

4. Let us describe the universal associative enveloping superalgebra of
q _ s _ 	��k� . Consider the ring

of polynomials and the field of rational functions in two variables, �i° ( _ �)( � ²¹Ê&�i	�( _ �)( � � . Let ® be
the quadratic extension of �i	B( _ �)( � � generated by a root of the equation %5�n1×%z6N( _ ( � � M . Consider
the subring 7 � �i° ( _ ��( � ²"1×�i° ( _ �)( � ²Ø% and the subspaces

q _ � � �i° ( _ �)( � ²"1×�i° ( _ ��( � ²Ø%�¢ _ ( � , q � _ ��i° ( _ �)( � ²Ø( _ 1D�i° ( _ ��( � ²Ø% of ® . Then F � w 7 q _ �q � _ 7Ùy is a subring of
q � 	�®�� .

Theorem 4 F!	 q _ s _ 	��k���YË w 7 q _ �q � _ 7 y . The mapping

È¹# w/Ú _)_ Ú _ �Ú � _ Ú ��� y � w Ú _)_ Ú _ � 1 Ú � _ %�¢ _ ( �Ú _ � ( _ 1 Ú � _ % Ú �)� y
is a universal specialization.

5. Let H � H'\] 1*H�\_ be a ZQ[ � Z -graded vector space, dim H�\] � ����W@µ��¹H�\_ �×� � ; let «V���V#�Hb¬fH����
be a supersymmetric bilinear form on H . The universal associative enveloping algebra of the Jordan algebra� c 1!H'\] is the Clifford algebra

�nÛ 	��½� �dÜ-c �)¯ _ � ����� �)¯ r ` ¯ ³ ¯ ¾ 19¯ ¾ ¯ ³ � M/�-µ¦��o¿ ��¯��³ ��c,Ý (see [3]). Assuming
the generators ¯ _ � ����� �)¯ r to be odd, we get a Zª[ � Z -gradation on

�nÞ 	��¹� .
In H�\_ we can find a basis ß _ � ¼ _ � ����� �-ß t � ¼ t such that «�ß ³ � ¼ ¾ � �Tà ³ ¾ �¡«�ß ³ �-ß ¾ � � « ¼ ³ � ¼ ¾ � � M .

Consider the Weyl algebra Ö t � « c ��
 ³ �-� ³ � cVá µ á UJ`â° 
 ³ �-� ¾ ² �©à ³ ¾ �,° 
 ³ ��
 ¾ ² � ° � ³ ��� ¾ ² � M9� . Assuming
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 ³ �-� ³ � c9á µ á U to be odd, we make Ö t a superalgebra. The universal associative enveloping algebra of� c 1oH is isomorphic to the (super)tensor product
�nÛ 	��¹�lCXRÖ t .

6. Let Ó����4	 c � � � denote the Lie subsuperalgebra of
q _ s � 	B�k� which consists of skewsymmetric ele-

ments with respect to the orthosympletic superinvolution. Let 
4�-� be the standard basis of the odd part ofÓ����4	 c � � � .
Theorem 5 (I. Shestakov) The universal enveloping algebra of ® ? is isomorphic to F!	�Ó����£	 c � � ��[�µGW�	�° 
4�-��² �6C° 
4�-��²��-� , where F!	BÓ����4	 c � � �-� is the universal associative enveloping algebra of Ó����4	 c � � � and µGW�	�° 
4�-��²B�J6° 
4�-��²��-� is the ideal of F!	BÓ����4	 c � � �-� generated by ° 
4�-��²��$6N° 
4�-��² .
Clearly, if ch � � M then ®z? does not have nonzero specializations that are finite dimensional algebras. If
ch � � �e�NM then ®*? has such specializations.

7. Let us consider the superalgebras x½	B´-� . We will assume that ´b�� 6 c ��M�� c , because xa	06 c �eËq _ s _ 	��k� ; xa	�M��JË�®*?J1D� ; x½	 c � is a Jordan superalgebra of a superform.

Theorem 6 (I. Shestakov) The universal enveloping algebra of x½	B´-� is isomorphic toF!	BÓ��-�£	 c � � ��[�µGW'	-° 
�-��² � 6^	 c 13´-�K° 
4�-��²51o´-� �
Corollary 1 If ch � � M then all finite dimensional one-sided bimodules over xa	�´-� are completely re-
ducible.

Indeed, it is known (see [4]) that finite dimensional representations of the Lie superalgebra Ó��-�£	 c � � � are
completely reducible.

Now we will assume thar ch � � M and will classify irreducible finite dimensional one-sided bimodules
over x½	B´-� . Let us first consider four infinite dimensional Verma type right modules over F!	Bx½	�´-� . Each of
these bimodules is generated by an even highest weight element ß .H _ 	�´-� � ß/F!	�W'	�´-��� . Defining relations: ß'	�
��P1D��
�� � 	 � ´1 c �Gß , ßI�/� � M , ß�¯ _ � ß , ß�¯ � � M . Basis:ß��5ß����YßI
 ³ �Yµ�� c .H � 	�´-� � ß5Fi	�W'	�´-�-� . Defining relations: ß'	�
��91^��
"� � 	 � ´41 c ��ß , ß�� � M , ß�¯ _ � ß , ß�¯ � � M . Basis:ß��Yß�
 ³ �YµJ� c .

Changing parity we get two new bimodules H _ 	�´-�0ãGä and H � 	�´-�Gã0ä .
Each of these bimodules has the unique irreducible homomorphism image Ö _ 	B´-� or Ö � 	�´-� or Ö _ 	B´-� ã0ä

or Ö � 	�´-�0ãGä respectively.

Theorem 7 If ´ � ¢ 8 r : _ <r , ��� c , then x½	B´-� has two irreducible finite dimensional one sided bimodulesÖ _ 	�´-� and Ö _ 	�´-�0ãGä .
If ´ � ¢ rr : _ , �Ù� c , then x½	�´-� has two irreducible finite dimensional one sided bimodules Ö � 	�´-� andÖ � 	�´-�0ãGä .
If ´ can not be represented as 6 r : _r or ¢ rr : _ , where � is a positive integer, then x½	�´-� does not have

nonzero finite dimensional specializations.

If ch � � �¹� � then for an arbitrary ´ the superalgebra xa	�´-� can be embedded into a finite dimensional
associative superalgebra. It suffices to notice that x½	�´-�QÊ � ®o	B�i° ´K` ´ ä � M�²���W5[�W�´-� .
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