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Partial unconditionality of weakly null sequences

Jordi López Abad and Stevo Todorcevic

Abstract. We survey a combinatorial framework for studying subsequences of a given sequence in
a Banach space, with particular emphasis on weakly-null sequences. We base our presentation on the
crucial notion of barrier introduced long time ago by Nash-Williams. In fact, one of the purposes of
this survey is to isolate the importance of studying mappings defined on barriers as a crucial step towards
solving a given problem that involves sequences in Banach spaces. We focus our study on various forms of
“partial unconditionality” present in arbitrary weakly-null sequences in Banach spaces. We give a general
notion of partial unconditionality that covers most of the known cases such as, for example, Elton’s near
unconditionality, convex unconditionality, and Schreier unconditionality, but we also add some new cases.

Incondicionalidad parcial de sucesiones débilmente nulas.

Resumen. Presentamos un marco combinatorio para estudiar subsucesiones de una sucesión dada en un
espacio de Banach, con particular énfasis sobre las sucesiones que son débilmente nulas. Nos centramos
principalmente en varias formas de incondicionalidad, y para ello introducimos una noción abstracta de
incondicionalidad parcial, que cubre la mayorı́a de los tipos de incondicionalidad parcial conocidos.

También desarrollamos un marco combinatorio apropiado para el estudio de las subsucesiones, que
trata sobre familias de conjuntos finitos de números naturales. En dicho marco la noción de barrera
introducida por Nash-Williams es principal.
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1. Introduction
The purpose of this paper is to survey with complete proofs a general framework for studying the structure
of subsequences of a given infinite sequence in a real Banach space X using combinatorics of finite sets of
integers. We focus mainly on weakly-null sequences. The main combinatorial tool is the notion of barrier
so let us introduce this notion. Let FIN denote the family of finite subsets of N. A family B ⊆ FIN is a
barrier on an infinite set M ⊆ N if no two distinct elements of B are comparable under the inclusion and
if every infinite subset of M has an initial part on B. Observe that the two properties that define a barrier B
allows to define a canonical mapping ιB that assigns to every infinite subset N of M the unique initial part
ιB(N) of N that belongs to B. Note that for positive integer k, the family N[k] of subsets of N of cardinality
k is an example of a barrier on N. By Ramsey’s original theorem all these barriers N[k] have something one
can call the Ramsey property, i.e., the property that for every finite coloring of B there is an infinite subset
M of N such that the restriction

B ¹ M = {s ∈ B : s ⊆ M}
is monochromatic. Indeed this is one of the key properties of every barrier.

Let us now only indicate on how this notion may help us to understand weakly-null, or even an arbitrary,
sequences in Banach spaces. Subsequences of such sequences are usually indexed by members of the set
N[∞] of all infinite subsets of N, so that our problem becomes a problem about Borel maps of the form
F : N[∞] → X for some metric space X. In fact, most of the maps F will have a countable range in X . We
are going to show (see Subsection 3.5.) that in this case there is a barrier B and a mapping f : B → X such
that F = f ◦ ιB.

Recall that a sequence (xn) in a Banach space X is called C-unconditional iff for every finite sequence
of scalars (an) and every finite set s it happens that ‖∑

n∈s anxn‖X ≤ C‖∑
n anxn‖X . So, if no subse-

quence of (xn) is C-unconditional, then this means that for every infinite set M there is a finite sequence
of scalars (an)n∈s, supported in s ⊆ M and a subset t of s such that

‖
∑
n∈t

anxn‖X > C‖
∑
n∈s

anxn‖X .

By continuity of the norm, we may assume that the scalars are rational numbers, so we can naturally define
a mapping with countable range that assigns to each infinite set M the corresponding couple (s, (an)n∈s).
By the previous fact, we have a corresponding mapping defined on a barrier.

Our primary focus will be on the study of “partial unconditionality” present in arbitrary weakly-null
sequences of Banach spaces. Our method would reduce the partial unconditionality problem to the under-
standing of mappings of the form

ϕ : B → FIN× c0,

where B ⊆ FIN is a barrier, and c0 is the Banach space of sequences of real numbers converging to zero.
We present several combinatorial results concerning these mappings, starting with simpler ones that would
deal with mappings of the form

ϕ : B → FIN.

One of the main results here is that every mapping ϕ : B → c0 has a restriction which is, up to perturbation,
something that we call a L-mapping, which loosely speaking says that ϕ has a kind of Lipschitz property
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with the additional requirement that the support suppϕ(s) of ϕ(s) is included in s for every s ∈ B. To
every such L-mapping one can associate a natural weakly-null sequence that we call L-sequence. Our
approach shows that if for some notion of partial unconditionality F there is a weakly-null sequence with
no F-unconditional subsequence, then there must be a L-sequence with no F-unconditional subsequence.
This gives the desired reduction of studying of the unconditionality problem F to study of mappings of
the form ϕ : B → FIN × c0. One of the advantage of this reduction is that one often can manage saying
something about these mapping and this is primarily based on the fact that barriers B have already rich
theory on which we can rely.

With the goal to cover a large number of cases of partial unconditionality we introduce an abstract
notion of unconditionality. It is motivated by a similar though slightly less general notion appearing in [10]
pp. 4. Let F be a set of pairs (t, (an)), where t is a finite set of integers and (an) a finite sequence of real
numbers. Let w : F → R+ be an arbitrary mapping that we call weight assignment. We say that a sequence
(xn) in a Banach space X is (Fw, C)-unconditional iff for every couple (t, (an)) in F we have that

‖
∑
n∈t

anxn‖X ≤ Cw(t, (an))‖
∑

n

anxn‖X .

Let
C(Fw, (xn)) = inf{C : (xn) has a (Fw, C)-unconditional subsequence}.

We illustrate this definition with two old examples and one new:
(a) (Bessaga-Pełczyński unconditionality) Let

F = {(t, (an)) : t is an initial part of the support of (an)},

w ≡ 1. Then a sequence (xn) is (Fw, C)-unconditional iff (xn) is a C-basic sequence. A classical result of
C. Bessaga and A. Pełczyński [7] states that for every ε > 0 every semi-normalized weakly-null sequence
has a 1 + ε-basic subsequence, i.e. C(F, (xn)) = 1.

(b) (Elton unconditionality) For 0 < δ < 1, let

Fδ = {(t, (an)) : ‖(an)‖∞ ≤ 1, and |an| ≥ δ for every n such that an 6= 0},

w ≡ 1. Then a sequence (xn) is (Fδ
w, C)-unconditional for some C iff it is δ-nearly-unconditional in

the sense of Elton [12]. A well-known result of Elton [12] says that every semi-normalized weakly-null
sequence contains a δ-nearly-unconditional subsequence. Moreover Dilworth, Kalton and Kutzarova [8]
has shown that

C(Fδ
w, (xn)n) ≤ K log2(1/δ)

for every semi-normalized weakly-null sequence.

(c) (F-unconditionality) In subsection 4.3. we present the following generalization. Let

F ={(t, (an)) : t is a subset of the support of (an)},

and let us consider the following weight assignment on this family

w((t, (an))) = max{1, log2(
‖(an)‖∞

minn∈t |an| )}.

Then
C(Fw, (xn)) ≤ 8

for every semi-normalized weakly-null sequence (xn).
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We shall show that the problem of estimating the constants C(Fw, (xn)) is closely related to the struc-
ture theory of mappings defined on barriers (see Subsection 4.1.). Moreover, for semi-normalized weakly-
null sequences (xn) these constants C(Fw, (xn)) are always dominated by the corresponding constant
C(Fw, (yn)) of a L-sequence, that is, a semi-normalized weakly null sequence (yn) defined by a Lipschitz
mapping on a barrier ϕ : B → c00, i.e. such that

ϕ(s) ¹ t = ϕ(u) ¹ t, for every s, u ∈ B such that t is an initial part of s and u.

As explained above, properties of weakly null sequence translate to combinatorial and topological prop-
erties of families F ⊆ FIN. It turns out that quite analogous theory can be developed for bounded weakly-
Cauchy sequences in Banach spaces. To capture the bounded weakly-Cauchy sequences all one needs to
do is to replace FIN by the family FIN2 of finite block-sets of doubletons from N. Then the result that
characterizes when a given sequence contains a weakly null subsequence in terms of subfamilies of FIN
translates into a similar characterization for bounded weakly-Cauchy sequences in terms of subfamilies of
FIN2. We shall exemplify this with a proof of the well-known Rosenthal `1-theorem.

The paper is organized as follows. In Section 2, we present the basic combinatorial and topological
notions that apply to families of finite sets and that will be useful in the rest of the paper. In particular we
introduce the notion of barrier, and prove that it has the Ramsey property. In Section 3 we develop further
the results of Section 2 and give some application. In particular, in Theorem 2, we present a dichotomy for
families of finite sets, and prove that this dichotomy is closely related to a problem concerning a particular
sort of weakly-null sequences (Proposition 3). In the following subsection 3.2. we show that a variation
of Theorem 2 leads us to the famous Rosenthal’s `1-theorem. In subsection 3.3. we deal with “matching
properties” of members of a given barrier that will be used later in our study of weakly-null sequences. In
Subsection 3.4. we introduce the main technical notions of L-mappings and U-mappings defined on barriers.
We finish this section by giving some consequences to maps defined on infinite-dimensional combinatorial
cubes. In the fourth Section we introduce our notion of partial unconditionality and we use some of the
combinatorial results from Section 3 and give proofs of several partial unconditionality results, some of
them new and some old such as, for example, near and convex unconditionality, Schreier unconditionality,
and the Maurey-Rosenthal unconditionality.

We finish the introduction by saying that this paper is largely a very selective survey article inspired by
a vast variety of papers on this subject found in the literature and in particular by the paper of S. J. Dilworth,
E. Odell, Th. Schlumprecht and A. Zsak [10]. It also can be considered as a natural continuation of our
previous paper [21]. We should note however that all uncredited results except for few trivial observations
due to the authors are either part of the folklore of the subject or are to be found in the papers listed in the
reference list.

1.1. Preliminaries

Let us now explain some of the notation and well-known facts that will be useful for us. We use the boldface
notation for sequences of objects. For example, letters a, b, c, . . . are reserved for sequence of vectors from
c0, while x, y, . . . are reserved for an infinite sequence of vectors in an arbitrary Banach space. We use
e = (en) to denote the standard Hamel basis of c00 : en(k) = 1 if k = n and 0, otherwise. By default,
unless otherwise stated, every infinite sequence x of elements of some Banach space will be indexed in N.
In general, an infinite sequence x = (xn)n∈M may be indexed not only by N but by in an arbitrary infinite
subset M of N. We interpret a sequence x = (xn)n∈M in a Banach space X as a mapping from M into
X , so for N ⊆ M we denote by x ¹ N the subsequence (xn)n∈N of x. By default every sequence x will
be indexed in N. Given a sequence x = (xn)n∈M of elements of some Banach space X and a sequence
a = (an)n∈N ∈ c0, we define the product

a · x =
∑

n∈M

anxn
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whenever the series converges in X.
A sequence x = (xn) is semi-normalized if

0 < inf
n
‖xn‖ ≤ sup

n
‖xn‖ ≤ 1.

Recall that a sequence x in a given a Banach space X is called weakly-null if the numerical sequence
x∗(x) = (x∗(xn))n belongs to c0 for every x∗ ∈ X∗. Recall also that a subset K of c0 is called weakly-
compact iff K iff it is compact with respect to the weak-topology, and that in this case is the pointwise
topology of c0 ⊆ RN. We call a subset W ⊆ c0 weakly-pre-compact, iff its weak-closure is a subset of c0.
This is equivalent to say that every sequence in W has a convergent subsequence whose limit belongs to c0.

Recall that FIN denotes the family of all finite sets of N. The topology on FIN is the one induced from
the Cantor cube 2N via the identification of subsets ofNwith their characteristics function. Observe that this
topology coincides with the one induced by c0 with the same identification of finite sets and corresponding
characteristic functions. Thus, we say that a family F ⊆ FIN is compact if it is a compact space under the
induced topology. We say that F ⊆ FIN is pre-compact if its topological closure F top

taken in the Cantor
cube 2N consists only of finite subsets of N. For example, given an infinite set M of integers, the family
M [≤k] of subsets of M whose cardinality is at most k is a compact family for every fixed integer k, while
the family M [<∞] of all finite subsets of M is not pre-compact, since for example M is an accumulation
point.

A simple, but useful observation is that if x is a given weakly-null sequence, then the natural mapping
from BX∗ to c0 defined by

x∗ 7→ x∗(x) =
∑

n∈M

x∗(xn)en.

is continuous, provided we equip BX∗ with the weak∗-topology and c0 with its weak topology. It follows
that its range K(x) is a weakly-compact subset of c0.

Given a ∈ c0, and ε > 0, we define the ε-support of a as

supp εa = {n ∈ supp a : |a(n)| ≥ ε}.

Note that supp εa ∈ FIN for every a. For a set W ⊆ c0, we define

supp ε(W ) = {supp εa : a ∈ W}.

