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Continuity properties up to a countable partition

Anı́bal Moltó, José Orihuela, Stanimir Troyanski and Manuel Valdivia

Abstract. Approximation and rigidity properties in renorming constructions are characterized with
some classes of simple maps. Those maps describe continuity properties up to a countable partition. The
construction of such kind of maps can be done with ideas from the First Lebesgue Theorem. We present
new results on the relationship between Kadec and locally uniformly rotund renormability as well as
characterizations of the last one with the simple maps used here.

Resumen. Las propiedades de aproximación y rigidez en construcciones de renormamiento son carac-
terizadas con clases de aplicaciones simples. Dichas aplicaciones describen propiedades de continuidad
módulo particiones numerables. La construcción de este tipo de aplicaciones puede hacerse con ideas
del Primer Teorema de Lebesgue. Presentamos nuevos resultados sobre la relación entre renormamien-
tos de Kadec y localmente uniformemente convexos ası́ como caracterizaciones de los últimos con las
aplicaciones simples aquı́ utilizadas.

1. Introduction
The σ–continuity property for a map from a topological space (X, T ) into a metric space (Y, d) is an
extension of the concept of continuity suitable to deal with countable decompositions of the domain space
X as well as with pointwise cluster points of sequences of continuous functions Φn : X → Y , n = 1, 2, . . .
in the pointwise topology, [29]. The precise definitions are as follows:

Definition 1 A map Φ from a topological space (X, T ) into a metric space (Y, d) is said to be σ-continuous
if for every ε > 0 we can decompose X as X =

⋃∞
n=1 Xn,ε such that for every n ∈ N and every x ∈ Xn,ε

there is a neighbourhood U of x such that

osc
(
Φ¹U∩Xn,ε

)
:= sup {d(Φ(x),Φ(y)) : x, y ∈ Xn,ε} < ε.

Let us remark that a natural example of σ–continuous maps are the so called piecewise continuous, or
even less the piecewise locally constant maps according with the following:

Definition 2 A map Φ from a topological space (X, T ) into a set Y (resp. a topological space) is said
to be piecewise locally constant (resp. piecewise continuous) if X can be decomposed as the union of a
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sequence of sets {Xn : n ∈ N} such that the restriction of Φ to each Xn is a locally constant map, (resp.
continuous), where locally constant means that for every positive integer n and every x ∈ Xn there exists
an open set W with x ∈ W and Φ(x) = Φ(y) for every y ∈ W ∩Xn.

Since every map from every topological space (X, T ) into a separable metric space (Y, d) will be σ–
continuous the concept is relevant only when the range space (Y, d) is a non separable metric space. When
(X, T ) is a subset of a locally convex topological vector space we have refined our study to deal with σ–
slicely continuous maps, [29]. With the word slice we stress the fact that the continuity property required
must be described with open half spaces only, so the neighbourhoods used will be slices on the pieces Xn,ε

we decompose the space (X, T ) in definition 1, i.e. the neigbourhood U must be an open half space. We
have developed a systematic study of this kind of maps in connection with renorming properties of Banach
spaces, [29]. Indeed, if a normed space E has a norm with a unit sphere SE such that the weak and the
norm topologies coincide on it, i.e. what is called a Kadec norm, then the identity map on E from the weak
to the norm topologies is σ–continuous [12, 17, 18, 29]. Nevertheless it is an open problem whether the
reverse implication holds: if the identity map from the weak to the norm topology of the normed space
(E, ‖ ·‖) is σ–continuous we do not know if there is an equivalent Kadec norm on (E, ‖ ·‖). The best result
in this direction is the existence of a positively homogeneous map F : E → R with ‖ · ‖ ≤ F (·) ≤ 2‖ · ‖
such that on the pseudo sphere {x ∈ E : F (x) = 1} the weak and the norm topologies coincide whenever
the identity map from the weak to the norm topology of the normed space (E, ‖ · ‖) is σ–continuous ,
[31]. Until know, it has been not possible to decide if such an F exists satisfying the triangle inequality.
Nevertheless, the identity map on the normed space E from the weak to the norm topologies is σ-slicely
continuous if, and only if, there exits an equivalent locally uniformly rotund norm on E, [25]. Thus we
see that the former function F can be constructed as the locally uniformly rotund norm on E when we
deal with open half spaces to describe the σ-continuity of the identity map. Let us recall that a norm
‖ · ‖ in a normed space is locally uniformly rotund (LUR for short) if limk ‖xk − x‖ = 0 whenever
limk

(
2 ‖xk‖2 + 2 ‖x‖2 − ‖xk + x‖2

)
= 0.

In the different approaches for those renormings always appears somewhere in the construction two
properties. The first one is a property of approximation of the renorming structure, the second one is the so
called rigidity condition. Let us describe both of them for the Banach space

c0(Γ) :=
{

x ∈ RΓ : ∀ε > 0#{γ ∈ Γ : |x(γ)| ≥ ε} < ∞
}

,

a characteristic object in the study of renormings. For a given x ∈ c0(Γ) and ε > 0 we can associate the
finite subset of Γ given by Lε(|x|) := {γ ∈ Γ : |x(γ)| ≥ ε}. The aproximation here follows from the fact
that ‖x − x · 1Lε(|x|)‖ < ε. The cardinality of the set Lε(|x|) together with a positive integer p such that
|x(γ)| ≤ ε − 1/p, for all γ /∈ Lε(|x|), are two integers associated to x and ε that we denote with r(x, ε).
For any y with the same associated integers, i.e. with r(x, ε) = r(y, ε), we will have that Lε(|x|) = Lε(|y|)
whenever |x(γ)− y(γ)| < p−1 for every γ ∈ Lε(|x|), i.e when y belongs to the pointwise open neighbour-
hood of x given by U :=

{
y ∈ c0(Γ) : |x(γ)− y(γ)| < p−1∀γ ∈ Lε(|x|)}. The numbers r(x, ε) describe

the rigidity condition for the function x ∈ c0(Γ). In the example 1 of section 4 we will see how to deal with
them to get an open half space instead of the U above. An equivalent LUR norm ‖|· |‖can be constructed on
c0(Γ) if we force on the new norm that the condition limk

(
2 ‖|xk|‖2 + 2 ‖|x|‖2 − ‖|xk + x|‖2

)
= 0 must

imply, for every fixed ε > 0, the equality r(xn, ε) = r(x, ε) for n big enough. In that way the rigidity condi-
tion tell us that the distance of xn to the finite dimensional subspace {y ∈ c0(Γ) : y(γ) = 0∀γ /∈ Lε(|x|)}
is less or equal than ε for n big enough, thus the sequence {xn : n = 1, 2, ...} is a relatively compact subset
of the Banach space c0(Γ) and x can be forced to be its limit too.

