Rev. R. Acad. Cien. Serie A. Mat.
Vol. 95 (1), 2001, pp. 1-6
Álgebra / Algebra
Comunicación Preliminar / Preliminary Communication

Specializations of Jordan superalgebras

C. Martínez and E. Zelmanov

Abstract

We construct universal associative enveloping algebras for a large class of Jordan superalgebras.

Especializaciones de superálgebras de Jordan

Resumen. Construimos álgebras envolventes universales asociativas para varias superálgebras de Jordan.

1. Introduction

Let F be a ground field of characteristic $\neq 2$. A (linear) Jordan algebra is a vector space J with a binary bilinear operation $(x, y) \rightarrow x y$ satisfying the following identities:
(J1) $x y=y x$
(J2) $\left(x^{2} y\right) x=x^{2}(y x)$
For an element $x \in J$ let $R(x)$ denote the right multiplication $R(x): a \rightarrow a x$ in J. If $x, y, z \in J$ then by $\{x, y, z\}$ we denote their Jordan triple product $\{x, y, z\}=(x y) z+x(y z)-y(x z)$.

A Jordan algebra J is called special if it is embeddable into an algebra of type $A^{(+)}$, where A is an associative algebra. The algebra $H_{3}(O)$ is exceptional. A homomorphism $J \rightarrow A^{(+)}$is called a specialization of a Jordan algebra J. N. Jacobson [3] introduced the notion of a universal associative enveloping algebra $U=U(J)$ of a Jordan algebra J and showed that the category of specializations of J is equivalent to the category of homomorphisms of the associative algebra $U(J)$.

Let V be a Jordan bimodule over the algebra J (see [3]). We call V a one-sided bimodule if $\{J, V, J\}=$ (0). In this case, the mapping $a \rightarrow 2 R_{V}(a) \in E n d_{F} V$ is a specialization. The category of one-sided bimodules over J is equivalent to the category of right (left) $U(J)$-modules.

N . Jacobson [3] found universal associative enveloping algebras for all simple finite dimensional Jordan algebras.

In this paper we study specializations and one-sided bimodules of Jordan superalgebras. Let us introduce the definitions.

By a superalgebra we mean a $Z / 2 Z$-graded algebra $A=A_{\overline{0}}+A_{\overline{1}}$. We define $|a|=0$ if $a \in A_{\overline{0}}$ and $|a|=1$ if $a \in A_{\overline{1}}$.

For instance, if V is a vector space of countable dimension, and $G(V)=G(V)_{\overline{0}}+G(V)_{\overline{1}}$ is the Grassmann algebra over V, that is, the quotient of the tensor algebra over the ideal generated by the symmetric tensors, then $G(V)$ is a superalgebra. Its even part is the linear span of all products of even length and the odd part is the linear span of all products of odd length.

If A is a superalgebra, its Grassmann enveloping algebra is the subalgebra of $A \otimes G(V)$ given by $G(A)=A_{\overline{0}} \otimes G(V)_{\overline{0}}+A_{\overline{1}} \otimes G(V)_{\overline{1}}$.

Let \mathcal{V} be a homogeneous variety of algebras, that is, a class of F-algebras satisfying a certain set of homogeneous identities and all their partial linearizations (see [20]).

Definition 1 A superalgebra $A=A_{\overline{0}}+A_{\overline{1}}$ is called a \mathcal{V} superalgebra if $G(A) \in \mathcal{V}$.
C. T. C. Wall [19] showed that every simple finite-dimensional associative superalgebra over an algebraically closed field F is isomorphic to the superalgebra
$M_{m, n}(F)=\left\{\left(\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right), A \in M_{m}(F), D \in M_{n}(F)\right\}+\left\{\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right), B \in M_{m \times n}(F), C \in M_{n \times m}(F)\right\}$
or to the superalgebra

$$
P(n)=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right), A \in M_{n}(F)\right\}+\left\{\left(\begin{array}{cc}
0 & B \\
B & 0
\end{array}\right), B \in M_{n}(F)\right\} .
$$

Jordan superalgebras were first studied by V. Kac [5] and I. Kaplansky [10,11]. In [5] V. Kac (see also I. L. Kantor $[8,9]$) classified simple finite dimensional Jordan superalgebras over an algebraically closed field of zero characteristic. In [16] this classification was extended to simple finite dimensional Jordan superalgebras, with semisimple even part, over characteristic $p>2$; a few new exceptional superalgebras in characteristic 3 were added to the list. In [13] the remaining case of Jordan superalgebras with nonsemisimple even part was tackled.