Note that if W ⊆ c0 is weakly-pre-compact then supp ε(W ) is a pre-compact subset of FIN. To see this
consider a sequence (sn)n in supp ε(W ) with limit A ⊆ N. We need to show that the set A is finite. Pick
for each n an element an ∈ W such that supp εan = sn. As W is weakly-pre-compact, we can find a
convergent subsequence of (an) with limit a ∈ c0. It is easy to see that then A ⊆ supp εa, so A is finite.

Recall that two basic sequences x = (xn)n∈N and y = (yn)n∈N of Banach spaces X and Y respec-
tively are called C-equivalent (C ≥ 1) if for every sequence (an)n∈N of scalars we have that

1
C
‖

∑

n∈N

anxn‖X ≤ ‖
∑

n∈M

aπ(n)xπ(n)‖X ≤ C‖
∑

n∈N

anxn‖X .

where π : N → M is the unique order-preserving onto mapping.

2. Families of finite sets of integers
That families of finite sets of integers are relevant to any study of sequences in Banach spaces is a well
understood fact, and it is therefore not surprising that the study of such families is a predominant theme in
the literature of this subject. As we shall see later the study of mappings defined on certain families of finite
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sets of integers seems to be a theme that is much more to the point and that is not always explicit in papers
of this area. One of the purpose of this survey is to give a more complete exposition of this theme.

Given X,Y ⊆ N we write
(1) X < Y iff max X < min Y . We will use the convention ∅ < X and X < ∅ for every X .
(2) X v Y iff X ⊆ Y and X < Y \X .

A sequence (sn) of finite sets of integers is called a block sequence iff sn < sm for every n < m, and
it is called a ∆-sequence iff there is some finite set s such that s v sn (n ∈ N) and (sn \ s) is a block
sequence. The set s is called the root of (sn). Note that sn →n s iff every subsequence of (sn) has a further
∆-subsequence with root s. It follows that the topological closure F of a pre-compact family F of finite
subsets of N is included in its downwards closure

F⊆ = {s ⊆ t : t ∈ F}

with respect to the inclusion relation and also included in its downwards closure

Fv = {s v t : t ∈ F}

with respect to the relationv. We say that a family F ⊆ FIN is ⊆-hereditary if F = F⊆ and v-hereditary
if F = Fv. The ⊆-hereditary families will simply be called hereditary families. We shall consider the
following two restrictions of a given family F of subsets of N to a finite or infinite subset X of N

F ¹ X ={s ∈ F : s ⊆ X},
F [X] ={s ∩X : s ∈ F}.

The first family F ¹ M is called the restriction of F on M , while the second one is called the trace of F
on M .

There are various ways to associate an ordinal index to a pre-compact family F of finite subsets of N.
For example, one may consider the Cantor-Bendixson index r(F), the minimal ordinal α for which the iter-
ated Cantor-Bendixson derivative ∂α(F) is equal to ∅. Recall that ∂F is the set of all proper accumulation
points of F and that

∂α(F) =
⋂

ξ<α

∂(∂ξ(F)).

The Cantor-Bendixson index is well defined since F is countable and therefore a scattered compactum so
the sequence ∂ξ(F) of iterated derivatives must vanish. Observe that if F is a nonempty compact, then
necessarily r(F) is a successor ordinal. An important feature of this ordinal index and all other considered
in this paper is that for every n ∈ N, the index of the family

F{n} = {s ∈ FIN : n < s, {n} ∪ s ∈ F}

is strictly smaller than the index of F whenever the last nonempty set of the form ∂ξ(F) is equal to {∅}.
Let us now introduce the other basic combinatorial concepts of this section. For this we need the

following piece of notation, where X and Y are subsets of N

∗X = X \ {min X} and X/Y = {m ∈ X : max Y < m}.

The set ∗X is called the shift of X . Given integer n ∈ N, we write X/n to denote X/{n} = {m ∈ X :
m > n}. The following notions have been introduced by Nash-Williams [25].

Definition 1 Let F ⊆ FIN.
(1) F is called thin if s 6v t for every pair s, t of distinct members of F .
(2) F is called Sperner if s * t for every pair s 6= t ∈ F .
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(3) F is called Ramsey if for every finite partition

F = F0 ∪ · · · ∪ Fk (1)

there is an infinite set M ⊆ N such that at most one of the restrictions Fi ¹ M is non-empty.
(4) F is called a front on M if F ⊆ P(M), it is thin, and for every infinite N ⊆ M there is some s ∈ F
such that s v N .
(5) F is called a barrier on M if F ⊆ P(M), it is Sperner, and for every infinite N ⊆ M there is some
s ∈ F such that s v N .

Definition 2 Given F ⊆ FIN, let

Fv−max ={s ∈ F : (∀t ∈ F)(s v t → s = t)}
Fv−min ={s ∈ F : (∀t ∈ F)(t v s → s = t)}.

It is clear that both sets are thin.

Definition 3 Given a front B on M , let ιB : M [∞] → B be the mapping that assigns to every N ∈ M [∞]

the unique initial part ιB(N) of N that belongs to B.

Clearly, every barrier is a front but not vice-versa. For example, the family N[k] of all k-element subsets
of N is a barrier. The basic result of Nash-Williams [25] says that every front (and therefore every barrier)
is Ramsey. Since as we will see soon there are many more barriers than those of the form N[k] this is a
far reaching generalization of the classical result of Ramsey. To see a typical application, let F be a front
on some infinite set M and consider its partition F = F0 ∪ F1, where F0 is the family of all ⊆-minimal
elements of F . Since F is Ramsey there is an infinite N ⊆ M such that one of the restrictions Fi ¹ M is
empty. Note that F1 ¹ N must be empty. Since F0 ¹ N is clearly a Sperner family, it is a barrier on N .
Thus we have shown that every front has a restriction that is a barrier.

Since barrier are more pleasant to work with one might wonder why introducing the notion of front at
all. The reason is that inductive constructions lead more naturally to fronts rather than barriers. To get an
idea about this, it is instructive to consider the following notion introduced by Pudlak and Rödl (see [26]).

Definition 4 Given a countable ordinal α, the family F is called α-uniform on M provided that:
(a) α = 0 implies F = {∅},
(b) α = β + 1 implies that F{n} is β-uniform on M/n,
(c) α > 0 limit implies that there is an increasing sequence {αn}n∈M of ordinals converging to α such that
F{n} is αn-uniform on M/n for all n ∈ M .

F is called uniform on M if it is α-uniform on M for some countable ordinal α.

Remark 1 (a) If F is a front on M , then F = Fv.
(b) If F is uniform on M , then it is a front (though not necessarily a barrier) on M .
(c) If F is α-uniform (front, barrier) on M and Θ : M → N is the unique order-preserving onto mapping
between M and N , then Θ”F = {Θ”s : s ∈ F} is α-uniform (front, barrier) on M .
(d) If F is α-uniform (front, barrier) on M then F ¹ N is α-uniform (front, barrier) on N for every
N ⊆ M .
(e) If F is uniform (front, barrier) on M , then for every s ∈ Fv the family

Fs = {t : s < t and s ∪ t ∈ F}

is uniform (front, barrier) on M/s.
(e) If F is α-uniform on M , then ∂α(F) = {∅}, hence r(F) = α + 1. (Hint: use that ∂β(F{n}) =
(∂β(F)){n} for every β and every compact family F).
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(f) An important example of a ω-uniform barrier onN is the family S = {s : |s| = min(s)+1}. We call S a
Schreier barrier since its downwards closure is commonly called the Schreier family. Note that unlike to the
case of finite ranks there are many different ω-uniform families on N. For example {s : |s| = 2 min(s)+1}
is another such family.

The following is one of the most important results connecting arbitrary families of finite subsets of N
with fronts and barriers. It is also the key result in the development of the topological Ramsey theory of
N[∞] (See Subsection 3.5.).

Lemma 1 (Galvin’s Lemma) For every family F ⊆ FIN there exists an infinite M ⊆ N such that the
restriction F ¹ M is either empty or it contains a barrier. ¥

The following result based on Galvin’s lemma and Nash-Williams’ extension of Ramsey’s theorem
explains the relationship between the concepts introduced above (see [5] for proofs and fuller discussion).

Theorem 1 The following are equivalent for a family F of finite subsets of N:
(a) F is Ramsey.
(b) There is an infinite M ⊆ N such that F ¹ M is thin.
(c) There is an infinite M ⊆ N such that F ¹ M is Sperner.
(d) There is an infinite M ⊆ N such that F ¹ M is either empty or a front on M .
(e) There is an infinite M ⊆ N such that F ¹ M is either empty or a barrier on M .
(f) There is an infinite M ⊆ N such that F ¹ M is either empty or uniform on M .
(g) There is an infinite M ⊆ N such that for every infinite N ⊆ M the restriction F ¹ N cannot be split
into two disjoint families that are uniform on N . ¥

In this kind of Ramsey theory one frequently performs diagonalisation arguments that can be formalized
using the following notion.

Definition 5 An infinite sequence (Mk)k∈N of infinite subsets of N is called a fusion sequence of subsets
of M ⊆ N if for all k ∈ N:
(a) Mk+1 ⊆ Mk ⊆ M ,
(b) mk < mk+1, where mk = min Mk.

The infinite set M∞ = {mk}k∈N is called the fusion set (or limit) of the sequence (Mk)k∈N.

The following are simple fact to prove. We leave the details to the reader.

Proposition 1 Let F ⊆ FIN.

(a) F is pre-compact iff Fv is pre-compact iff F is pre-compact.
(b) Suppose further that F is either ⊆-hereditary or v-hereditary. Then F is compact iff it is pre-compact.
(c) If F is ⊆-hereditary then for every subset M of N we have F [M ] = F ¹ M .

(d) F⊆[M ] = F [M ]
⊆

. ¥

Proposition 2 Suppose that B ⊆ FIN is a barrier on M . Then
(a) B⊆ = Bv = B, and hence B⊆ is a compact family.

(b) For every N ⊆ M , B ¹ N
⊆

= B⊆ ¹ N .
(c) For every N ⊆ M such that M \N is infinite we have that B[N ] = B ¹ N , and in particular B[N ] is
downwards closed.
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PROOF. (a): It is clear that B⊆ ⊇ Bv ⊇ B. Let us show that B⊆ ⊆ B: Let t  u ∈ B. For N ⊆ M , let
sN = ιB(t ∪ (N/u)). Then either t v sM or else sM v t. This second alternative is impossible since it
implies that sM  u, and both are in the Sperner family B. Now it is easy to produce a ∆-sequence (sn) of
elements of B with root s.

(b): It is clear that B ¹ N
⊆ ⊆ B⊆ ¹ N . Now suppose that t ∈ B⊆ ¹ N . Let u ∈ B be such that t ⊆ u.

Then t v ιB(t∪ (N/t)) ∈ B ¹ N (otherwise ιB(t∪ (N/t))  u both in the Sperner family B, impossible).
(c): Fix an infinite subset N of M such that P = M \ N is infinite as well. By (a) we have to prove

that B[N ] = B ¹ N
v

. By (b) and Proposition 1 (c),

B[N ] ⊆ B⊆[N ] = B⊆ ¹ N = B ¹ N.

Now, let us show that B ¹ N
⊆ ⊆ B[N ]: Fix t ∈ B ¹ N

⊆
. One can argue as before to show that t v

ιB(t ∪ (P/t)), and so t = ιB(t ∪ (P/t)) ∩N ∈ B[N ].
¥

The next is a well known result. We extract its proof from [5].

Lemma 2 Suppose that B and C are two barriers on M . Then there is some infinite N ⊆ M such that
either B ¹ N ⊆ C ¹ N or else C ¹ N ⊆ B ¹ N .

PROOF. Define ϕ : B → FIN by ϕ(s) = ιC(s ∪ (M/s)), i.e. ϕ(s) ∈ C is such that ϕ(s) v s ∪ (M/s).
By the Ramsey property of B there is some N ⊆ M such that either
(a) s v ϕ(s) for every s ∈ B ¹ N , or else
(b) ϕ(s) v s for every s ∈ B ¹ N . Suppose that the first alternative holds.

We claim that in this case B ¹ N ⊆ C ¹ N : Fix s ∈ C ¹ N , let t = ιC(s ∪ (N/s)). As s v ϕ(s) we
have necessarily that s v t (because otherwise t @ ϕ(s) both in C, a contradiction). So, s ∈ C ¹ N .

Finally, suppose that the second alternative (b) holds. We claim that in this case we have that C ¹ N ⊆
B ¹ N : Let t ∈ C ¹ N , and let s = ιB(t ∪ (N/t)). As ϕ(s) v s, we have that necessarily t v s. So,
t ∈ B ¹ N . ¥

Corollary 1 Suppose that B and C are respectively α and β-uniform some M , and suppose that α < β.
Then there is N ⊆ M such that B ¹ N ⊆ C.

PROOF. It follows from Lemma 2 and Remark 1 (d). ¥

3. Mapping on Barriers

As pointed out in the introduction, many problems about sequences in Banach spaces can be coded as
problems about mappings defined on barriers. In this section we consider the simple particular case of such
mappings with ranges included in FIN. We shall later see that even this case will lead us to some interesting
results (see Theorem 2). We start with the following two natural definitions.