When we have a biorthogonal system {(xγ , fγ) : γ ∈ Γ} in the normed space E, then we always have
a locally uniformly rotund equivalent norm on the linear subspace span {xγ : γ ∈ Γ}, but in the closure
span {xγ : γ ∈ Γ} it may not have such a renorming. Indeed, in a space with a Markushevich basis, i.e
a Banach space E with a biortoghonal system {(xγ , fγ) : γ ∈ Γ} such that span {xγ : γ ∈ Γ} = E and
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fγ(x) 6= 0 for some γ ∈ Γ whenever x 6= 0, x ∈ E; we do not have always a LUR renorming on E.
For instance, the space l∞ doest not have an equivalent Kadec norm and we know, by a result of Plichko
[4], that it is a complemented subspace of a Banach space E with Markushevich basis, thus for such a
space E we cannot have an equivalent Kadec or LUR norm. In [29] we have studied conditions on the
operator T : E → c0(Γ), given by evaluation T (x)(γ) := fγ(x) for a given Markushevich basis in E,
to transfer the LUR norm in the space c0(Γ) to a LUR norm on E. The case of a strong Markushevich
basis is done in section 4. Another example is the space c0(Υ) for the dyadic tree Υ, where the linear span
of

{
1[0,τ ] : τ ∈ Υ

}
has an equivalent LUR norm and the closure span

{
1[0,τ ] : τ ∈ Υ

}
doest not have an

equivalent rotund norm on it [15]. Let us recall that a norm ‖ · ‖ is rotund (strictly convex) if the unit sphere
does not contain non trivial segments i.e. x = y whenever ‖x‖ = ‖y‖ = ‖(x + y)/2‖ = 1.

It is our intention in the present paper to show how both properties, approximation and rigidity, are in
the core of the concepts of σ-slicely continuity and σ-continuity. The rigidity condition is described with
the piecewise locally constant maps whereas the family of all σ-continuous maps will be generated by them
if we operate with the limits of sequences:

Theorem 1 Let (X, T ) be a topological space and let (Y, ρ) be a metric space. Given a map Φ : X → Y
the following are equivalent:

i) Φ is σ–continuous;

ii) there exists a sequence {Φn : X → Y : n ∈ N} of piecewise locally constant functions such that
limn→∞Φnx = Φx uniformly on x ∈ X .

Corresponding results for maps with σ-relative discrete function basis, maps with property P, and σ-
fragmentable maps has been showed in [13], [33], and [19] respectively. We will present our approach in
the section 3 of the paper. There we shall deal with a subset of a locally convex space A instead of the
topological space (X, T ) using always as neighbourhoods open half spaces1, to prove the following the
following:

Theorem 2 Let A be a subset of a locally convex topological vector space and let (Y, ρ) be a metric space.
For a map Φ : A → Y the following assertions are equivalent:

i) Φ is σ–slicely continuous.

ii) There exists a sequence Φn : A → Y , n ∈ N of piecewise slicely constant functions such that
limn→∞Φnx = Φx uniformly on x ∈ A.

In section 2 we present applications of the proof of the First Theorem of H. Lebesgue to the construction
of σ-continuous maps in normed spaces where the weak and the norm topologies are involved. Another
Lebesgue theorem says that a real function f : I → R defined on an interval I of the real line can be
represented as the limit of a sequence of continuous functions if, and only if, for each ε > 0 the domain
I can be written as the union of a sequence {In : n = 1, 2, ...} of closed subsets such that the oscilation
of f in every In is less than ε, [23]. In the same direction, from theorem 5 and its corollary 7 in [19], we
know that for a given map Φ : X → Y , where X is a metric space and Y a normed space, the condition of
being σ-continuous with closed subsets, i.e. the sets Xn,ε in definition 1 must be closed, is equivalent to the
fact that Φ is the pointwise limit of a sequence of continuous functions from X to Y . Our main theorems
above differs in the fact that our domain space here is an arbitrary topological space (X, T ) or an arbitrary
subset A of a locally convex space. Moreover, we are not interested here in the topological nature of the
pieces Xnε, and our sequence of approximations Φn are going to be only piecewise locally constant maps.

1We will say that the maps are σ–slicely continuous and piecewise slicely constant instead of σ–continuous and piecewise locally
constant in that case, [29].
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Measurability properties for this kind of maps, where the structure of the pieces Xnε must be carefully
analyzed, has been studied by Hansell in a series of papers [8, 9, 10, 11, 12, 13]. In section 4, we present
the following application to LUR renormings, where the piecewise locally constant maps represents the
rigidity while the approximation is provided by taking cluster points:

Theorem 3 A normed space (E, ‖ · ‖) with a norming subspace F ⊂ E∗ admits an equivalent σ(E, F )-
lower semicontinuous LUR norm if, and only if, there is a sequence {In : E → E, n = 1, 2, ...} of piece-
wise slicely constant maps for the σ(E, F )-topology such that

x ∈ {In(x) : n = 1, 2, ...}σ(E,E∗)
, ∀x ∈ E

An excellent monograph of renorming theory up to 1993 is [1]. In order to have an up to date account
of the theory we should add at least [15], [6], and [37].