Let's consider the examples that arise in these classifications.
If $A=A_{\overline{0}}+A_{\overline{1}}$ is an associative superalgebra then the superalgebra $A^{(+)}$, with the new product $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right)$ is Jordan. This leads to two superalgebras:

1) $M_{m, n}^{(+)}(F), m \geq 1, n \geq 1$;
2) $P(n)^{(+)}, n \geq 2$;

If A is an associative superalgebra and $\star: A \rightarrow A$ is a superinvolution, that is, $\left(a^{\star}\right)^{\star}=a,(a b)^{\star}=$ $(-1)^{|a||b|} b^{\star} a^{\star}$, then $H(A, \star)=H\left(A_{\overline{0}}, \star\right)+H\left(A_{\overline{1}}, \star\right)$ is a subsuperalgebra of $A^{(+)}$. The following two subalgebras of $M_{m, n}^{(+)}$are of this type:
3) $O s p_{m, n}(F)$ if $n=2 k$ is even. The superalgebra consists of matrices $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where $A^{t}=A \in$ $M_{m}(F), C=J^{-1} B^{t} \in M_{n \times m}(F), D=J^{-1} D^{t} J \in M_{n}(F), J=\left(\begin{array}{cc}0 & I_{k} \\ -I_{k} & 0\end{array}\right) ;$
4) $Q(n)=\left\{\left(\begin{array}{ll}A & B \\ C & D\end{array}\right), D=A^{t}, B^{t}=B, C^{t}=-C \in M_{n}(F)\right\}$.
5) Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a $Z / 2 Z$-graded vector space with a superform $<,>: V \times V \rightarrow F$ which is symmetric on $V_{\overline{0}}$, skewsymmetric in $V_{\overline{1}}$ and $<V_{\overline{0}}, V_{\overline{1}}>=(0)=<V_{\overline{1}}, V_{\overline{0}}>$.

The superalgebra $J=F 1+V=\left(F 1+V_{\overline{0}}\right)+V_{\overline{1}}$ is Jordan.
6) The 3-dimensional Kaplansky superalgebra, $K_{3}=F e+(F x+F y)$, with the multiplication $e^{2}=$ $e, \quad e x=\frac{1}{2} x, e y=\frac{1}{2} y, \quad[x, y]=e$.
7) The 1-parametric family of 4-dimensional superalgebras D_{t} is defined as $D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+$ Fy) with the product: $e_{i}^{2}=e_{i}, e_{1} e_{2}=0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, i=1,2$.

The superalgebra D_{t} is simple if $t \neq 0$. In the case $t=-1$, the superalgebra D_{-1} is isomorphic to $M_{1,1}(F)$.
8) The 10 -dimensional Kac superalgebra (see [5]) has been proved to be exceptional in [15]. In characteristic 3 this superalgebra is not simple, but it has a subalgebra of dimension 9 that is simple (the degenerated Kac superalgebra. There are two other examples of simple Jordan superalgebras in ch $\mathrm{F}=3$, both of them exceptional (see [16]).
9) We will consider now Jordan superalgebras defined by a bracket.

If $A=A_{\overline{0}}+A_{\overline{1}}$ is an associative commutative superalgebra wit a bracket on $A,\{\}:, A \times A \rightarrow A$, the Kantor Double of $(A,\{\}$,$) is a the superalgebra J=A+A x$ with the $Z / 2 Z$ gradation $J_{\overline{0}}=A_{\overline{0}}+$ $A_{\overline{1}} x, J_{\overline{1}}=A_{\overline{1}}+A_{\overline{0}} x$ and the multiplication in J given by: $a(b x)=(a b) x, \quad(b x) a=(-1)^{|a|}(b a) x$, $(a x)(b x)=(-1)^{|b|}\{a, b\}$, and the product (in J) of two elements of A is just the product of them in A.

A bracket on A is called a Jordan bracket if the Kantor Double $J(A,\{\}$,$) is a Jordan superalgebra.$ Every Poisson bracket is a Jordan bracket.
10) Let Z be a unital associative commutative algebra with a derivation $d: Z \rightarrow Z$. Consider the superalgebra $C K(Z, d)=A+M$, where $A=J_{\overline{0}}=Z+\sum_{i=1}^{3} w_{i} Z, M=J_{\overline{1}}=x Z+\sum_{i=1}^{3} x_{i} Z$ are free Z-modules of rank 4. The multiplication on A is Z-linear and $w_{i} w_{j}=0, i \neq j, w_{1}^{2}=w_{2}^{2}=1, w_{3}^{2}=-1$.