Definition 6 Let F ⊆ FIN and ϕ : F → FIN.
(a) We say that ϕ is uniform iff

for every s, u ∈ F and every t v s, u we have that min(s \ t) ∈ ϕ(s) ⇔ min(u \ t) ∈ ϕ(u). (2)

(b) We say that ϕ is Lipschitz iff

for every s, u ∈ F , if t v s, u then ϕ(s) ∩ t = ϕ(u) ∩ t. (3)
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So, uniform mappings are those ϕ : F → FIN such that given s ∈ F and n ∈ N, the value of χϕ(s)(n) ∈
{0, 1} only depends on the initial part s ∩ [0, n) of s, while Lipschitz mappings are those that the value of
ϕ(s) ∩ t only depends on t for every t v s ∈ F . This notion of lipschitzness has the following metric
interpretation.

Remark 2 Recall that standard metric d on FIN defined by

d(s, t) =
1

2min(s4t)
,

where s4t = (s \ t) ∪ (t \ s) is the symmetric difference of s and t. This metric defines the topology on
FIN we explained in the introduction. With this metric it is easy to see that the Lipschitz notion defined
above coincides with the metric 1-Lipschitz condition associated to d. In subsection 3.4. we will extend
those notions to mappings from F ⊆ FIN into c0.

Proposition 3 If ϕ is uniform, then ϕ is Lipschitz.

PROOF. The proof is an easy induction on |t|, where t v s, u ∈ F . ¥

Proposition 4 Suppose that B a barrier on M and ϕ : B → FIN is an arbitrary mapping. Then there is
N ⊆ M such that ϕ ¹ (B ¹ N) is uniform.

PROOF. Find a fusion sequence (see definition 5) (Mk) of subsets of M , mk = min Mk, such that for
every k, and every t ∈ {m0, . . . , mk} the mapping

ft : Bt ¹ Mk+1 → {0, 1}

defined by ft(u) = χϕ(t∪u)(minu) is constant. Then the fusion limit {mk} is our set. ¥

A consequence of this is that the selection of an initial part of every element of a barrier, defines essen-
tially a new barrier. More precisely,

Corollary 2 Suppose that B is a barrier on M and suppose that ϕ : B → FIN is such that ϕ(s) v s for
every s ∈ B. Then there is N ⊆ M such that ϕ”(B ¹ N) is a barrier on N .

PROOF. Let P ⊆ M be such that ϕ is uniform when restricted to B ¹ P . We claim that this implies
that F = ϕ”(B ¹ P ) is a thin family: Suppose that otherwise that t @ t̄ both in F . Let s, s̄ ∈ B ¹ P be
such that ϕ(s) = t, ϕ(s̄) = t̄. As ϕ is Lipschitz on B ¹ P and min(s̄ \ t) ∈ t̄ = ϕ(s̄), we obtain that
min(s \ t) ∈ ϕ(s) = t, impossible. Now let N ⊆ P be such that F ¹ N is either empty or a uniform
barrier on N . Note that the first alternative is impossible as ϕ”(B ¹ N) ⊆ F ¹ N . We finish the proof by
checking that indeed F ¹ N = ϕ”(B ¹ N): The reverse inclusion is trivial. Suppose that t ∈ F ¹ N , and
fix s ∈ B ¹ P such that t = ϕ(s). Let u = ιB(t ∪ (N/t)) ∈ B ¹ N . By uniformity of ϕ on B ¹ P we have
that ϕ(u) = t, and we are done. ¥

Definition 7 We say that a mapping ϕ : F → FIN is internal iff ϕ(s) ⊆ s for every s ∈ B.

We prove now that every mapping ϕ : B → FIN defined on a barrier whose range is pre-compact is
“almost” internal. In the next, given a set B ⊆ N, we define the mapping χB · : P(N) → P(N) by
χB ·A = A ∩B.

Lemma 3 Let B be a uniform barrier on M , and suppose that ϕ : B → FIN is such that its range is a
pre-compact family. Then there is some infinite subset N ⊆ M such that χN · ϕ ¹ (B ¹ N) is internal (i.e.
ϕ(s) ∩N ⊆ s for every s ∈ B ¹ N ).
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PROOF. Let h : B → FIN be defined by h(s) = ϕ(s) \ s (s ∈ B). It is clear that h”B is a pre-compact
family, and, by definition, h(s) ∩ s = ∅. We are going to show that there is some N ⊆ M such that
h(s) ∩ N = ∅ for every s ∈ B ¹ N , that gives the desired conclusion for f . The proof is by induction on
the rank of B. For every m ∈ M , let hm : B{m} → FIN be naturally defined by

hm(s) = h({m} ∪ s) for every s ∈ B{m}.

It is clear that hm : B{m} → FIN fulfills (a) and (b) above, so, by inductive hypothesis, we can find a
fusion sequence (Mk)k∈N, Mk = M , and such that, setting mk = min Mk (k ∈ N), we have that

hmk
(sk) ∩Mk+1 = ∅ for every k ∈ N and every s ∈ B{mk} ¹ Mk+1.

Let M∞ = {mk}. It is easy to check that

h(s) ∩M∞ ⊆ {m0, . . . mk−1} for every s ∈ B ¹ M∞,

and where k is such that mk = min s. For m ∈ M∞, we define

gm : B{m} ¹ M∞ → P(M ∩ {0, . . . ,m− 1})
s 7→ gm(s) = hm(s) ∩M∞.

Since the image of gm has only finitely many possibilities, we can find another fusion sequence (Nk),
N0 = M∞, such that, setting nk = min Nk, for every k the mapping gnk

is constant on B{nk} ¹ Nk+1 with
value snk

< nk. Let N∞ = {nk}. Notice that, by the properties of this last fusion sequence, we know that
h(s) ∩N∞ ⊆ h(s) ∩M∞ = smin s for every s ∈ B ¹ N∞. Since the range of h is a pre-compact family,
there is some infinite set I ⊆ N∞ such that (si)i∈I is a ∆-sequence with root r. Take a thinner N ⊆ I such
that N ∩⋃

n∈N sn = ∅. Then for every s ∈ B ¹ N we have that h(s) ∩N ⊆ smin s ∩N = ∅, as desired.
¥

The next generalizes Lemma 3 and it will be very important in the understanding of mappings from
barriers into c0.

Lemma 4 Suppose that {Bl}l∈N is a collection of uniform barriers on M , and suppose that for every
k ∈ N we have ϕl : Bl → FIN with pre-compact range. Then there is some infinite subset N of M such
that

(ϕl(s) \ s) ∩N ⊆ N ∩ [0, n] (4)

for every n ∈ N , l ≤ n, and every s ∈ Bl ¹ N.

PROOF. For each l ∈ N, Let ψl : Bl → FIN be defined by ψl(s) = ϕl(s) \ s for every s ∈ Bl. Using
previous Lemma 3 we can find a fusion sequence (Nk) of M such that, setting nk = min Nk (k ∈ N), we
have that for every k ∈ N,

ψl(s) ∩Nk+1 = ∅ for every l ≤ nk and every s ∈ Bl ¹ ({n0, . . . , nk} ∪Nk+1). (5)

Then the fusion set N = {nk}k fulfills the desired requirements: Fix n ∈ N , l ∈ N such that l ≤
n, and s ∈ Bl ¹ N . Let k ∈ N be such that n = nk. Observe that the fusion set N satisfies that
N ⊆ {n0, . . . , nk} ∪ Nk+1, so s ∈ Bl ¹ {n0, . . . , nk} ∪ Nk+1. Hence, by (5), ψl(s) ∩ Nk+1 = ∅, so
ψl(s) ∩N ⊆ {n0, . . . , nk}, that is equivalent to (4).

Let us explain how to find this fusion sequence. Suppose we have found Nk ⊆ Nk−1 ⊆ · · · ⊆ N0. For
every t ⊆ {n0, . . . , nk}, and l ∈ N let ψl,t : (Bl)t → FIN be naturally defined by

ψl,t(u) = ψl(s ∪ t)

for each u ∈ (Bk)t. Using repeatedly Lemma 3 to each hl,t with l ≤ nk and t ⊆ {n0, . . . , nk} we can
find Nk+1 ⊆ Nk with the property that for every s ∈ Bk ¹ ({n0, . . . , nk} ∪ Nk+1) and every l ≤ nk, the
intersection ψl(s) ∩Mk+1 = ∅, as desired. ¥
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3.1. Reducing problems about families of finite sets to problems about bar-
riers

As a first result of this section we show that an arbitrary family F ⊆ FIN is related either to a uniform
barrier on M, or the downwards closure of F includes a family M [<∞] of all finite subsets of a given
infinite set M. More precisely, we prove the following:

Theorem 2 For every family F ⊆ FIN there is an infinite set M such that either
(a) F [M ] is the closure of a uniform barrier on M , or else
(b) M [<∞] ⊆ F⊆.

Observe that if (a) holds, then the trace F [M ] of F on M is hereditary. Note also that if F is pre-compact
then, (a) must hold. The next readily follows from Theorem 2.

Corollary 3 Suppose that F0,F1 ⊆ FIN are such that

M [<∞] ⊆ {s0 ∪ s1 : s0 ∈ F0, s1 ∈ F1}. (6)

Then there is an infinite N ⊆ M and i = 0, 1 such that N [<∞] ⊆ Fi
⊆

.

PROOF. First note that the union mapping FIN × FIN → FIN, (s, t) 7→ s ∪ t is continuous. So if two
families F0 and F1 are pre-compact, then {s0 ∪ s1 : si ∈ Fi, i = 0, 1} is also pre-compact. This implies,
by Theorem 2, that there is N ⊆ M such that either N [<∞] ⊆ F0

⊆
or N [<∞] ⊆ F1

⊆
. ¥

We are going to link Theorem 2 for pre-compact families with a property concerning a simple family of
weakly-null sequences. We need to introduce two natural semi-norms.

Definition 8 Given an arbitrary family F ⊆ FIN we define on c00 the following two semi-norms:

‖a‖F =sup
t∈F

‖a ¹ t‖`1

‖a‖1F =sup
t∈F

|〈a, χt〉|.

Let XF and X1
F be the corresponding completions.

We give some examples to illustrate the previous definition:
(a) The space XS for the Schreier family S consisting on those finite sets of integers s with |s| ≤ min s,
XS is the so-called Schreier space introduced by Schreier [29] to provide the first example of a normalized
weakly-null sequence without Cesaro summable subsequence. In case that F is compact and hereditary
and N [1] ⊆ F , then e is a normalized weakly-null unconditional Schauder basis of XF . We call XF the
F-Schreier space.
(b) It is easy to see that if F is pre-compact, then Hamel basis e of c00 is a weakly-null sequence of both
XF and X1

F .
(c) XFIN = `1, and in general, the sequence e ¹ M of XM [<∞] is 1-equivalent to the natural basis of `1.
Also, it is easy to see that the norm on X1

FIN is 2-equivalent to the `1-norm.
We see now few properties of the two spaces introduced above.

Proposition 5 (a) ‖a‖1F ≤ ‖a‖F .
(b) If B is a barrier on M , then ‖a‖B = ‖a‖B and ‖a‖1B = ‖a‖1B for every a ∈ c00 ¹ M .
(c) If F is a barrier on M or if F = M [<∞], then

‖a‖F ≤ 2‖a‖1F
for every a ∈ c00 ¹ M .

248



Partial unconditionality

PROOF. (a) is trivial. To show (b), use that for every a ∈ c00 ¹ M , and every t ∈ B there is s ∈ B such
that supp a ∩ s = supp a ∩ t. Finally, we prove (c): The result for F = M [<∞] is trivial. So, suppose
that B = F is a barrier on M , and fix a ∈ c00 ¹ M . Choose first s ∈ B such that ‖a‖B = ‖a ¹ s‖`1 .
Now pick t ⊆ supp a ∩ s such that a ¹ t has constant sign and 2‖a ¹ t‖`1 ≥ ‖a ¹ s‖`1 . Finally let
u = ιB(t ∪ (M/supp a)). Then t v u (otherwise, u @ t ⊆ s, impossible since both are in the barrier B),
so |∑n∈s a(n)| ≥ 2‖a ¹ s‖`1 , and we are done. ¥

We are ready to present the equivalence we promised.

Theorem 3 The following are equivalent:
(a) For every pre-compact family F ⊆ FIN there is an infinite set M such that F [M ] is the closure of a
uniform barrier on M .
(b) For every weakly-null infinite sequence x of C(K), K compact, consisting of characteristic functions
there is some infinite set M and a uniform barrier B on N such that the subsequence x ¹ M is 1-equivalent
to the natural basis (en)n∈N of the space X1

B.

Before we give the proof, let us point out, that this Theorem, together with Theorem 2 and Proposition
5 gives the following generalization of a result of Rosenthal stating that every normalized weakly-null
sequence consisting on characteristic functions of C(K) has a 1-unconditional subsequence (see [22]).

Corollary 4 Suppose that x is an arbitrary weakly-null sequence consisting on characteristic functions of
C(K), K compact. Then there is some an infinite set M and some uniform barrier B on N such that x ¹ M
is 2-equivalent to the natural basis of some Schreier space XB with B a uniform barrier on N. ¥

We will present a generalization of previous Corollary in Subsection 4.4.. Let us go now to the proof of
Theorem 3.
PROOF. (a) implies (b): For every ξ ∈ K, let

supp ξ = {n ∈ N : xn(ξ) 6= 0} = {n ∈ N : xn(ξ) = 1}. (7)

As x is weakly-null, (7) implies that the set

F = {supp ξ : ξ ∈ K}
is a pre-compact family. Let M be such that the ⊆-maximal elements of F [M ] is a barrier C on M .