2. Lebesgue First Theorem
In the contribution paper [35], Walter Rudin writes about the question of meausurability of a function
f : R × R → R which is separately continuous saying: “Several years ago, I used to pose this question
to randomly selected analysts. The typical answer was something like this: ‘Hmm-well- probably not- why
should it be? The only group that did a little better were the probabilists. And there was just one person
who said: ‘Let see -yes, it is- and it is of Baire class one- and....’ He knew.” In Lebesgue’s first published
paper [22] the question is answered affirmatively, and in his wonderful paper of 1905 [24] he proves that
for functions on Rk to be a Baire k − 1 class is the sharpest result possible. Let us follow here the proof of
Lebesgue First Theorem as it is presented by W. Rudin, [35], since it will introduce us to the kind of maps
we are using in renorming theory, [29].

Let us assume that f : R × R → R is a separately continuous function in the plane, then Lebesgue
defined the sequence of jointly continuous functions fn : R × R → R as follow: fn(x, y) := f(x, y) if
(x, y) ∈ {(j/n, y) : j ∈ Z, y ∈ R}, and by linear interpolation in the the first variable x in other case. The
fact that f(x, ·) is continuous for fixed x implies that the functions fn are continuous as functions on the
whole plane, and the fact that f(·, y) is continuous for fixed y tell us that the limnfn(x, y) = f(x, y) for
every (x, y) ∈ R×R. We can give a more precise formula for the functions fn using the following families
of continuous functions on the real line:

Ξn :=
{
hn

j (x) := max(0, 1− |nx− j|), j ∈ Z}
for n = 1, 2, ...

and setting fn(x, y) =
∑{

hn
j (x)f(j/n, y) : j ∈ Z}

.

Let us observe the fact that the families Ξn are partitions of unity inR with the support of hn
j contained

in the interval [(j−1)/n, (j+1)/n], consequently the length of the supports of the functions in the partition
Ξn going to zero when n goes to infinity. This property is required for the proof of the convergence of the
sequence {fn : n = 1, 2, ...} to the separately continuous function f . Indeed, the only requeriment we need,
to express the idea of Lebesgue in full generality, is the existence of the partitions of unity associated with
covers giving decreasing sequences of subsets with diameter going to zero, i.e the Lebesgue’s idea can be
translated for a map f : X × Y → R when X is a metric space and Y is any topological space:

Theorem 4 (W. Rudin [35]) Let (X, d) be a metric space and (Y, T ) a topological space. If

f : X × Y → R

is a map such that:

• f(·, y) : X → R is continuous for every y fixed in Y .
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• f(x, ·) : Y → R is continuous for every x fixed in a dense subset D of X

Then f is the limit of a sequence of continuous functions fn : X × Y → R.

Proof. Let us consider for the metric space (X, d) continuous functions giving partitions of unity
{hα,n : X → [0, 1] : α ∈ A} with {support(hα,n) : α ∈ A} a locally finite covering of sets with diam-
eter less than 1/n in the metric space (X, d). Let us choose points xα,n in D such that hα,n(xα,n) > 0
for every α ∈ A and every n ∈ N. If we define the functions fn(x, y) :=

∑
hα,n(x)f(xα,n, y), for every

n ∈ N, it now easily follows that fn is continuous on the product space X × Y and that the sequence
{fn(x, y) : n ∈ N} converges to f(x, y) when n goes to infinity for every (x, y) ∈ X × Y . ¥

We can apply the former theorem to the duality of any locally convex topological vector space to obtain
the following:

Corollary 1 Let A be a subset of the locally convex topological vector space E[T ] which is metrizable
for the weak topology σ(E, E′) of E induced on it. Then there exist a sequence of continuous functions
fn : A[σ(E,E′)] → E[T ] such that the σ(E,E′) limit of fn(x) is equal to x for every x in A.

Proof. With the same notations as in the proof of the former theorem, where the separately continuous
function f will be here the duality map:

< ·, · >: A[σ(E, E′)]× E′[σ(E′, E)] → R

defined by the evaluation: < x, ϕ >:= ϕ(x), we have for the approximating sequence of jointly continuous
maps the functions: fn(x, ·) :=

∑
hα,n(x) < xα,n, · >. Assuming the representation of every vector in the

locally convex space E as a linear form on the dual space through the duality map we can write the former
map as fn(x) :=

∑
hα,n(x)xα,n for every x ∈ A which is clearly continuous from the weak topology on

A to E[T ], moreover for every y ∈ E′ we have that limnfn(x)(y) =< x, y >, i.e. limnfn(x) = x in the
weak topology σ(E,E′) for every x ∈ A. ¥

As a consequence we have the following relationship between the weak and the norm topology of any
normed space on weakly metrizable subsets of it:

Corollary 2 Let (E, ‖ · ‖) be a normed space and let A be a subset of E metrizable for the weak
topology σ(E, E∗). Then for every positive ε there is a decomposition of A as a countable union, i.e.
A =

⋃ {An,ε : n = 1, 2, ...}, such that for every positive integer n and every x in An,ε there is a σ(E, E∗)-
open subset W of E such that x ∈ W and the norm diameter of the set W ∩ An,ε is less than ε, i.e the
identity map in A from the weak to the norm topologies is σ–continuous.

Proof. Let us denote by {gn : A → E,n = 1, 2, ...} the family of all rational convex combinations of the
sequence {fn : A → E} given by the former corollary that weakly and pointwise converges to the identity
map on A. By the Hahn Banach theorem it now follows that for every x ∈ A we have

x ∈ conv{fn(x) : n = 1, 2, ...}‖·‖

from where it now follows the splitting

A =
⋃
{An,ε : n = 1, 2, ...}

where An,ε = {x ∈ A : ‖gn(x)− x‖ < (ε/3)}.
The required property now follows from the continuity of the maps gn from the weak to the norm topologies.
Indeed, if x ∈ An,ε and W is a weak open neigbourhood of x such that the oscillation of gn on W ∩ A is
less than ε/3, we have for every y ∈ An,ε ∩W that

‖x− y‖ ≤ ‖x− gn(x)‖+ ‖gn(x)− gn(y)‖+ ‖gn(y)− y‖ < ε.