Denote $x_{i \times i}=0, \quad x_{1 \times 2}=-x_{2 \times 1}=x_{3} \quad x_{1 \times 3}=-x_{3 \times 1}=x_{2}, \quad-x_{2 \times 3}=x_{3 \times 2}=x_{1}$.
The bimodule structure and the bracket on M are defined via the following tables:

	g	$w_{j} g$
$x f$	$x(f g)$	$x_{j}\left(f g^{d}\right)$
$x_{i} f$	$x_{i}(f g)$	$x_{i \times j}(f g)$

	$x g$	$x_{j} g$
$x f$	$f^{d} g-f g^{d}$	$-w_{j}(f g)$
$x_{i} f$	$w_{i}(f g)$	0

The superalgebra $C K(Z, d)$ is simple if and only if Z does not contain proper d-invariant ideals.
In [5], [8] it was shown that simple finite dimensional Jordan superalgebras over an algebraically closed field F of zero characteristic are those of examples 1) - 8) and the Kantor Double (example 9) of the Grassmann algebra with the bracket $\{f, g\}=\sum(-1)^{|f|} \frac{\partial f}{\partial \xi_{i}} \frac{\partial g}{\partial \xi_{i}}$.

The examples 9), 10) are related to infinite dimensional superconformal Lie superalgebras (see [6], [7]). In particular, the superalgebras $C K(Z, D)$ correspond to an important superconformal algebra discovered in [1] and [2].

In [13] it was shown that the only simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic $p>2$ with nonsemisimple even part are superalgebras 9),10) built on truncated polynomials.

2. Universal enveloping algebras

In what follows the ground field F is assumed to be algebraically closed.

1. Let U be a universal associative enveloping algebra of a special Jordan superalgebra $J, u: J \rightarrow U$ a universal specialization. The algebra U is equipped with a natural superinvolution \star leaving all elements from $u(J)$ fixed. Then $u(J) \subseteq H(U, \star)$. We call a superalgebra J reflexive if $u(J)=H(U, \star)$.

Theorem 1 All superalgebras of examples 1) - 4) are reflexive except the following ones: $M_{1,1}^{(+)}(F)$, $\operatorname{Osp}(1,2) \simeq D(-2), Q(2)$. Hence,

$$
\left\{\begin{array}{l}
U\left(M_{m, n}^{(+)}(F)\right) \simeq M_{m, n}(F) \oplus M_{m, n}(F) \quad \text { for }(m, n) \neq(1,1) \\
U\left(P^{(+)}(n)\right)=P(n) \oplus P(n), \quad n \geq 2 \\
U(\operatorname{spp}(m, n)) \simeq M_{m, n}(F), \quad(m, n) \neq(1,2) \\
U(Q(n)) \simeq M_{n, n}(F), \quad n \geq 3
\end{array}\right.
$$

2. Let Z be an associative commutative algebra with a derivation $D: Z \rightarrow Z$. Let $W=<Z, D>$ and let $u: C K(Z, D) \rightarrow \quad M_{2,2}(W)$ be the embedding found in [12]

The embedding u extends the embedding of Kantor doubles of brackets of vector type found in [14]
Theorem $2 U(C K(Z, D))=M_{2,2}(W)$, the embedding u is universal.
3. The superalgebra of $C K(Z, D)$ spanned over F by the elements $1, w_{1}, w_{2}, w_{3}, x, x_{1}, x_{2}, x_{3}$ is isomorphic to $Q(2)$.

Theorem 3 The restriction of the embedding u (see above) to $Q(2)$ is a universal specialization;

$$
U(Q(2)) \simeq M_{2,2}(F[t])
$$

where $F[t]$ is a polynomial algebra in one variable.
4. Let us describe the universal associative enveloping superalgebra of $M_{1,1}(F)$. Consider the ring of polynomials and the field of rational functions in two variables, $F\left[z_{1}, z_{2}\right] \subseteq F\left(z_{1}, z_{2}\right)$. Let K be the quadratic extension of $F\left(z_{1}, z_{2}\right)$ generated by a root of the equation $a^{2}+a-z_{1} z_{2}=0$. Consider the subring $A=F\left[z_{1}, z_{2}\right]+F\left[z_{1}, z_{2}\right] a$ and the subspaces $M_{12}=F\left[z_{1}, z_{2}\right]+F\left[z_{1}, z_{2}\right] a^{-1} z_{2}, M_{21}=$ $F\left[z_{1}, z_{2}\right] z_{1}+F\left[z_{1}, z_{2}\right] a$ of K. Then $U=\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$ is a subring of $M_{2}(K)$.
Theorem $4 U\left(M_{1,1}(F)\right) \simeq\left(\begin{array}{cc}A & M_{12} \\ M_{21} & A\end{array}\right)$. The mapping