Claim 1 For every a ∈ c00,

‖a · x ¹ M‖K = sup
s∈F [M ]

|
∑
n∈s

a(n)| = sup
s∈C

|
∑
n∈s

a(n)|. (8)

Before we show this Claim, let us see how it implies (b): Let π : N → M be the unique order-preserving
mapping from N onto M , and we set B = π−1”C = {π−1”s : s ∈ C}, then it is easy to show from (8) that

‖a · e‖1B = sup
s∈C

|
∑
n∈s

aπ(n)| = ‖
∑

n∈M

aπ(n)xπ(n)‖K .

We prove now the Claim. First of all we observe that the last equality in (8) follows from Proposition 5 (b).
To show the first one, notice that for a given ξ ∈ K and a ∈ c00

|(a · x ¹ M)(ξ)| = |(a ¹ (M ∩ supp ξ) · x)(ξ)| = |
∑

n∈supp ξ∩M

an| ≤ sup
s∈F [M ]

|
∑
n∈s

a(n)|.

Now pick u ∈ F [M ] such that
sup

t∈F [M ]

|
∑
n∈t

a(n)| = |
∑
n∈u

a(n)|. (9)
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As F [M ] is hereditary, (9) implies that a ¹ u has constant sign. Find ξ ∈ K such that supp ξ ∩M = u.
Then

|(a · x ¹ M)(ξ)| = |(a ¹ (supp ξ ∩M) · x)(ξ)| = |
∑
n∈u

a(n)|

because x consist on characteristic functions.
(b) implies (a): Fix an arbitrary pre-compact family F , and let

K = F ⊆ FIN.

This is a compact family, because F is pre-compact. Consider the sequence x = (xn) of C(K) defined for
n ∈ N and s ∈ K by

xn(s) = 1 iff n ∈ s, and xn(s) = 0 otherwise.

Observe that xn = 0 or ‖xn‖K = 1 for every n. Now if there is some M such that xn = 0 for every
n ∈ M , then we have clearly that F [M ] = {∅} that is the closure of the 0-uniform family {∅}. So, we
may assume that x is infinite, and hence normalized. By (b) there is an infinite set M such that x ¹ M
is 1-equivalent to the natural basis of X1

G , where G is the closure of a barrier on N. Let π : N → M
be the unique order-preserving onto mapping, and set H = π”G. Note that H is hereditary. Since the
corresponding sequences are equivalent, we have that for every a ∈ c00 ¹ M

‖a · x‖K = ‖π−1(a)‖1G = sup
t∈G

|〈π−1(a), χt〉| = sup
s∈H

|〈a, χs〉|. (10)

Fix s ∈ F [M ]. Observe that ‖χs · x‖K = |s|, because s = t ∩M for some t ∈ F , and so

|s| ≥ ‖χs · x‖K ≥ |(χs · x)(t)| = |s|.

By (10), we can find u ∈ H such that |〈χs, χu〉| = |s|. This clearly means that s ⊆ u, so, since H is
hereditary, s ∈ H. We have just shown that

F [M ] ⊆ H. (11)

Suppose now that s ∈ H is non-empty. Let t = π”s ∈ G. Notice that, by (10),

|s| = |t| = ‖
∑
n∈t

en −
∑

n/∈t

1
2n+1

en‖1G = ‖
∑
n∈s

xn −
∑

n∈M\s

1
2π−1(n)+1

xn‖K .

This means that s ∈ F [M ]. So,
H \ {∅} ⊆ F [M ]. (12)

Let N ⊆ M be arbitrary such that M \ N is infinite. Note that ∅ ∈ F [N ]: Fix n ∈ M \ N . Then
{n} ∈ F [M ], so ∅ = {n} ∩N ∈ F [M ][N ] = F [N ]. So,

H[N ] ⊆ F [M ][N ] = F [N ] ⊆ H[N ].

This gives (a): We know that H is the closure of a uniform barrier B on M , so, by Proposition 2 (c),
F [N ] = H[N ] is the closure of B ¹ N . ¥

We start now the proof of Theorem 2 by analyzing first the case of pre-compact families.

Lemma 5 Suppose that F ⊆ FIN is a pre-compact family. Then there is an infinite set M such that F [M ]
is the closure of a uniform barrier on M .
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PROOF. We split the proof into two cases:
CASE 1. F is compact and hereditary. Let α = r(F), and let B be an arbitrary α + 1-uniform family on
N. Color each s ∈ B by either 0 if there is some t ∈ F such that s v t or 1 otherwise. By the Ramsey
property of B there is some N such that B ¹ N is monochromatic. Observe that the constant color there has
to be 1 since otherwise B ¹ N ⊆ F = F (as F is hereditary) and hence α = r(F) ≥ r(B ¹ N) = α + 1,
a contradiction. Define ϕ : B ¹ N → F by choosing a v-maximal ϕ(s) ∈ F such that ϕ(s) v s.
Use Corollary 2 to find M ⊆ N such that ϕ”(F ¹ M) is a uniform barrier B on M . We claim that
F ¹ M = B ¹ N : Suppose that t ∈ F ¹ M . Let s = ιB(t ∪ (M/t)). As the color of s is 1, t v s, so,
t v ϕ(s), by maximality of ϕ(s). Hence t ∈ B ¹ N . The inverse inclusion is trivial.
CASE 2. F arbitrary pre-compact family. By case 1 applied to the compact hereditary family G = F⊆ there
is some M and some uniform barrier B on M such that G[M ] = B. First we have that F [M ] ⊆ G[M ] = B.
Now we show that

B ⊆ F [M ] :

Fix s ∈ B. Then s ∈ G[M ], so there is t ∈ G such that s = t ∩M . Hence there is u ∈ F such that t ⊆ u,
and therefore s ⊆ u ∩M ∈ F [M ]. As F [M ] ⊆ C, there is s̄ ∈ B such that s ⊆ u ∩M v s̄. This means,
by the Sperner property of B, that s = u ∩M = s̄, and so s ∈ F [M ]. Finally, use Proposition 2 to find
N ⊆ M such that B ¹ N = B[N ]. Then we have that

B ¹ N = B[N ] ⊆ F [N ] ⊆ B[N ] = B ¹ N,

as demanded. ¥

We are ready to give a proof of Theorem 2.
PROOF. Fix F ⊆ FIN. Let

G = FIN \ F⊆.

We apply Galvin’s Lemma to it to obtain an infinite M ⊆ N such that either
(a) G ¹ M contains a barrier on M , or else,
(b) G ¹ M = ∅.

Suppose that (a) holds. Then we claim that F [M ] is pre-compact. Let N ⊆ M be arbitrary infinite

set. Since G ¹ M contains a barrier on M there is s ∈ G ¹ N , i.e., s /∈ (F⊆) ¹ M . Since (F⊆) ¹ M is

hereditary, we obtain that N /∈ (F⊆) ¹ M , hence N /∈ F [M ]. Now we apply Lemma 5 to find N ⊆ M
such that F [N ] is the closure of a uniform barrier on N .

If (b) holds, then it is clear that M [<∞] ⊆ F⊆. ¥

Remark 3 (a)

3.2. Rosenthal’s `1-theorem

In this subsection we give a proof of Rosenthal’s `1-theorem [27] using the techniques introduced so far.
Indeed we are going to see that this dichotomy is in fact closely related to the dichotomy appearing in
Theorem 2 above, where the only difference is in replacing families of finite sets by ordered families of
finite sets of doubletons. In order to make our approach more transparent we start with a topological
characterization of when a given sequence x is weakly-null. Later on, we shall apply a similar idea to
characterize weakly-Cauchy sequences.

Definition 9 Let x be a sequence in a Banach space X . We define W0(x) ⊆ FIN as follows:

s ∈ W0(x) iff there is x∗ ∈ BX∗ such that |x∗(xn)| ≥ 1
2min s

for every n ∈ s.
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Proposition 6 (a) W0(x ¹ M) = (W0(x))[M ],
(b) W0(x) is hereditary, so W0(x ¹ M) = (W0(x)) ¹ M .
(c) A sequence x is weakly-null iff W0(x) is pre-compact.

PROOF. Since (a) and (b) are straightforward, we concentrate on (c). Suppose that x is not weakly-
null. Then there is some x∗ ∈ BX∗ and ε > 0 such that A = {n : |x∗(xn)| ≥ ε} is infinite. Then
{n ∈ A : n ≥ n0} is clearly in the closure of W0(x), for n0 such that 2n0ε ≥ 1. Suppose that x is
weakly-null. Let A be in the closure of W0(x). Fix (sn) ⊆ W0(x) such that sn → A. Let (x∗n)n ⊆ BX∗

be such that |x∗n(xm)| ≥ 2−min sn for every m ∈ sn and every n. Since sn → A, we assume that
min sn = min A = n0 for every n. We assume also that (x∗n)n is weak∗-convergent with limit x∗ ∈ BX∗

(by Alaoglu’s Theorem). It is easy to see that |x∗(xn)| ≥ 2−n0 for every n ∈ A, so, since x is weakly-null,
A must be finite. ¥

Definition 10 Let (N[2])[≤∞] ⊆ P(N[2]) be the set of block sets of doubletons , i.e. the set of those
A ⊆ P (N[2]) such that for every s, t ∈ A, either s < t or t < s. If we consider N[2] with its discrete
topology, then (N[2])[≤∞] is a closed subspace of P(N[2]), this with its product topology, so (N[2])[≤∞] is a
compact space. Let

FIN2 = {A ∈ (N[2])[≤∞] : A is finite}.
We say that U ⊆ FIN2 is pre-compact iff U ⊆ FIN2. We say that U is hereditary iff A ⊆ B ∈ U implies
that A ∈ U . Given U ⊆ FIN2 and M ⊆ N infinite, we define

U [M ] ={A ∩M [2] : A ∈ U}
U ¹ M =U ∩ P(M [2])

U⊆ ={B ∈ FIN2 : B ⊆ A ∈ U}.
Given a sequence x in a Banach space, and U ⊆ FIN2, we define the sequence xU indexed by U by

xs = xmin s − xmax s.

for every s ∈ U . Define now Wc(x) ⊆ FIN2 by

A ∈ Wc(x) iff there is x∗ ∈ BX∗ such that |x∗(xs)| ≥ 1
2min∪A

for every s ∈ A.

Definition 11 Recall that a sequence x in a Banach space is called weakly-Cauchy iff for every x∗ ∈ BX∗

the corresponding numerical sequence x∗(x) is Cauchy.

We give a characterization of the fact of being weakly-Cauchy in terms of pre-compactness of Wc(x).

Proposition 7 (a) Wc(x ¹ M) = Wc(x)[M ].
(b) Wc(x) is hereditary, hence Wc(x ¹ M) = (Wc(x)) ¹ M .
(c) x is weakly-Cauchy iff Wc(x) is pre-compact.

PROOF. Again, only (c) requires a proof. Suppose that x is not weakly-Cauchy. Then there is A ∈
(N[2])[∞] and ε > 0 such that |xs| ≥ ε for every s ∈ A. Let n0 be such that ε2n0 ≥ 1. Then {s ∈ A :
min s ≥ n0} is infinite and in the closure of G(x). Suppose now that x is weakly-Cauchy. Let A be limit
point of G(x). Fix (An)n ⊆ Wc(x), and x∗n ∈ BX∗ such that |x∗n(xs)| ≥ 2−min∪An for every s ∈ An

and every n. As An → A, we may assume that min A = min An for every n. We assume also that (x∗n) is
weak∗-convergent with limit x∗. Then |x∗(xs)| ≥ 2−min∪A for every s ∈ A. Since x is weakly-Cauchy,
A is finite, as desired. ¥

The combinatorial theory of FIN2 is very similar to that of FIN. We only present here the following
analogue to Theorem 2.
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Lemma 6 For every U ⊆ FIN2 there is M ⊆ N infinite such that either
(a) U [M ] is pre-compact or else,
(b) FIN2 ¹ M ⊆ U⊆.

PROOF. Let

G ={
⋃

A : A ∈ FIN2 \ U⊆}.

By Galvin’s Lemma, there is M such that either G ¹ M contains a barrier on M or else G ¹ M = ∅.
Suppose first that G ¹ M contain a barrier on M . We claim that in this case U [M ] is pre-compact. Indeed
we show that U

⊆
[M ] is compact: Let A ∈ (M [2])[∞], and set N =

⋃
A ⊆ N . As G ¹ M contain a barrier,

there is s ∈ G ¹ M such that s v N . Let B ∈ FIN2 \ U⊆ such that s =
⋃

B. We note that U
⊆

is also

hereditary, so A /∈ U
⊆

, because B ⊆ A and B /∈ U
⊆

.
Suppose now that G ¹ M = ∅. It is clear that, by definition of G, we have that FIN2 ¹ M ⊆ U . ¥
As a consequence we obtain the following. Its proof is very similar to that of Corollary 3.