¥
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Remark 1 The property described in the last corollary has been called countable cover by sets of small
local diameter in [16] and it coincides with the so called descriptiveness for the Banach spaces in [12],
see our paper [29] as well as [30] for a complete description of the relationship between both concepts.
Reciprocally, if the normed space E has this property of countable cover by sets of small local diameter it
follows that there is a function F : E → R, positively homogeneous, with ‖ · ‖ ≤ F (·) ≤ (1 + ε)‖ · ‖ and
such that on the pseudo-sphere {x ∈ E : F (x) = 1} the weak and the norm topology do coincide, [31].

Our approach to the descriptive property of Banach spaces has been always related with renorming prop-
erties (Kadec, locally uniformly rotundity, etc.) Let us show here, for instance, and as an straight forward
application of the former corollaries the following consequence when we deal with a weakly uniformly
rotund normed space (E, ‖ · ‖), i.e. for the norm of E we have the following property: when the sequences
{xn : n = 1, 2, ...} and {yn : n = 1, 2, ...} are in the unit sphere SE and 1 − ‖(xn + yn)/2‖ → 0 when
n →∞, then the sequence {(xn − yn) : n = 1, 2, ...} goes to zero in the weak topology of E:

Corollary 3 A normed space E with a weakly uniformly rotund norm has an equivalent locally uniformly
rotund norm.

Proof. We already proved that the unit sphere SE is metrizable for the weak topology induced on it, [27].
Let us present here a proof based on the metrization theorem of Arhangelskii, see theorem 9.14 in [7]. We
define the symmetric s(x, y) := 1− ‖(x + y)/2‖ for every x and y in the unit sphere SE , then s describes
the weak topology on SE . Indeed, for every x ∈ SE , every µ ∈ R and every f ∈ BE∗ we have some δ > 0
such that

{y ∈ SE : s(x, y) < δ} ⊂ {y ∈ SE : f(y) > f(x)− µ}
because the norm is weakly uniformly rotund, moreover the lower semicontinuity of the norm tell us
that the s-open balls are weakly open sets too. Thus the unit sphere with the weak topology is a sym-
metrizable with the symmetric s. Further, if s(x, yn) → 0 and s(yn, zn) → 0 then it follows that the
sequence {zn : n = 1, 2, ...} goes to x in the weak topology since the sequences {(x− yn) : n = 1, 2, ...}
and {(yn − zn) : n = 1, 2, ...} go to zero by the weakly uniform rotundity condition, and thus s(x, zn) → 0
too. The conditions of Arhangelskii theorem are fulfilled and consequently the unit sphere (SE , σ(E,E∗))
is indeed metrizable. It follows after corollary 2 that the identity map on the unit sphere SE is σ–continuous
from the weak to the norm topology. The fact that open half spaces give basic neighbourhoods at every point
in the sphere for the weak topology follows also from the weakly uniform rotundity. Indeed, if x ∈ SE and
we choose fx ∈ BE∗ with fx(x) = 1, then (fx(xn)) → 1 implies for the sequence s(xn, x) → 0. Thus the
slices:

{{y ∈ SE : fx(y) > 1− 1/n} , n = 1, 2, ...}
are a basis of neighbourhoods at x for the weak topology on the unit sphere. So the identity map on SE is
σ–slicely continuous too and the space E has a LUR renorming, see our main theorem in [25]. ¥

Of course the same proof works for dual norms and the weak* uniform rotundity condition, see [29].
Banach spaces with weakly uniformly rotund norm as been recently studied by different authors since they
connect Asplund property with uniformly Eberlein compacta, see for instance [2, 3, 4, 26], as well as the
references in Chapter 12 of [4].

Since there are Banach spaces with Kadec norm and without equivalent LUR norm, [15], it is clear that
a metrizable unit sphere in the weak topology doest not imply the locally uniformly rotund renormability of
a Banach space. The case presented in the former corollary is a very particular one where the proof follows
directly from the topological arguments presented in that paper, see[27] for the general result. Nevertheless
we can ask here for conditions on the partitions of unity and the associated covers used in our proof to get
the LUR renormability of our spaces. A natural condition is the following one:

Definition 3 A family Λ = {Fi : i ∈ I} of subsets of a normed space E is called slicely finite if for every
point x ∈ ⋃

Λ there is an open half space H with x ∈ H and such that H meets a finite number of elements
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of the family Λ only. We shall say that a family Λ = {Fi : i ∈ I} is σ-slicely finitely decomposable if we
can decompose the elements of the family in countable pieces: Fi :=

⋃ {Fn
i : n = 1, 2, ...} in such a way

that for every positive integer n we will have slicely finite families Λn := {Fn
i : i ∈ I}.

Let us remember the following definitions that has been successfully used in metrization, selection and
renorming theories, see [27, 29, 19, 12], and which will be used throughout the rest of the paper.

Definition 4 A family of subsets {Dγ : γ ∈ Γ} in a topological space X is called discrete (respectively
isolated) if for every point x ∈ X (respectively x ∈ ⋃ {Dγ : γ ∈ Γ}) there is a neighbourhood U of x
such that U meets at most one member of the family {Dγ : γ ∈ Γ}. When X is a linear topological space
and U can be taken to be an open half space then the family is said to be slicely discrete (respectively slicely
isolated).

A family of subsets D is said to be σ–discrete (respectively σ–slicely discrete, σ–isolated, σ–slicely
isolated) if it can be decomposed into a countable union D =

⋃Dn such that every family Dn is discrete
(respectively slicely discrete, isolated, slicely isolated).

A family of subsets {Dγ : γ ∈ Γ} in a topological space X is called σ–discretely decomposable (resp.
σ–isolatedly decomposable) if Dγ =

⋃∞
n=1 Dn

γ for every γ ∈ Γ and
{
Dn

γ : γ ∈ Γ
}

is discrete (resp.
isolated) for each n ∈ N.