$$
u:\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\alpha_{11} & \alpha_{12}+\alpha_{21} a^{-1} z_{2} \\
\alpha_{12} z_{1}+\alpha_{21} a & \alpha_{22}
\end{array}\right)
$$

is a universal specialization.
5. Let $V=V_{\overline{0}}+V_{\overline{1}}$ be a $Z / 2 Z$-graded vector space, $\operatorname{dim} V_{\overline{0}}=m$, $\operatorname{dim} V_{\overline{1}}=2 m$; let $<,>: V \times V \rightarrow F$ be a supersymmetric bilinear form on V. The universal associative enveloping algebra of the Jordan algebra $F 1+V_{\overline{0}}$ is the Clifford algebra $C l(m)=\left\langle 1, e_{1}, \ldots, e_{m} \mid e_{i} e_{j}+e_{j} e_{i}=0, i \neq j, e_{i}^{2}=1\right\rangle$ (see [3]). Assuming the generators e_{1}, \ldots, e_{m} to be odd, we get a $Z / 2 Z$-gradation on $C L(m)$.

In $V_{\overline{1}}$ we can find a basis $v_{1}, w_{1}, \ldots, v_{n}, w_{n}$ such that $\left.\left.\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j},<v_{i}, v_{j}\right\rangle=<w_{i}, w_{j}\right\rangle=0$. Consider the Weyl algebra $W_{n}=<1, x_{i}, y_{i}, 1 \leq i \leq n \mid\left[x_{i}, y_{j}\right]=\delta_{i j},\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=0>$. Assuming
$x_{i}, y_{i}, 1 \leq i \leq n$ to be odd, we make W_{n} a superalgebra. The universal associative enveloping algebra of $F 1+V$ is isomorphic to the (super)tensor product $C l(m) \otimes_{F} W_{n}$.
6. Let $\operatorname{osp}(1,2)$ denote the Lie subsuperalgebra of $M_{1,2}(F)$ which consists of skewsymmetric elements with respect to the orthosympletic superinvolution. Let x, y be the standard basis of the odd part of $\operatorname{osp}(1,2)$.

Theorem 5 (I. Shestakov) The universal enveloping algebra of K_{3} is isomorphic to $U\left(\operatorname{osp}(1,2) / i d\left([x, y]^{2}\right.\right.$ $-[x, y]))$, where $U(\operatorname{osp}(1,2))$ is the universal associative enveloping algebra of osp $(1,2)$ and $i d\left([x, y]^{2}-\right.$ $[x, y]))$ is the ideal of $U(\operatorname{osp}(1,2))$ generated by $[x, y]^{2}-[x, y]$.

Clearly, if $\operatorname{ch} F=0$ then K_{3} does not have nonzero specializations that are finite dimensional algebras. If $\operatorname{ch} F=p>0$ then K_{3} has such specializations.
7. Let us consider the superalgebras $D(t)$. We will assume that $t \neq-1,0,1$, because $D(-1) \simeq$ $M_{1,1}(F) ; D(0) \simeq K_{3}+F ; D(1)$ is a Jordan superalgebra of a superform.

Theorem 6 (I. Shestakov) The universal enveloping algebra of $D(t)$ is isomorphic to

$$
U\left(o s p(1,2) / i d\left([x, y]^{2}-(1+t)[x, y]+t\right)\right.
$$

Corollary 1 If chF $=0$ then all finite dimensional one-sided bimodules over $D(t)$ are completely reducible.

Indeed, it is known (see [4]) that finite dimensional representations of the Lie superalgebra $\operatorname{osp}(1,2)$ are completely reducible.

Now we will assume thar $\operatorname{ch} F=0$ and will classify irreducible finite dimensional one-sided bimodules over $D(t)$. Let us first consider four infinite dimensional Verma type right modules over $U(D(t)$. Each of these bimodules is generated by an even highest weight element v.
$V_{1}(t)=v U(d(t))$. Defining relations: $v(x y+y x)=(2 t+1) v, v y^{2}=0, v e_{1}=v, v e_{2}=0$. Basis: $v, v y, v x^{i}, i \geq 1$.
$V_{2}(t)=v U(d(t))$. Defining relations: $v(x y+y x)=(2 t+1) v, v y=0, v e_{1}=v, v e_{2}=0$. Basis: $v, v x^{i}, i \geq 1$.