Corollary 5 Suppose that U0,U1 ⊆ FIN2 and M ⊆ N are such that

FIN2 ¹ M ⊆ {A0 ∪A1 : A0 ∈ U0, A1 ∈ U1}.

Then there is infinite N ⊆ M and i = 0, 1 such that FIN2 ¹ M ⊆ Ui
⊆

.

PROOF. The mapping FIN2 × FIN2 → FIN2, (A,B) 7→ A ∪ B is continuous, so the desired result
follows from Lemma 6. ¥

Theorem 4 (Rosenthal’s `1-Theorem) Suppose that x is a bounded sequence in a Banach space X .
Then there is infinite M such that either
(a) x ¹ M is weakly-Cauchy or else
(b) x ¹ M is equivalent to the natural basis of `1.

PROOF. We apply Proposition 6 to Wc(x) to obtain some infinite set M such that either Wc(x)[M ] =
Wc(x ¹ M) (by Proposition 7) is pre-compact or else Wc(x ¹ M) = FIN2 ¹ M . In the first case, we
have, by Proposition 7 (c) that x ¹ M is weakly-Cauchy. Now suppose that Wc(x ¹ M) = FIN2 ¹ M . Let
N = {mk}k≥2, where {mk}k≥0 is the increasing enumeration of M . Notice that for every A ∈ FIN2 ¹ N
we have that {{m0,m1}} ∪ A ∈ Wc(x ¹ M), so there is x∗ ∈ BX∗ such that |x∗(xs)| ≥ ε for every
s ∈ A, where ε = 2−m0 .

Now we claim that there is infinite P ⊆ N and two real numbers d0 < d1 such that for every A ∈
FIN2 ¹ P there is x∗ ∈ BX∗ such that

x∗(xmin s) ≤ p0 and x∗(xmax s) ≥ p1 for every s ∈ A :

Let D be a finite ε/3-net of the interval [− supn ‖xn‖, supn ‖xn‖]. We define, for (d0, d1) ∈ D[2], the sets

U(d0,d1) ={A ∈ FIN2 ¹ N : there is x∗ ∈ BX∗ with x∗(xmin s) ≤ d0 and x∗(xmax s) ≥ d1 ∀s ∈ A}.
Observe that every A ∈ FIN2 ¹ N is the union of elements of U(d0,d1)’s, and that each U(d0,d1) is hereditary.
By Corollary 5 there is P ⊆ N and (d0, d1) ∈ D[2] such that FIN2 ¹ P = U(d0,d1)[P ] = U(d0,d1) ¹ P , as
desired.

Now set Q = {p2k+1}k, where {pk}k is the increasing enumeration of P . We claim that for every
disjoint s, t subsets of N there is x∗ such that

x∗(xn) ≤ d0 and x∗(xm) ≥ d1 for every n ∈ s and m ∈ t:
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This follows from the fact that for every disjoint and finite s, t ⊆ P there is A ∈ FIN2 ¹ N such that
s = P ∩ {min u : u ∈ A} and t = P ∩ {max u : u ∈ A}.

Finally, the proof will be finished if we show the following: For every a ∈ c00 ¹ P ,

‖a · x‖X ≥ d1 − d0

2
‖a‖`1 : (13)

Fix a ∈ c00 ¹ P . Let

s0 ={n ∈ supp a : a(n) > 0}
s1 =supp a \ s0.

Since s0 and s1 are disjoint, we can find x∗0, x
∗
1 ∈ BX∗ such that for every i 6= j = 0, 1,

x∗0(xn) ≤d0 and x∗0(xm) ≥ d1 for every n ∈ s0 and m ∈ s1

x∗1(xn) ≤d0 and x∗1(xm) ≥ d1 for every n ∈ s1 and m ∈ s0.

We compute:

|(x∗1 − x∗0)(a · x)| =|(x∗1 − x∗0)(a ¹ s0 · x) + (x∗1 − x∗0)(a ¹ s1 · x)| =
=

∑
n∈s0

a(n)(x∗1 − x∗0)(xn) +
∑
n∈s1

a(n)(x∗1 − x∗0)(xn) ≥

≥(d1 − d0)
∑
n∈s0

a(n) + (d0 − d1)
∑
n∈s1

a(n) = (d1 − d0)(
∑
n∈s0

a(n)−
∑
n∈s1

a(n)) =

=(d1 − d0)‖a‖`1 .

Since (x∗1 − x∗0)/2 ∈ BX∗ , we obtain (13). ¥

3.3. Matching pairs of finite sets from a given barrier

When trying to solve a given partial unconditionality problem that typically calls for the existence if a
constant that measures the extent of this unconditionality, one is lead to consider a new kind of combinatorial
problems about barrier. Roughly speaking, one typically ends up with an assignment that gives a subset ts
to every element s of a barrier and one is required to find (among other things) a couple s and u of elements
of the barrier for which we assigned the same subset t and such that the intersection of s and u is t.
In this section we consider this purely combinatorial problem leaving its exact relationship to the partial
unconditionality problem to some later point. We should point out that the first place where a “matching
Lemma” appears explicitly is in [10], where it is used for the similar purpose of getting results about partial
unconditionality. We shall show that, in particular, the matching problem has a positive solution if the
chosen sets ts lie in another barrier, while in general the answer is negative, but instead we prove that there
are two elements s, u of the barrier such that ts is initial part of tu and the intersection of s and u is ts.

Proposition 8 Suppose that B and C are two barriers on M and ϕ : B → C is an internal mapping. Then
there is an infinite subset N of M and a mapping σ : B ¹ N → B such that:

χN · σ = ϕ ¹ (B ¹ N) = ϕ ◦ σ.

In particular, for every s ∈ B ¹ N , there is t ∈ B (not necessarily a subset of N ) such that
(a) ϕ(s) = ϕ(t), and
(b) s ∩ t = ϕ(s).
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PROOF. First of all, color each t ∈ C by 1 iff there is s ∈ B such that ϕ(s) = t, and 0 otherwise. By
the Ramsey property of C there is some P ⊆ M such that C ¹ P is monochromatic, with color i = 0, 1.
As for every s ∈ B ¹ P , ϕ(s) ∈ C ¹ P is colored by 1, i must be equal to 1. Define now ψ : C ¹ P → B
by ψ(t) ∈ B is such that ϕ(ψ(t)) = t. Apply Lemma 3 to ψ to get some N ⊆ P such that ψ(t) ∩N ⊆ t
for every t ∈ C ¹ N . Observe that this is equivalent to say that ψ(t) ∩ N = t (t ⊆ ψ(t) because
t = ϕ(ψ(t)) ⊆ ψ(t) by the properties of ϕ). Finally define σ : B ¹ N → B by σ(s) = ψ(ϕ(s)) for each
s ∈ B ¹ N . Then, for s ∈ B ¹ N we have that

ϕ(σ(s)) = ϕ(ψ(ϕ(s))) = ϕ(s),

and
σ(s) ∩N = ψ(ϕ(s)) ∩N = ϕ(s),

as desired. ¥
In the next we use the notation f v g, for f, g : B → FIN, to denote that f(s) v g(s) for every s ∈ B.

Corollary 6 Suppose that B is a barrier on M and that ϕ : B → FIN is an internal mapping. Then there
is an infinite subset N of M and σ : B ¹ N → B such that

χN · σ = ϕ ◦ σ v ϕ.

In particular, for every s ∈ B ¹ N there is t ∈ B such that
(a’) ϕ(t) v ϕ(s), and
(b’) s ∩ t = ϕ(t).

PROOF. Let G be the set of v-minimal elements of ϕ”B. Observe that G ¹ P 6= ∅ for every P ⊆ M : Fix
such P , and let s ∈ B ¹ P . Then, there must be some t ∈ G such that t v ϕ(s). Such t belongs to G ¹ P .
As G is a thin family, by Theorem 1, there is some P ⊆ M such that C = G ¹ P is a barrier on P . Now
define ψ : B ¹ P → C by picking for every s ∈ B ¹ P some ψ(s) ∈ C such that ψ(s) v ϕ(s) (well defined
by minimality of elements of G). Define also $ : B ¹ P → B by choosing for s ∈ B ¹ P some $(s) ∈ B
such that ψ(s) = ϕ($(s)). Now we apply Lemma 3 to $ to obtain R ⊆ P such that

$(s) ∩R ⊆ s for every s ∈ B ¹ R. (14)

Finally we apply previous Proposition 8 to ψ ¹ (B ¹ R) to obtain N ⊆ R and σ̄ : B ¹ N → B ¹ R with the
property that

σ̄(s) ∩N = ψ(s) and ψ(σ̄(s)) = ψ(s) for every s ∈ B ¹ N . (15)

Define σ = $ ◦ σ̄. We claim that σ has the desired properties. Fix s ∈ B ¹ N . Then, by (14) and (15),

ϕ(σ(s)) = ϕ($(σ̄(s))) = ψ(σ̄(s)) = ψ(s) v ϕ(s),

and hence

ϕ(σ(s)) ⊆ σ(s) ∩N = ($(σ̄(s)) ∩R) ∩N ⊆ σ̄(s) ∩N = ψ(s) = ϕ(σ(s)),

as desired. ¥
The dual result of the previous Corollary:

Corollary 7 Suppose that B is a barrier on M and that ϕ : B → FIN is an internal mapping. Then there
is an infinite subset N of M and σ : B ¹ N → B such that

χN · σ = ϕ ¹ (B ¹ N) v ϕ ◦ σ.

In particular, for every s ∈ B ¹ N there is t ∈ B such that
(a’) ϕ(s) v ϕ(t), and
(b’) s ∩ t = ϕ(s).
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PROOF. Let P ⊆ M be such that ϕ is uniform when restricted to B ¹ P (Proposition 4). Let G be the set
of v-maximal nodes of ϕ”(B ¹ P ). This is clearly a thin family. Moreover, G ¹ Q 6= ∅ for every Q ⊆ P :
Let s0 ∈ B ¹ Q, then if ϕ(s0) ∈ G we are done. Otherwise, there is t0 ∈ G, ϕ(s0) @ t0. Let s̄1 ∈ B ¹ P be
such that t0 = ϕ(s̄1). Set n0 = min(t0 \ϕ(s0)). Find s1 ∈ B ¹ P , s1 v (s̄1∩ [0, n0))∪ (Q∩ [n0,∞)). By
maximality of elements of B, s̄1 v s1. By uniformity of ϕ, min(s1 \ s̄1) ∈ ϕ(s1), and so ϕ(s0) @ ϕ(s1),
and ϕ(s1) ⊆ Q. If ϕ(s1) ∈ G, then we are done; otherwise we can keep producing s1, . . . , sk such that
ϕ(si−1) @ ϕ(si) and ϕ(si) ⊆ Q (1 ≤ i ≤ k). There must be some k such that sk ∈ G because otherwise,
we find an infinite set

⋃∞
k=0 ϕ(sk) in the closure of ϕ”B which is included in B ⊆ FIN, a contradiction.

Find Q ⊆ P such that C = B ¹ Q is a barrier on Q. Let

D = {s ∪ u : s ∈ B ¹ Q, u ∈ C such that ϕ(s) v u and s < (u \ ϕ(s))}.

It is easy to see that D is a front on Q. So, let R ⊆ Q be such that D ¹ R is a barrier on R. Observe that
every t ∈ D has attached s(t) ∈ B ¹ Q and u(t) ∈ C ¹ Q such that t = s(t) ∪ u(t) with s(t) v t. Define
$ : D ¹ R → B by picking $(t) ∈ B such that ϕ($(t)) = u(t). Find S ⊆ R such that $(t) ∩ S ⊆ t for
every t ∈ D ¹ S. Apply Proposition 8 to u : D ¹ S → C ¹ S to find T ⊆ S and σ̄ : D ¹ T → D ¹ S such
that u ◦ σ̄ = u, and σ̄(t) ∩ T = u(t) for every t ∈ D ¹ T .

For each s ∈ B ¹ T choose us ∈ C ¹ T such that ϕ(s) v us and s < (us/ϕ(s)), and define
σ : B ¹ T → B ¹ S by σ(s) = σ̄(s ∪ us). Then for every s ∈ B ¹ T ,

ϕ(σ(s)) = ϕ($(σ̄(s ∪ us))) = u(σ̄(s ∪ us)) = u(s ∪ us) = us w ϕ(s),

so
ϕ(s) ⊆ σ(s) ∩ s = ($(σ̄(s ∪ us)) ∩N) ∩ s ⊆ σ̄(s ∪ us) ∩ s ⊆ us ∩ s = ϕ(s). (16)

Finally, apply Lemma 3 to σ to get N ⊆ T such that σ(s) ∩N ⊆ s for every s ∈ B ¹ N . Then, by (16),

ϕ(s) ⊆ σ(s) ∩N ⊆ σ(s) ∩ s = ϕ(s).

¥
We finish this subsection, presenting the following well-known structural result of Pudlak-Rödl [26]

concerning mappings defined on barriers.

Definition 12 Suppose that B is a barrier on M , and suppose that f : B → A, A is an arbitrary set. f is
called canonical if there is a barrier C on M , f̄ : C → A and an internal ϕ : B → C such that
(a) f̄ is 1-1, and
(b) f = f̄ ◦ ϕ.