When X is a linear topological space the notion of σ–slicely discretely decomposable (resp. σ–slicely
isolatedly decomposable) means that

{
Dn

γ : γ ∈ Γ
}

is is slicely discrete (resp. slicely isolated) for each
n ∈ N.

Now we can state the following theorem for a radial subset A of a normed space E, i.e. a subset such that
for every x ∈ E there is some positive λ such that λx ∈ A:

Theorem 5 A normed space (E, ‖ · ‖) with a radial subset A that is assumed to be metrizable for the
weak topology is LUR renormable if and only if every discrete family of subsets in (A, σ(E,E∗)) is σ-
slicely finitely decomposable.

Proof. A normed space (E, ‖ · ‖) is LUR renormable if, and only, if the norm topology has a network
N which is countable union of subfamilies {Nn : n = 1, 2, ...} such that, for every positive integer n, and
every x ∈ ⋃ {M : M ∈ Nn}, there is an open half space H with x ∈ H and such that H only meets a
member of the family Nn; i.e. if x ∈ M0 then H ∩M = ∅ for every M ∈ Nn with M 6= M0, [27, 29],
that is what we call a σ-slicely isolated network. The families Nn are slicely finite since they are slicely
isolated and N = ∪{Nn : n = 1, 2, ...} is a network for the coarser σ(E, E∗) topology on E too. Let us
take an isolated family of subsets {Dγ : γ ∈ Γ} for the weak topology in the LUR renormable space E
, we can define the decomposition Dn

γ := Dγ ∩ Nn and the family of sets
{
Dn

γ : γ ∈ Γ
}

is slicely iso-
lated, and so slicely finite, since it is the intersection of an slicely isolated family with a fixed set, moreover
Dγ = ∪{

Dn
γ : n = 1, 2, ...

}
for every γ ∈ Γ and the family of sets {Dγ : γ ∈ Γ} is σ-slicely finitely

decomposable, even more it is σ-slicely isolatedly decomposable. Therefore, in every LUR renormable
normed space every isolated family of subsets for the weak topology is σ-slicely finitely decomposable.
When A is a fixed subset of E and the sets in the family {Dγ : γ ∈ Γ} are subsets of A, then the discrete-
ness of the family in A implies that it is an isolated family, and so it is σ-slicely finitely decomposable
whenever E is a LUR renormable normed space.

The reverse implication needs a theorem presented in [5]. Indeed, after the assumption on the radial set
A it verifies the conclusion of the corollary 2 above. It is possible now to apply theorem 3 in [27] and to
get that the norm topology on A has a network N =

⋃ {Nm : m = 1, 2, ...} with every one of the fami-
lies Nm being isolated for the weak topology on A. In a metric space every isolated family is σ-discretely
decomposable, see remark 3, and we can assume that our families Nm are discrete in (A, σ(E, E∗)). Con-
sequently every family Nm is going to be σ-slicely finitely decomposable and therefore the norm topology
in A admits a network σ-slicely relatively locally finite. The result now follows from theorem 4.1 and
corollary 4.5 in [5]. ¥
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To finish this section let us observe another application of Lebesgue First Theorem giving a Baire one
character of weakly continuous maps from a metric space to a Banach space:

Corollary 4 Let (X, d) be a metric space, E a normed space and f : X → (E, weak) a continuous map.
Then there is a sequence fn : X → (E, ‖ · ‖) of continuous functions such that limnfn(x) = f(x) in the
weak topology of E

Proof. It is enough to apply Lebesgue First Theorem to the separately continuous map φ : X × E∗ → R
defined as φ(x, y) :=< f(x), y > in the same way we have done in corollary 1. Indeed, with the same
notations for the partitions of unity Ξn in the metric space (X, d) we will have here the maps fn(x) :=∑ {hα,n(x)f(xα,n) : α ∈ A} which converge to f(x) in the weak topology of the normed space E for
every x ∈ X . ¥

Remark 2 Sirivatsa shows in [36] that every map f as above is of the first Baire class to the norm topology,
i.e the functions fn can be constructed in such a way that the sequence {fn(x) : n = 1, 2, ...} converges to
f(x) in the norm topology of E for every x ∈ E too.

3. Slicely–constant approximations of σ–slicely
continuous maps

A countable splitting in ε–terms of the continuity property of a given map is the notion of σ-continuity,
see definition 1, and the first level of such a splitting is the notion of piecewise locally constant map, see
definition 2. All notions introduced so far are connected by the following:

Theorem 6 Let (X, T ) be a topological space and let (Y, ρ) be a metric space. Given a map Φ : X → Y
the following are equivalent:

i) Φ is σ–continuous;

ii) if {Dγ : γ ∈ Γ} is a discrete family of subsets in (Y, ρ) then
{
Φ−1 (Dγ) : γ ∈ Γ

}
is σ–isolatedly

decomposable in (X, T );

iii) there exists a sequence {Φn : X → Y : n ∈ N} of piecewise locally constant functions such that
limn→∞Φnx = Φx uniformly on x ∈ X .

The proof of the first part of the theorem is in [29], and has to be completed with the approximation
property by maps with the rigidity condition of being locally constant up to a countable partition, (have a
look at the proof of our version with slices presented in theorem 7). Our proof uses ideas contained in [19],
theorem 5 and corollary 7, see also [13] and[33] for related results.