Changing parity we get two new bimodules $V_{1}(t)^{o p}$ and $V_{2}(t)^{o p}$.
Each of these bimodules has the unique irreducible homomorphism image $W_{1}(t)$ or $W_{2}(t)$ or $W_{1}(t)^{\text {op }}$ or $W_{2}(t)^{o p}$ respectively.

Theorem 7 Ift $=\frac{-(m+1)}{m}, m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $W_{1}(t)$ and $W_{1}(t)^{o p}$.

If $t=\frac{-m}{m+1}, m \geq 1$, then $D(t)$ has two irreducible finite dimensional one sided bimodules $W_{2}(t)$ and $W_{2}(t)^{o p}$.

If t can not be represented as $-\frac{m+1}{m}$ or $\frac{-m}{m+1}$, where m is a positive integer, then $D(t)$ does not have nonzero finite dimensional specializations.

If $\operatorname{ch} F=p>2$ then for an arbitrary t the superalgebra $D(t)$ can be embedded into a finite dimensional associative superalgebra. It suffices to notice that $D(t) \subseteq C K\left(F\left[t \mid t^{p}=0\right], d / d t\right)$.

References

[1] Cheng, S. J. and Kac, V. G. (1997). A New N=6 superconformal algebra, Comm. Math. Phys. 186.
[2] Grozman, P., Leites, D. and Shchepochkina, I., Lie superalgebras of string theories, hep-th 9702120.
[3] Jacobson, N. (1969). Structure and Representation of Jordan algebras, Amer. Math. Soc. Providence, R.I.
[4] Kac, V. G. (1977). Lie Superalgebras, Adv. Math. 26, 8-96.
[5] Kac, V. G. (1977). Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5 (13), 1375-1400.
[6] Kac, V. G. and van de Leur, J. W. (1989). On classification of superconformal algebras, Strings 88, World Scientific, Singapore, 77-106.
[7] Kac, V. G., Martínez, C. and Zelmanov, E. (2001). Graded simple Jordan superalgebras of growth one, Mem. Amer. Math. Soc. 150, 140pp.
[8] Kantor, I. L. (1989). Connections between Poisson brackets and Jordan and Lie superalgebras, Lie theory, differential equations and representation theory, 213-225, Montreal.
[9] Kantor, I. L. (1992). Jordan and Lie superalgebras defined by Poisson brackets, Algebra and Analysis, 55-79, 1989. Amer. Math. Soc. Transl. Ser. (2), 151.
[10] Kaplansky, I. (1980). Superalgebras, Pacific J. Math. 86, 93-98.
[11] Kaplansky, I., Graded Jordan Algebras I, Preprint.
[12] Martínez, C., Shestakov, I. P. and Zelmanov, E. (2001). Jordan algebras defined by brackets, To appear in J. London Math. Soc.
[13] Martínez, C. and Zelmanov, E. (2001). Simple finite dimensional Jordan superalgebras of prime characteristic, J. Algebra 236 no.2, 575-629.
[14] McCrimmon, K. (1992). Speciality and nonspeciality of two Jordan superalgebras, J. Algebra 149, 326-351.
[15] Medvedev, Y. and Zelmanov, E. (1992). Some counterexamples in the theory of Jordan Algebras, Nonassociative Algebraic Models, Nova Science Publish., S. González and H.C. Myung eds., 1-16.
[16] Racine, M. and Zelmanov, E. (2001). Classification of simple Jordan superalgebras with semisimple even part, to appear.
[17] Shestakov, I.(2000). Universal enveloping algebras of some Jordan superalgebras, personal communication.
[18] Shtern, A. S. (1987). Representation of an exceptional Jordan superalgebra, Funktsional Anal. i Prilozhen 21, 93-94.
[19] Wall, C. T. C. (1964). Graded Brauer groups, textit J. Reine Angew. Math. 213, 187-199.
[20] Zhevlakov K. A., Slinko, A. M., Shestakov, I. P. and Shirshov, A. I., Rings that are rearly associative, Academic Press, New York.

C. Martínez	E. Zelmanov
Departamento de Matemáticas	Department of Mathematics
Universidad de Oviedo	Yale University
33007 Oviedo, Spain	New Haven, CT 06520, USA