Theorem 5 (Pudlak-Rödl) For every barrier B on M and every f : B → A, A an arbitrary set, there is
N ⊆ M such that f is canonical when restricted to B ¹ N .

In the next section we will use the following consequence of Pudlak-Rödl’s Theorem. Before we intro-
duce some useful notation: Given f : F → Y , where F ⊆ FIN and Y is an arbitrary set, and t ∈ FIN, we
define ft : Ft → N by ft(s) = f(t ∪ s).

Corollary 8 Suppose that B is a barrier on M , f : B → R. Then for every ε > 0 there is an infinite
subset N of M such that one of the following two conditions happens:
(a) osc(f ¹ (B ¹ N)) ≤ ε, i.e. |f(s)− f(s̄)| ≤ ε for every s, s̄ ∈ B ¹ N .
(b) For every integer k there is a finite subset t of N such that osc(ft ¹ (Bt ¹ N)) ≤ ε and |ft(s)| > k|t|
(s ∈ Bt ¹ N ).

PROOF. We may assume (by the Ramsey property of B) that f : B → R+. Let (In)n∈N be any partition
of R+ into disjoint intervals In = [an, bn) of diameter at most ε. Let g : B → N be defined by g(s) = n
iff f(s) ∈ In. By Pudlak-Rödl Theorem there is N0 ⊆ M such that g restricted to B ¹ N0 is a canonical
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mapping. So, fix a barrier C on N0, σ : B ¹ N0 → C (σ(s) ⊆ s) and a 1-1 mapping ḡ : C → N such
that g = ḡ ◦ σ. If C = {∅}, then g is clearly constant, and so we obtain (a). Suppose that C 6= {∅}. Find
N ⊆ N0 such that the mapping $ : B → c00 defined by $(s) = χ{max σ(s)} and σ (i.e. χσ) are uniform
on B ¹ N . We claim that N satisfies (b): Fix an integer k. Let s0 ∈ B ¹ N and t0 = s0 ∩ [0,max σ(s0)).
By definition, $(s0)(maxσ(s0)) = 1. So, since σ and $ are uniform we have that

σ(t0 ∪ u) = (σ(s0) \ {max σ(s0)}) ∪ {min u} (u ∈ Bt0 ¹ N).

Using this and the fact that ḡ is 1-1 we may find u0 ∈ Bt0 ¹ N such that

aḡ(σ(t0∪u0)) > k(|t0|+ 1).

Finally set t = t0 ∪ {min u0}. Then, by Lipschitzness of σ, we have that for every u ∈ Bt ¹ N , σ(t∪ u) =
σ(t0 ∪ u0), so g(t ∪ u) = g(t0 ∪ u0) and hence

f(t ∪ u) ≥ ag(t∪u) = ag(t0∪u0) > k(|t0|+ 1) = k|t|.
¥

3.4. Mapping from barriers into c0

In this subsection we continue with our study of mapping defined on barriers but we make a weaker restric-
tion on the nature of their ranges.

Definition 13 Let F ⊆ FIN and ϕ : F → c0 be given.
(a) ϕ is called semi-Lipschitz iff for every t ∈ FIN

{ϕ(s) ¹ t : t v s, and s ∈ F} is finite. (17)

(b) ϕ is called semi-uniform iff for every t ∈ FIN

{ϕ(s)(min(s/t)) : t v s, and s ∈ F} is finite. (18)

We extend now the corresponding definitions of the beginning of this section.
(c) ϕ is called Lipschitz iff for every t ∈ FIN

|{ϕ(s) ¹ t : t v s, and s ∈ F}| = 1. (19)

(d) ϕ is called uniform iff for every t ∈ FIN

|{ϕ(s)(min(s/t)) : t v s, and s ∈ F}| = 1. (20)

(e) ϕ is called internal iff supp ϕ(s) ⊆ s for every s ∈ F .
(f) ϕ is called a L-mapping iff it is internal and Lipschitz.
(g) ϕ is called a U-mapping iff it is internal and uniform.

Remark 4 (a) Observe that the above conditions (17), (18), (19), and (20) is non-vacuous if t ∈ Fv.
(b) We have the following implications:

uniform ⇒ semi-uniform ⇒ semi-Lipschitz, and

Lipschitz ⇒ semi-Lipschitz.

(c) If ϕ : F → c0 is a L-mapping, then we can naturally extend it to the compact family Fv just by
declaring ϕ(t) = ϕ(s) ¹ t where s ∈ B is such that t v s. Note that the extension is continuous, so if in
addition F is pre-compact, ϕ”(Fv) is a weakly-compact subset of c00.
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We have the following reverse implications of (b) before:

Proposition 9 (a) For every barrier B on M and every semi-Lipschitz mapping ϕ : B → c00 there is
N ⊆ M such that ϕ is a Lipschitz mapping when restricted to B ¹ N .
(b) For every barrier B on M and every semi-uniform mapping ϕ : B → c00 there is N ⊆ M such that ϕ
is a uniform mapping when restricted to B ¹ N .

PROOF. (a): Find a fusion sequence (Mk) of subsets of M such that for every k we have that for every
t ⊆ {m0, . . . , mk}, t ∈ Bv the mapping

ft : Bt ¹ Mk+1 → c00

u 7→ ft(u) = ϕ(t ∪ u) ¹ t.

is constant. Observe that this is possible because the range of ft is finite Bt is a barrier on M/t. Then the
fusion set M∞ of (Mk) has the desired property: Fix t ∈ B ¹ M∞

v
. Let k be the first integer such that

t ⊆ {m0, . . . , mk}. Observe that, by definition of M∞, we know that Bt ¹ M∞ ⊆ Bt ¹ Mk+1, so for every
s, u ∈ B ¹ M∞, if t v s, u, then

ϕ(s) ¹ t = ft(s \ t) = ft(u \ t) = ϕ(u) ¹ t,

that proves that ϕ restricted to B ¹ M∞ is Lipschitz.
(b): The proof is quite similar than for (a), so we only sketch it: Find a fusion sequence (Mk) of subsets

of M such that for every k we have that for every t ⊆ {m0, . . . , mk}, t ∈ Bv the mapping

gt : Bt ¹ Mk+1 → R
u 7→ gt(u) = ϕ(t ∪ u)(min u).

is constant. Then the fusion set M∞ has the desired property. ¥

Definition 14 Given ε ↓ 0, let In(ε) = {kεn : k ∈ Z}. We define τε : c0 → c0 by τε(a)(n) = kεn ∈
In(ε) iff

|k|εn ≤ |a(n)| < |k + 1|εn.

We say that ϕ : F → c0 is ε-Lipschitz iff τε ◦ ϕ is Lipschitz. We say that ϕ is almost-Lipschitz if for every
ε and every M there is N ⊆ M such that ϕ is ε-Lipschitz when restricted to F ¹ N .

Remark 5 (a) τε preserves the supports, and τε(a ¹ s) = τε(a ¹ s).
(b) If τε(a) = πε(b), then |a(n)− b(n)| ≤ εn for every n.
(c) For every bounded ϕ : F → c0, the corresponding composition τε ◦ ϕ is semi-Lipschitz: Let λ =
sups∈F ‖ϕ(s)‖∞. For every t ∈ F we have that

{τε(ϕ(s)) ¹ t : s ∈ F} ⊆ {a ∈ c00 : supp a ⊆ t, and a(n) ∈ In(ε) ∩ [−λ, λ] for every n},
and {a ∈ c00 : supp a ⊆ t, and a(n) ∈ In(ε) ∩ [−λ, λ] for every n} is a finite set.
(d) If ϕ : F → c0 is ε-Lipschitz, then for every t ∈ F and every s, u ∈ F such that t v s, u

|ϕ(s)(n)− ϕ(u)(n)| ≤ εn for every n ∈ t :

As τε ◦ ϕ is Lipschitz, τε(ϕ(s)) ¹ t = τε(ϕ(u)) ¹ t, so, by (a),

τε(ϕ(s) ¹ t) = τε(ϕ(u)) ¹ t = τε(ϕ(u) ¹ t).

And by (b) we are done.
(e) If ϕ is Lipschitz, then ϕ is ε-Lipschitz for every ε, and hence almost-Lipschitz.
(f) If ϕ is almost-Lipschitz then for every ε > 0 there is N such that for every t ∈ F ¹ N and every
s, u ∈ F ¹ N with t v s, u we have that

‖ϕ(s) ¹ t− ϕ(u) ¹ t‖`1 ≤ ε.
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Corollary 9 Suppose that B is a barrier on M and ϕ : B → c0 is bounded. Then
(a) ϕ is almost-Lipschitz.
(b) For every ε ↓ 0 there is an infinite set N ⊆ M and a Lipschitz $ : B ¹ N → c0 such that for every
s ∈ B ¹ N

|ϕ(s)(n)−$(s)(n)| ≤ εn for every n.

PROOF. (a) and (b): τε ◦ϕ is semi-Lipschitz, so, by Proposition 9 (a), there is N ⊆ M such that τε ◦ϕ is
Lipschitz restricted to B ¹ N , i.e. ϕ is ε-Lipschitz when restricted to B ¹ N , and |τε(ϕ(s))(n)−ϕ(s)(n)| ≤
εn for every s ∈ B and every n. ¥

In the next given an infinite N ⊆ N and n ∈ N , n+ denotes the immediate successor of n in N defined
by n+ = min(N/n).

Proposition 10 Let B be a uniform barrier on M and ϕ : B → c0 with weakly-pre-compact range. Then
for every ε ↓ 0 there is an infinite set N ⊆ M such that χN · (τδ ◦ ϕ) is internal i.e., for every s ∈ B ¹ N
and n ∈ N \ s

|ϕ(s)(n)| ≤ δn,

and where δ is defined by δmin N = ε0, and δn+ = εn for every n ∈ N .

PROOF. For k ∈ N define ϕk : B → FIN for s ∈ B by

ϕk(s) = supp εk
ϕ(s)

which is an element of the pre-compact subset supp εk
(ϕ”B) of FIN. So ϕk fulfills the conditions for

Lemma 4 to be applied. So, there is some N ⊆ M such that for every n ∈ N and every s ∈ B ¹ N

ϕn(s) ∩ (N \ s) ⊆[0, n],
ϕ0(s) ∩ (N \ s) =∅.

Hence for every s ∈ B ¹ N and every n+ ∈ N \ s, n+ /∈ ϕn(s), so |ϕ(s)(n+)| < εn, while if n =
min N /∈ s, |ϕ(s)(n)| < ε0. ¥

Corollary 10 For every ϕ : B → K with B a uniform barrier on M and K ⊆ c0 weakly-pre-compact
and every ε > 0 there is N ⊆ M such that for every s ∈ B ¹ N ,

‖ϕ(s) ¹ (N \ s)‖`1 ≤ ε.

PROOF. Apply previous Proposition 10 to a sequence ε ↓ 0 such that
∑

n εn < ε. ¥

The previous result gives the following consequence concerning weakly-null sequences. The earliest
result of this sort appearing in the literature seems Lemma 4.6 of [28].

Corollary 11 Suppose that x is a weakly-null sequence of a Banach space X , B is a barrier on some
infinite set M , and f : B → BX∗ , f(s) = x∗s . Then for every ε > 0 there is an infinite subset N of M such
that for every s ∈ B ¹ N

‖x∗s(x) ¹ (N \ s)‖`1 ≤ ε. (21)

PROOF. Apply Corollary 10 to the mapping s ∈ B 7→ x∗s(x) ∈ K(x) ⊆ c0. ¥
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Remark 6 By applying the previous Corollary to the simple case of B = N[1], we obtain the following:
(a) If for every n we pick x∗n ∈ BX∗ then there is N such that

‖x∗n(x) ¹ (N \ {n})‖`1 ≤ ε,

for all n ∈ N , i.e., (xn)n∈N and (x∗n) are ε-orthogonal.
(b) If x is a semi-normalized weakly-null sequence then for every ε > 0 there is a subsequence x ¹ M such
that

‖a · x ¹ M‖ ≥ (1− ε)( inf
n∈N

‖xn‖)‖a‖∞
for every a ∈ c00 ¹ M .

We finish with the following approximation result concerning U-mappings.

Proposition 11 Suppose that B is a barrier on M , and ϕ : B → K is a bounded mapping with weakly-
pre-compact range ⊆ c0.
(a) Suppose that ε = (εn) ↓ 0 is such that

∑
n>m

εn < εm for every m ∈ N. (22)

Then there is N ⊆ M and a U-mapping ψ : B ¹ N → c00 such that for every s ∈ B ¹ N

‖ψ(s)− ϕ(s) ¹ s‖`1 ≤ εmin s.

(b) For every ε > 0 there is N ⊆ M a U-mapping ψ : B ¹ N → c00 such that for every s ∈ B ¹ N

‖ψ(s)− ϕ(s) ¹ N‖`1 ≤ ε.