Remark 3 Given Φ : X → Y we say that a family B of subsets of X is a function base for Φ if, whenever
V is open in Y , then Φ−1(V ) is union of sets of B. In other words B is a function base for Φ if, and only if, it
is a network of the topology

{
Φ−1(V ) : V is open in Y

}
. The class of maps with σ–isolated function base

has been studied by Hansell [11] in connection with the study of Lebesgue–Hausdorff theorem [20, vol 1, p.
393] as well as the descriptive set theory for non separable metric spaces. A map Φ from a topological space
(X, T ) into the metric space (Y, ρ) is σ–continuous if, and only if, it has a σ–isolated function base, [29].
In connection with measurability properties Hansell [11] studied functions with a σ–isolated function base
of F ∩ G sets. This class of maps is becoming central in the study of measurable selectors of upper semi–
continuous multivalued functions when the domain space is not a metric space, [14]. Let Φ a continuous
map from a topological space X into Cp(K), where K is a compact space, Hansell has shown that if Φ has
a σ–isolated function base, then Φ has also a σ–isolated function base of F∩G sets with respect to the norm
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topology of C(K), and moreover Φ is a uniform limit of a sequence of piecewise continuous maps for the
norm topology, [13]. In a metric space every isolated family is σ–discretely decomposable, [8]. Indeed if
{Dγ : γ ∈ Γ} is isolated in a metric space (X, d) we define

Dγ
p := {x ∈ Dγ : Bd(x, 1/p) ∩Dβ = ∅ for all β ∈ Γ \ {γ}}

and Dγ =
⋃∞

p=1 Dγ
p . Thanks to the triangle inequality we have now that every family

{
Dγ

p : γ ∈ Γ
}

is
discrete. Indeed if x ∈ X then the ball Bd(x, 1/2p) meets at most one member of the family

{
Dγ

p : γ ∈ Γ
}

.
Consequently a map Φ : X → Y between metric spaces is σ–continuous if, and only if, it has a σ–discrete
function base. This class of maps has been called σ–discrete maps, and they play an important role in the
study of non separable descriptive topology, [11]. For instance when X is a metric space and Y is a normed
space a map Φ : X → Y in the first Borel class; i.e. Φ−1(U) is a Fσ–set for every open set U of Y , will be
the pointwise limit of a sequence of continuous functions if, and only if, the map Φ is σ–discrete [9], [34].
When X is a complete metric space Hansell [8] showed that any Borel measurable map Φ : X → Y is a
σ–discrete map. The same assertion for an arbitrary metric space is independent of the usual axioms of the
set theory, [10].

In our applications we shall be mainly interested in a particular class of σ–continuous maps where the
continuity property is required for a fixed subbasis of the topology. Indeed we shall work in a locally convex
topological vector space X and we will play with the subbasis of the weak topology made up with all the
open half spaces in X:

Definition 5 Let A be a subset of a locally convex topological vector space X , let Φ be a map from A into
a metric space (Y, ρ). We say that Φ is slicely continuous at x ∈ A if for every ε > 0 there exists an open
half space H of X containing x with osc (Φ¹H∩A

) = diam Φ(H ∩A) < ε. We say that Φ is σ–slicely
continuous on A if for every ε > 0 we can write

A =
⋃

n∈N
An,ε (1)

in such a way that for every x ∈ An,ε there exists an open half space H of X containing x with

osc
(
Φ¹H∩An,ε

)
= diam Φ (H ∩An,ε) < ε.

As before, the easiest way to produce σ–slicely continuous maps is by means of the locally constant
maps, although using open half spaces as neighbourhoods in that case:

Definition 6 Let A be a subset of a locally convex topological vector space space X , let Φ be a map from
A into a set Y . We say that Φ is slice-locally constant if for every x ∈ A there exists an open half space H
of X containing x with Φ¹H∩A a constant map.

The map Φ is said to be piecewise slicely constant if A can be expressed as the union of a sequence of
sets {An : n ∈ N} such that the restrictions Φ¹An

are slice-locally constant for all n ∈ N.

The following theorem is a central result of the present paper:

Theorem 7 Let A be a subset of a locally convex linear topological space and let (Y, ρ) be a metric space.
For a map Φ : A → Y the following assertions are equivalent:

i) Φ is σ–slicely continuous.

ii) If {Dγ : γ ∈ Γ} is a discrete family of subsets of (Y, ρ) then
{
Φ−1 (Dγ) : γ ∈ Γ

}
is σ–slicely iso-

latedly decomposable in A.
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iii) There exists a sequence Φn : A → Y , n ∈ N of piecewise slicely constant functions such that
limn→∞Φnx = Φx uniformly on x ∈ A.

Proof. i)=⇒ii). If {Dγ : γ ∈ Γ} is a discrete family of subsets of (Y, ρ) we can firstly decompose every
set Dγ in the following way

Dγ,p := {x ∈ Dγ : Bρ(x, 1/p) ∩Dβ = ∅ for all β 6= γ, β ∈ Γ}

and we have Dγ =
⋃∞

p=1 Dγ,p. Now each family {Dγ,p : γ ∈ Γ} is 1/p–discrete. Since Φ is σ–slicely
continuous, for every positive integer p we decompose the domain A =

⋃∞
n=1 An,1/p in such a way that for

every x ∈ An,1/p there exists an open half space H with x ∈ H and such that

ρ− diam
(
Φ

(
An,1/p ∩H

))
< 1/p. (2)

Then, if we consider for n and p fixed the family
{
Φ−1 (Dγ,p) ∩An,1/p : γ ∈ Γ

}

it now follows that it is an slicely isolated family. Indeed, let us take x ∈ Φ−1 (Dγ,p) ∩ An,1/p , if H is
the open half space containing x which satisfies (2), and according to the fact that the sets Dγ,p form a
1/p–discrete family in (Y, ρ) for the fixed p and γ ∈ Γ, we have

H ∩ Φ−1 (Dβ,p) ∩An,1/p = ∅, for all β 6= γ, β ∈ Γ.

Since Φ−1 (Dγ) =
⋃∞

n,p=1 Φ−1 (Dγ,p) ∩ An,1/p, we have shown that
{
Φ−1 (Dγ) : γ ∈ Γ

}
is σ–slicely

isolatedly decomposable in A.

ii)=⇒iii) Let us fix the ε > 0 and we will construct a piecewise slicely constant function Φε : X → Y
such that ρ (Φεx, Φx) < ε for all x ∈ X . Every open cover of the metric space (Y, ρ) has a σ–discrete
open refinement by the Stone’s theorem on the paracompactness of metric spaces. Taking an open cover by
sets of diameter less than ε we find a refinement B of it such that B =

⋃∞
m=1 Bm and every Bm is a discrete

family of open sets with diameter less than ε. Using that each family Φ−1 (Bm) will be σ–slicely isolatedly
decomposable we will build up the piecewise slicely constant function Φε : A → Y we are looking for.
Indeed, let us begin with the construction on the set

A1 :=
⋃ {

Φ−1(B) : B ∈ B1

}

and an induction process will follow to complete the construction. We can write Φ−1(B) =
⋃∞

m=1 A1,B
m

for every B ∈ B1 where every family
{
A1,B

m : B ∈ B1

}
is slicely isolated for every positive integer m.