PROOF. Let λ = supa∈K ‖a‖∞. Choose for each n a finite subset In of [−λ, λ] that contains 0 and that
is εn/2-dense set. Now define an internal δ : B → c00 by for s ∈ B and n ∈ s,

δ(s)(n) = min s + |s ∩ [0, n)|
Observe that the natural composition ε ◦ δ defined by (ε ◦ δ)(s)(n) = ε(δ(n)) has the property that for
every s ∈ B

‖(ε ◦ δ)(s)‖`1 =
∑
n∈s

ε(δ(s)(n)) ≤ 2εmin s. (23)

Define the internal mapping ψ : B → c00 as follows: For s ∈ B and n ∈ s pick ψ(s)(n) ∈ Ik(s,n) such that

|ϕ(s)(n)− ψ(s)(n)| ≤ εk(s,n), (24)

and ψ(s)(n) = 0 if ϕ(s)(n) = 0. Notice that for every t ∈ B and every s, u ∈ B such that t v s, u we have
that

k(s, min(s \ t)) = min s + |s ∩ [0, min(s \ t))| = min t + |t| = min u + |u ∩ [0, min(s \ t))| =
=k(u, min(u \ t)),

so, by definition of ψ,
ψ(s)(min(s \ t)), ψ(u)(min(u \ t)) ∈ Imin t+|t|.

This implies that ψ is semi-uniform mapping because each In is finite. Then we apply Proposition 9 (b) to
ψ to obtain N ⊆ M such that ψ is uniform when restricted to B ¹ N . Then, for every s ∈ B ¹ N we have,
by (23) and (24), that

‖ψ(s)− ϕ(s) ¹ s‖`1 ≤
1
2
‖(ε ◦ δ)(s)‖`1 ≤ εmin s,

as desired.
To show (b), first use (a) for a fast decreasing sequence ε such that ε ≤ ε/2, and then apply Proposition

10 to the corresponding restriction of ϕ. ¥
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3.5. Mappings defined on infinite cubes and with countable range
By a “cube” we mean the set M [∞] of all infinite subsets of some infinite set M ⊆ N. In this section we
apply the theory developed so far to treat mappings with domains of the form M [∞] and with countable
range. We start with the following well known notions.

Definition 15 The topology on N[∞] is the induced by the topology on 2N, i.e. U ⊆ N[∞] is open iff for
every A ∈ U there is a finite s v A such that 〈s〉 ⊆ U , where

〈s〉 = {A ∈ N[∞] : s v A}.
Every cube M [∞] is a closed subset of N[∞]. We say that a mapping F : M [∞] → C, where C is an
arbitrary set, is continuous, if it is topologically continuous when M [∞] carries its natural topology and C
is with its discrete topology. We say that F is Borel if F is a topologically Borel mapping.

We recall the following well-known result of Galvin-Prikry [15].

Theorem 6 (Galvin-Prikry) Every Borel subset of N[∞] is Ramsey i.e., if X ⊆ N[∞] is Borel then there
is some infinite set M such that either M [∞] ⊆ X or else M [∞] ∩ X = ∅. ¥

This was latter extended independently by Ellentuck [11] and Silver [30] to analytic subsets, and in the first
case giving a topological interpretation of the Ramsey property.

Remark 7 The result of Nash-Williams in [25] stating that every barrier is Ramsey (see Definition 1) is
equivalent to the fact that clopen subsets of N[∞] are Ramsey. It is worth to point out that the Ramsey
property for open subsets is equivalent to Galvin’s Lemma.

The following shows that Borel mappings with countable range are, when restricted to some cube,
automatically continuous.

Proposition 12 Suppose that F : M [∞] → C, is a Borel mapping, C countable. Then there is N ∈ M [∞]

such that F is continuous when restricted to N [∞].

PROOF. Enumerate C = {ck}k∈N. Find a fusion sequence (Mk) consisting on subsets of M such that for
every k and every t ⊆ {m0, . . . ,mk} the coloring

Φt,k : M
[∞]
k+1 → {0, 1}
N 7→ 1 iff Φ(s ∪N) = ck (25)

is constant. It is clear that this can be done, as F−1{ck} ∩ 〈t〉 is Borel. Let M∞ = {mk}k∈N be the fusion
limit. We claim that F is continuous when restricted to M [∞]: Fix k ∈ N, and suppose that N ∈ M

[∞]
∞ is

such that F (N) = ck. Set t = N ∩ {m0, . . . ,mk}. Then N \ t ∈ Mk+1, and Φt,k(N) = 1, so F (P ) = ck

for every P ⊆ M∞ such that t v P . ¥

Corollary 12 Suppose that F : M [∞] → C is a Borel mapping with countable range C. Then there is
N ⊆ M , a barrier B on N and f : B → FIN such that F ¹ N [∞] = f ◦ ιB.

PROOF. First use Proposition 12 to obtain N ⊆ M such that F is continuous when restricted to N [∞].
Let

F = {s ∈ N [<∞] : F ¹ (〈s〉 ∩N) is constant}.
Let G be the set Fv−min of v-minimal elements of F . This is a thin family. So by Theorem 1, there is
P ⊆ N such that G ¹ N is either a barrier on P or empty. The second possibility is impossible since it
implies thatF ¹ N is also empty and this is contradictory with the continuity of F on P [∞]. Let B = G ¹ P .
Define f : B → C by f(s) = F (s ∪ (P/s)). It is easy to check now that F ¹ P [∞] = f ◦ ιB. ¥

We can extend now, using previous Corollary, most of the result proved for barriers.
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Corollary 13 Suppose that F : N[∞] → FIN is Borel. Then there is an infinite set M ⊆ N such that
χM · F ¹ M [∞] is internal, i.e. F (N) ∩M ⊆ N for every N ∈ M [∞].

PROOF. Apply Lemma 3 to the corresponding f given by Corollary 12 when applied to F . ¥

Corollary 14 Φ : M [∞] → FIN Borel and internal. Then there is an infinite set M and Σ : M [∞] →
M [∞] such that
(a) Φ ◦ Σ v Φ, and
(b) χM · Σ = Φ. ¥

Corollary 15 Φ : M [∞] → FIN Borel and internal. Then there is an infinite set M and Σ : M [∞] →
M [∞] such that
(a) Φ v Φ ◦ Σ, and
(b) χM · Σ = Φ. ¥

Corollary 16 Suppose that x is a weakly-null sequence of a Banach space X , Φ : N[∞] → BX∗ is an
arbitrary Borel mapping with countable range. Then for every ε > 0 there is an infinite M such that for
every N ⊆ M,

∑
n∈M\N |Φ(N)(xn)| ≤ ε. ¥

4. Partial unconditionality of weakly-null sequences
In this section we present the main results of this paper. We introduce and study an abstract notion of
partial unconditionality and relate them to some known ones. As we shall see, our abstract notion of partial
unconditionality will cover most the result about partial unconditionality found in the literature.

Definition 16 Following the corresponding notions for families of finite sets, for a given F ⊆ FIN × c00

such that if (t,a) ∈ F then t ⊆ supp a and M ∈ N[∞], we define the restriction F ¹ M and trace F[M ] of
F by

F ¹ M ={(s, a) ∈ F : supp a ⊆ M}.
F[M ] ={(s ∩M, a ¹ M) : (s, a) ∈ F}.

The following definition is motivated by a similar definition that appears in [10].

Definition 17 Let F ⊆ FIN× c00 be such that t ⊆ suppa for every (t,a) ∈ F, and let w : FIN× c00 →
R+ be an arbitrary mapping. A sequence x = (xn)n∈M indexed on a set N ⊆ N of a given Banach space
X is called (Fw, C)-unconditional (C > 0) iff for every pair (s, a) ∈ F ¹ M we have that

‖a ¹ t · x‖X ≤ Cw(t,a)‖a · x‖X . (26)

We call the mapping w a weight. The sequence x is Fw-unconditional iff it is (F, C)-unconditional for
some C > 0.

Define

C(Fw,x) = inf{C : there is a (Fw, C)-unconditional subsequence of x}
C(Fw) = sup{C(Fw, x) : x is a semi-normalized weakly-null sequence}.

Definition 18 Given F ⊆ FIN× c00, a weight w and a sequence x indexed on a set N and C > 0, define

XC(Fw,x) = {M ∈ N [∞] : x ¹ M is (Fw, C)-unconditional}.
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Remark 8 (a) It is easy to show that

C(Fw, x) = sup{C : XC(Fw, x) = ∅}. (27)

Observe that {C : XC(Fw, x) = ∅} is an initial interval of R+ (i.e. if C ′ < C and XC(Fw, x) = ∅, then
XC′(Fw, x) = ∅).
(b) For every C, if C(Fw, x) > C, then XC(Fw, x) = ∅. This fact will be used quite often.

We give some examples to illustrate the previous definition of Fw-unconditionality:

Example 1 (1) Let
Ftriv = {(suppa, a) : a ∈ c00}.

Then clearly C(Ftriv) = 1. We call this set the trivial set.
(2) Let

F∞ = {(t,a) ∈ FIN × c00 : t ⊆ supp a and |t| = 1},
and let w ≡ λ−1, with 0 < λ ≤ 1. Suppose that x is a semi-normalized sequence of X with λ =
infn∈N ‖xn‖. Then x is (F∞w , C)-unconditional iff

‖a · x‖X ≥ λ

C
‖a‖∞,

for every a ∈ c00. So, in Remark 6 (b) we have just proved that C(F∞w ,x) = 1 for those sequences x with
infn∈N ‖xn‖ = λ.
(3) Let

Fin = {(t,a) ∈ FIN × c00 : t v suppa}.
Then being Fin-unconditional just means being a basic sequence.
(4) Let

Fbi = {(t,a) ∈ FIN × c00 : t is an interval of supp a}.
Then (Fbi, 1)-unconditionality just means that the corresponding sequence is a bi-monotone basis.
(5) Let

U = {(s,a) ∈ FIN × c00 : s ⊆ supp a}.
Then F-unconditionality just means unconditionality.
(6) Suppose that x and y are two sequences of X and Y respectively. Let

w(t,a) =
‖a · x‖X

‖a · y‖Y
.

Then x is (Tw, C) unconditional iff the linear extension of the mapping yn 7→ xn defines a bounded
mapping with norm at most C from the closed linear span of y into the one of x.

4.1. Test of Fw-unconditionality
In this section we treat the problem of when a given weakly-null sequence have a subsequence that is F-
unconditional and show how to estimate the corresponding constant C. First, we start with the following
classical result that will illustrate the strategy we follow.

We give a proof of the classical result of Bessaga and Pełczyński [7] that states that every semi-
normalized weakly-null sequence has a basic subsequence. Observe that this is equivalent to say that
C(Iin,x) < ∞ for every semi-normalized weakly-null sequence x.

Proposition 13 Suppose that x is a semi-normalized w-null sequence. Then for every ε > 0 there is some
subsequence x ¹ M that is a 1+ε-basic sequence such that in addition ‖a·x ¹ M‖ ≥ (1−ε) infn∈N ‖xn‖·
‖a‖∞ for every a ∈ c00.
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PROOF. Fix a semi-normalized weakly-null sequence x of a Banach space X . The last required property
follows from Remark 6 (b). So, we assume, by going to a subsequence if needed, that for a fixed λ,
‖a · x‖ ≥ λ‖a‖∞ for every a ∈ c00. Now, as mentioned before, to be a (1 + ε)-basic sequence is
equivalent to be (Fin, 1+ε)-unconditional, where Fin is the set of pairs (t,a) ∈ FIN× c00 such that t is an
initial subset of supp a. Our goal is to show that the corresponding unconditional constant C(Fin, x) is 1.
Otherwise, let 1 < C < C(Fin). Then XC(Fin, x) = ∅ (see Remark 8). This means that for every infinite
M ⊆ N we can find (tM ,aM ) ∈ Fin ¹ M such that

‖aM ¹ tM · x‖ > C‖aM · x‖.

It is clear that we may assume, after normalizing, that ‖aM · x‖ = 1 (the set Fin is closed under multipli-
cation by scalars). Let

F = {supp aM : M ∈ N[∞]}.
The family G = F⊆−min of minimal set of F is clearly a Sperner family (see Definition 1), hence by
Theorem 1, there is an infinite set M such that G ¹ M is either a barrier on M or empty. The last possibility
is impossible since it implies that F ¹ M = ∅ and we know that supp aM ⊆ M . Set B = G ¹ M . We have
naturally defined the mapping s 7→ (ts,as, x∗s) from B into F ¹ M × SX∗ with the property that

|x∗s(as ¹ ts · x)| = ‖as ¹ ts · x‖ > C,

where ts = tM v s and as = aM for some M such that s = supp aM . The sequence x is seminormalized
and weakly-null, so the mapping s ∈ B 7→ x∗s(x) ∈ c0 is, by Corollary 9, almost-Lipschitz. Fix then and
infinite subset N ⊆ M such that for every t ∈ B ¹ N and every s, u ∈ B ¹ N such that t v s, u we have
that

‖x∗s(x) ¹ t− x∗u(x) ¹ t‖`1 ≤ (C − 1)λ.

Now fix s ∈ B, let v ∈ (Bts) ¹ (N/s), and set u = ts ∪ v ∈ B ¹ N . Then ‖x∗s(x) ¹ ts − x∗u(x) ¹ ts‖`1 ≤
(C − 1)λ, and so,

1 = ‖as · x‖ ≥|x∗u(as · x)| = |x∗u(as ¹ ts · x)| ≥ |x∗s(as ¹ ts · x)| − (C − 1)λ‖as ¹ ts‖∞ >

>C‖as · x‖ − (C − 1)‖as · x‖ = 1,

hence 1 > 1, a contradiction. ¥

The following result is the test of Fw-unconditionality. Again, the kind of assignment in the condition
(b) of the following lemma is modeled after similar ones appearing in [10], Theorem 12.