Choose yB ∈ B for every B ∈ B1 and let us define

Φ1
ε :

⋃ {
A1,B

1 : B ∈ B1

}
→ Y

by Φ1
εx = yB if x ∈ A1,B

1 . Then Φ1
ε is a slice-locally constant function. Set

A1,1 :=
⋃ {

A1,B
1 : B ∈ B1

}

and A1,2 :=
⋃ {

A1,B
2 : B ∈ B1

}
\A1,1. Again we can define a slice-locally constant function

Φ2
ε : A1,2 → Y
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by Φ2
εx = yB if x ∈ A1,B

2 because the intersection of a slicely isolated family of sets with a fixed set is a
slicely isolated family too. Inductively we define a partition of A1

A1 =
∞⋃

n=1

A1,n

and slice-locally constant functions Φn
ε : A1,n → Y with the property that ρ (Φn

ε x, Φx) < ε, ∀x ∈ A1,n.
Finally we have Φ1 : A1 → Y defined by Φ1x = Φn

ε x if x ∈ A1,n which is piecewise slicely constant
and verifies ρ (Φ1x, Φx) < ε, for every x ∈ A1. Inductively we define piecewise slicely constant functions
Φn : An → Y where

A2 :=
⋃ {

Φ−1(B) : B ∈ B2

} \A1, . . . , An :=
⋃{

Φ−1(B) : B ∈ Bn

} \An−1 . . .

verifying ρ (Φnx, Φx) < ε, for every x ∈ An. Finally Φεx = Φnx if x ∈ An. Then Φε is a piecewise
slicely constant function Φε : A → Y verifying

ρ (Φεx, Φx) < ε, x ∈ A.

iii)=⇒i) Given ε > 0 there exists an integer q such that ρ (Φqx, Φx) < ε/2, for every x ∈ A. Since
Φq is piecewise slicely constant there is a sequence of subsets A1, A2, . . . , An, . . . with A =

⋃∞
n=1 An

and Φq¹An
slice-locally constant for every n ∈ N. Then for every x ∈ An there is an open half space H

containing x such that Φq¹An∩H
is constant. Consequently osc

(
Φ¹An∩H

)
< ε and the proof is over. ¥

4. Applications to locally uniformly rotund renormings
The following result contains theorem 3 from the introduction. We can see the aproximation and rigidity
conditions characterizing locally uniformly rotund renormability:

Theorem 8 Let (E, ‖ · ‖) be a normed space with a norming subspace F ⊂ E∗, then the following
conditions are equivalent:

i) The normed space E admits an equivalent σ(E, F )-lower semicontinuous LUR norm on it.

ii) The identity map on E is a uniform limit of a sequence {In : E → E, n = 1, 2, ...} of piecewise
slicely constant maps for σ(E, F ).

iii) There is a sequence of piecewise slicely constant maps {In : E → E,n = 1, 2, ...} for σ(E, F ) such

that x ∈ {In(x) : n = 1, 2, ...}σ(E,E∗)∀x ∈ E.

iv) There is a sequence of piecewise slicely constant maps {In : E → E,n = 1, 2, ...} for σ(E, F ) such

that x ∈ span {In(x) : n = 1, 2, ...}‖·‖∀x ∈ E.

Proof. A normed space (E, ‖ · ‖) has an equivalent σ(E,F )-lower semicontinuous norm if, and only if,
the identity map from (E, σ(E, F )) into (E, ‖ · ‖) is σ-slicely continuous, [25, 29, 32].This fact together
with our theorem 7 is enough to prove the equivalence between i) and ii). From the properties described in
[29] for the σ-slicely continuous maps it follows the result for the coarser convergence topologies. Indeed,
if we assume only the condition iii), that is x is a cluster point of the sequence {In(x) : n = 1, 2, ...} in the
weak topology of E for every x ∈ E, then the Hahn Banach theorem tell us that condition iv) is satisfied:

x ∈ span {In(x) : n = 1, 2, ...}‖·‖∀x ∈ E.

Finally, if the condition iv) is fulfilled, then the set of all rational convex combinations of maps from
{In : E → E, n = 1, 2, ...} forms a countable family of maps that we call {Jn : E → E,n = 1, 2, ...} and
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they are σ–slicely continuous too for the σ(E, F )-topology by our results in [29, chapter 4]. For every

x ∈ E we will have that x ∈ {Jn(x), n = 1, 2, ...}‖·‖, it now follows that the identity map in E is σ–
slicely continuous for the σ(E, F )-topology, so the space E is going to have an equivalent σ(E, F )-lower
semicontinuous LUR norm and we arrive to i) and the proof is over. ¥

Let us remark here that the corresponding result for descriptive spaces is in [27], the result presented
here for LUR renormings needs our chapter 4 in [29]. Let us apply the former result to the space c0(Γ)
since it is a characteristic example in the theory:

Example 1 In the space c0(Γ) we describe the sequence of piecewise slicely constant maps approximating
the identity.

Proof. Given an ε > 0 and x ∈ c0(Γ), we set Lε(|x|) := {γ : |x(γ)| ≥ ε}. Let us fix l, p ∈ N, and
q ∈ Q such that we have:

#Lε(|x|) = l (3)

ε− sup {|x(γ)| : γ /∈ Lε(|x|)} > p−1, (4)

and

0 ≤ q −
∑ {

x2(γ) : γ ∈ Lε(|x|)} < (p−1)2/3 (5)

First we consider the cardinality of the finite set Lε(|x|), then we consider the jump of x after ε, (4);
both are the integers of therigidity condition, and finally we adjust the width of the required open half space
with (5). It exists because we can adjust the parameter q here in order to have an almost maximum for
the

∑ {
x2(γ) : γ ∈ Lε(|x|)} in our piece. Indeed, let us denote by Xl,p,q the set of all y ∈ c0(Γ) which

satisfy the same conditions as x, i.e. the conditions (3),(4)and (5) with y instead of x. It is clear that

c0(Γ) =
⋃
{Xl,p,q : l, p ∈ N; q ∈ Q}

Let us write Lε(|x|) = {γi}`
1, and let fx be the linear functional on c0(Γ) defined by the formula

fx(u) :=
∑̀
1

x (γi)u (γi) , u ∈ c0(Γ).

Denote with Hx the open half space of c0(Γ) given by
{
u ∈ c0(Γ) : fx(u) > fx(x)− (p−1)2/3

}

Pick y ∈ Xl,p,q ∩Hx. From (5) we get

∑̀
1

(x (γi)− y (γi))
2 = 2fx(x− y) +

∑̀
1

(
y2 (γi)− x2 (γi)

)
< (6)

2fx(x− y) +
∑ {

y2(γ) : γ ∈ Lε(|y|)}−
∑ {

x2(γ) : γ ∈ Lε(|x|)} < (p−1)2.

From (3) and (4) we get that
Lε(|x|) = Lε(|y|).

Thus the map Θε : c0(Γ) → 2Γ defined by Θε(x) = Lε(|x|) is piecewise slicely constant.
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Given the partition Π = {t0 < t1 < ... < ts} of the interval [−n, n] with ti+1 − ti = δ, let us define
fn

δ (t) :=
∑n−1
−n ti.1[ti,ti+1). For a given f : R→ R with finite range we define the map

Ξf : c0(Γ) → c0(Γ)

by Ξf (x)(γ) := f(x(γ)). The map Ξfn
δ

is piecewise slicely constant. Indeed, let us take ε > 0 with 0 and ε
in the same subinterval of the partition Π, and let us consider for that ε the former pieces Xl,p,q where Θε is
slice-locally constant. If we think in all possible distributions of all possible values of elements x ∈ Xl,p,q

in the partition Π, we see that we only have a finite number of cases when we restrict ourselves to the values
x(γ) for γ ∈ Lε(|x|). If we decompose the set Xl,p,q according with all such possibilities, it follows that
the map Ξfn

δ
is piecewise slicely locally constant on Xl,p,q and thus on all c0(Γ). We can now take the

sequence of functions
{
fn

δn
: n = 1, 2, 3, ...

}
where δn = 1/2n and we have limnfn

δn
(t) = t for every t in

R. So the sequence of functions
{

Ξfn
δn

: n = 1, 2, ...
}

approximate the identity map uniformly on bounded
sets of c0(Γ). ¥

In a similar way we may construct an approximating sequence

{In : E → E,n = 1, 2, ...}

of piecewise slicely constant maps in most of the Banach space E with a LUR renorming, for instance in
the following case:

Example 2 In a Banach space (E, ‖ · ‖) with a strong Markushevich basis {(xγ , fγ) : gamma ∈ Γ}, i.e.

x ∈ span {xγ : fγ(x) 6= 0}‖·‖∀x ∈ E,

we can describe a sequence of piecewise slicely constant maps {In : E → E, n = 1, 2, ...} such that x ∈
{In(x) : n = 1, 2, ...}‖·‖∀x ∈ E.

Proof. Indeed, for every x ∈ E we can assume without lose of generality that (fγ(x))γ∈Γ is a vector
of c0(Γ). With the same notations as above we can take now the functions Θε : E → E defined by
Θε(x) :=

∑ {xi : |fi(x)| ≥ ε}. These maps are piecewise slicely constant, indeed it is enough to consider
the sets El,p,q := {x ∈ E : (fγ(x))γ∈Γ ∈ Xl,p,q}, and for x ∈ El,p,q to take the functional

fx(u) :=
∑̀
1

fγj (x)fγj (u) u ∈ E.

and we operate as above denoting with {γj : j = 1, 2, ...l} the finite set of indexes for which |fγ(x)| ≥ ε.
Since the basis is strong we have that theQ linear span of the functions Θε for all rational positive numbers
ε is a sequence of maps

{In : E → E,n = 1, 2, ...}
approximating the identity on E as required. The fact that they are piecewise slicely constant maps follows
from our study in Chapter 4 of [29]. ¥

Let us mention to finish that the main renorming result in the recent paper [21] is formulated in terms
of our piecewise slicely constant maps.
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[25] Moltó, A., Orihuela, J. and Troyanski, S. (1997). Locally uniformly rotund renorming and fragmentability, Proc.
London Math. Soc. 75, no.3, 614–640.
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[29] Moltó, A., Orihuela, J., Troyanski, S. and Valdivia, M. (2005). A nonlinear transfer technique. (Preprint).

[30] Oncina, L. (2000). The JNR property and the Borel structure of a Banach space, Serdica Math. J. 26 (1), 13–32.

[31] Raja, M. (1999). Kadec norms and Borel sets in a Banach space, Studia Math. 136, 1–16.

[32] Raja, M. (1999). Locally uniformly rotund norms, Mathematika 46, no.2, 343–358.

[33] Raja, M. (1999). Borel mesurability and renorming in Banach spaces, Doctoral thesis. Murcia University.

[34] Rogers, C.A. (1988). Functions of the first Baire class, J. London Math. Soc. 37, 535–544.

[35] Rudin, W. (1981). Lebesgue First Theorem, Mathematical Analysis and Applications Part B, Advances in Math-
ematics Supplementary Studies, Academic Press.

[36] Srivatsa, V.V. (1993). Baire class 1 selectors for upper semicontinuous set-valued maps, Trans. Amer. Math. Soc.
337 609–624.

[37] Zizler, V. (2003). Non-separable Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-
Holland, Amsterdam, 1743–1816.

A. Moltó
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