Lemma 7 Fix F ⊆ FIN × c00, a weight w, an arbitrary sequence x of a Banach space X , indexed on a
set N ∈ N[∞]. The following are equivalent:
(a) XC(Fw, x) = ∅.
(b) For every P ⊆ N there is M ⊆ P , a uniform barrier B on M and

ϕ : B → F ¹ M × SX∗ ,

ϕ(s) = (ts,as, x∗s) such that for every s ∈ B:
(b.1) ts ⊆ s = supp as, and
(b.2) |x∗s(as ¹ ts · x)| = ‖as ¹ ts · x‖ > Cw(ts, as)‖as · x‖.

If in addition the sequence x is weakly-null, then for every ε > 0 we can obtain ϕ with the extra property
that

‖x∗s(x) ¹ (M \ s)‖`1 ≤ ε for every s ∈ B.
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PROOF. Suppose that (b) holds. Then for every P ⊆ N there is (t,a) ∈ F ¹ P such that

‖a ¹ t · x‖ = ‖a ¹ t · x‖ > Cw(t,a)‖a · x‖ = Cw(t,a)‖a · x‖,
so x ¹ P is not (Fw, C)-unconditional.

Suppose now that (a) holds. We follow the lines used in the proof of Proposition 13. Fix P ⊆ N . It is
clear that XC(Fw,x ¹ P ) = ∅, so for every infinite subset M ⊆ P there is (tM ,aM ) ∈ F ¹ M such that
‖aM ¹ tM · x‖ > Cw(tM , aM )‖aM · x‖. Define

F = {supp aM : M ∈ P [∞]}.
The family G = Fv−min is Sperner, so by Theorem 1 there is an infinite set M ⊆ P such that G ¹ M
is either a uniform barrier or empty. Observe that this last possibility is not possible as it implies that
F ¹ M = ∅ while supp aM ⊆ M . Call B = G ¹ M . Now for each s ∈ B choose N(s) ∈ M [∞] such that
supp aN(s) = s. This leads us to the mapping ϕ : B → F ¹ M × SX∗ defined for s ∈ B by

ϕ(s) = (tN(s),a
N(s), x∗s),

where x∗s ∈ SX∗ is such that

|x∗s(aN(s) ¹ tN(s) · x)| = ‖aN(s) ¹ tN(s) · x‖.
It is clear that ϕ has the desired properties.

If in addition x is weakly-null, then we apply Corollary 11 to s 7→ x∗s to obtain the additional property.
¥

In some cases the next is useful.

Corollary 17 Fix F ⊆ FIN × c00, and a weight w with the property that if (t0, a), (t1, a) ∈ F are such
that t0 ⊆ t1, then w(t0, a) ≤ w(t1, a). Suppose that x is a sequence of a Banach space X , indexed on a
set N ⊆ N. The following are equivalent:
(a) XC(Fw, x) = ∅.
(b) For every P ⊆ N there is M ⊆ P , a uniform barrier B on M and

ϕ : B → M [<∞] × c00 ¹ M × SX∗ ,

ϕ(s) = (ts,as, x∗s) with the property that for every s ∈ B:
(b.1) supp as = s, ts ⊆ s,
(b.2) ts ⊆ us for some us such that (us, a

s) ∈ F,
(b.3) as ¹ ts and x∗s(x) ¹ ts are sequences of constant signs, independents of s, and finally
(b.4) |x∗s(as ¹ ts · x)| = ‖as ¹ ts · x‖ > (C/2)w(ts, as)‖as · x‖.

If in addition the sequence x is weakly-null, then for every ε > 0 we can obtain ϕ with the extra property
that ‖x∗s(x) ¹ (M \ s)‖`1 ≤ ε for every s ∈ B.

PROOF. Use Lemma 7 to find corresponding B, M and ϕ defined on B. Now fix s ∈ B, and observe that

|x∗s(as ¹ ts · x)| ≤ max{|x∗s(
∑

n∈ts,as
nx∗s(xn)>0

as
nxn)|, |x∗s(

∑

n∈ts,as
nx∗s(xn)<0

as
nxn)|}. (28)

Let t̄s be either equal to {n ∈ ts : as
nx∗s(xn) > 0} or to {n ∈ ts : as

nx∗s(xn) < 0} and it has the property
that |x∗s(as ¹ ts · x)| ≤ |x∗s(as ¹ t̄s · x)|. Let is = 1,−1 be the sign of as

nx∗s(xn) in t̄s. Now use that

|x∗s(as ¹ t̄s · x)| ≤ 2 max{|x∗s(
∑

n∈t̄s,as
n, isx∗s(xn)>0

as
nxn)|, |x∗s(

∑

n∈t̄s,as
n, isx∗s(xn)<0

as
nxn)|}. (29)

Finally choose ¯̄ts ⊆ t̄s such that both as ¹ ¯̄ts and x∗s(x) ¹ ¯̄ts have constant signs and with the property that
|x∗s(as ¹ t̄s · x)| ≤ 2|x∗s(as ¹ ¯̄ts · x)|. Use the Ramsey property of B to find an infinite subset R ⊆ M
such that these two signs are independent of s. The desired mapping is s ∈ B ¹ R 7→ (¯̄ts,as, x∗s) ∈
R[<∞] × c00 ¹ R× SX∗ . ¥

We present now known results of partial unconditionality.

265



J. Lopez-Abad and S. Todorcevic

4.2. Schreier unconditionality
Recall that S is the family of finite sets s ⊆ N such that |s| ≤ min s. This is the closure of the ω-uniform
barrier on N consisting on the ⊆-maximal elements of S (i.e. the sets s such that |s| = min s). We are
going to show that for every weakly-null sequence x and every ε > 0 there is a subsequence x ¹ M such
that

‖a ¹ t · x ¹ M‖ ≤ (2 + ε)‖a · x ¹ M‖
for every t ∈ S ¹ M and every a ∈ c00. This was first announced in [24] and a proof is given in [28].

Finally, observe that the previous result is equivalent to say that C(S,x) ≤ 2, where

S = {(s, a) : s ∈ S and s ⊆ supp a}.
Proposition 14 C(S) = 2.

PROOF. In the Subsection 4.6. we give a normalized weakly-null sequence with no unconditional subse-
quence. This sequence has the additional property that C(S,x) ≥ 2. This shows that C(S) ≥ 2. Let
us prove now that C(S) ≤ 2. Otherwise, fix a semi-normalized weakly-null sequence x and C such that
C(S,x) > C > 2. Fix also ε > 0 arbitrary. We assume, by Proposition 13, that x is a (1 + ε)-basic
sequence such that ‖a · x‖ ≥ λ(1− ε)‖a‖∞ for every a ∈ c00, and where 0 < λ = infn ‖xn‖.

By Lemma 7, there is a barrier B on some M , and a mapping s 7→ (ts, as, x∗s) such that for every s ∈ B,
(a) ts ∈ S , ts ⊆ s = supp as, ‖as‖∞ ≤ 1
(b) ‖x∗s(x) ¹ (M \ s)‖`1 ≤ ε, and
(c) |x∗s(as ¹ ts · x)| > C‖as · x‖.

As this last inequality is linear (i.e. changing as by λas makes no difference) we assume that ‖as‖∞ ≤
1 (s ∈ B). We also assume, by Proposition 4, that s 7→ ts is Lipschitz. Now fix arbitrary s0 ∈ B and set
k = min ts0 , v = s0 ∩ [0, k]. Observe that if w ∈ Bv , then min tv∪w = min ts0 = k, so , as tv∪w ∈ S ,
|tv∪w| ≤ k. By the Ramsey property of Bv we can assume that there is some fixed 0 ≤ l0 ≤ k such that
|tv∪w| = l0 for every w ∈ Bv . Let D be a finite ε-dense subset of [−1, 1]l0 with the `1-norm. For each
w ∈ Bw find (ci)i<l0 ∈ D in a way that

∑
i<l0

|x∗(v∪w)(xni) − di| ≤ ε, where {ni}i<l0 is the increasing
enumeration of tv∪w. As D is finite, we assume that it is constant. This implies that if w0, w1 ∈ Bv are
such that tv∪w0 = tv∪w1 , then

‖x∗(v∪w0)
(x) ¹ t(v∪w0) − x∗(v∪w0)

(x) ¹ t(v∪w1)‖`1 ≤ 2ε. (30)

Finally, we apply Proposition 8 to the mapping w ∈ Bu 7→ tv∪w ∩ w ∈ M [l0] to obtain w0, w1 ∈ Bv such
that
(d) ρ(w0) = ρ(w1) and
(e) w0 ∩ w̄1 = ρ(w).

Set s = v ∪ w0, u = v ∪ w1, and v̄ = v \ {min v}. Then (c) means that ts = tu, while (e) means that
s ∩ u = v ∪ ts.

Using what we know so far, we compute:

|x∗s(au) ¹ (u \ v̄)| ≥|x∗s(au) ¹ ((u ∩ s) \ v̄)| − |x∗s(au) ¹ ((u \ s)| ≥
≥|x∗s(au) ¹ ((u ∩ s) \ v̄)| − ε‖au‖∞ = |x∗s(au) ¹ ts| − ε‖au‖∞ ≥
≥|x∗u(au) ¹ tu| − 3ε‖au‖∞ > (C − 3ε

λ(1− ε)
)‖au · x‖. (31)

Hence, as x is a (1 + ε)-basic sequence and v̄ v u,

‖au · x‖ ≥ 1
2 + ε

‖au ¹ (u \ v̄) · x‖ ≥ 1
2 + ε

|x∗s(au) ¹ (u \ v̄)| >

>
1

2 + ε
(C − 3ε

λ(1− ε)
)‖au · x‖, (32)
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so

C < 2 + ε +
3ε

λ(1− ε)
. (33)

As λ is fix and ε is arbitrary, we conclude that C ≤ 2, a contradiction. ¥

4.3. Near and convex unconditionality

In this subsection we present applications of our methods to treat Elton’s notion of near unconditionality
[12] and the notion convex unconditionality of Argyros, Mercourakis and Tsarpalias [4]. In fact we are
going to see that there is a single combinatorial results that lies behind both of these two notions of partial
unconditionality. Recall that in the literature these two forms of partial unconditionality are usually treated
differently though sometimes convex unconditionality is referred as the “dual version” of near uncondition-
ality. Our approach will give an explanation of this duality phenomenon as well. Another explanation of this
duality appears in [10] where it is shown that the corresponding unconditional constants behave similarly.

Recall that a sequence x is called δ-near unconditional (0 < δ ≤ 1) iff there is a constant C ≥
1 depending on δ such that for every a ∈ c00 with ‖a‖∞ ≤ 1 and every t ⊆ supp a such that δ ≤
minn∈t |a(n)| we have that ‖a ¹ t ·x‖ ≤ C‖a ·x‖. A result of Elton ([12]) states that for every 0 < δ ≤ 1
every normalized weakly-null sequence has a δ-near unconditional subsequence.

We say that x is δ-convex unconditional iff there is a constant C ≥ 1 such that for every a ∈ c00 and
every t ⊆ supp a with δ‖a ¹ t‖`1 ≤ ‖a ¹ t · x‖, then we have that ‖a ¹ t · x‖ ≤ C‖a · x‖. Argyros,
Mercourakis and Tsarpalias ([4]) have shown that for every 0 < δ ≤ 1 every normalized weakly-null
sequence has a δ-convex unconditional subsequence.

For a real number r ≥ 1 let log2(r) = min{n ∈ N : r ≤ 2n}. We introduce two notions of oscillation
of vectors of c00.

Definition 19 Fix a non-zero a ∈ c00

osc0(a) =
‖a‖∞

minn∈supp a |an|
oscx

1 (a) =
‖a‖`1

‖a · x‖X
,

where x is a fixed semi-normalized weakly-null sequence of a Banach space X .

Two simple observations:

Remark 9 (a) Both notions of oscillation are invariants under multiplication by scalars, i.e. osc0(λa) =
osc0(a) and oscx

1 (λa) = oscx
1 (a) for non-zero a ∈ c00 and λ ∈ R.

(b) osc0(a ¹ s) ≤ osc0(a) and oscx
1 (a ¹ s) ≤ oscx

1 (a) for every a ∈ c00 and s ∈ FIN.

The aim of this subsection is to prove the following

Theorem 7 (Near and Convex unconditionality) Suppose that x is a semi-normalized weakly-null
sequence of a Banach space X . Then for every ε > 0 there is some M such that for every sequence of
scalars a and every finite subset s ⊆ M ,

‖a ¹ s · x ¹ M‖ ≤(8 + ε)max {1, log2(osc0(a ¹ s))} ‖a · x ¹ M‖ and (34)
‖a ¹ s · x ¹ M‖ ≤(16 + ε) (1 + log2(oscx

1 (a ¹ s))) ‖a · x ¹ M‖. (35)

Before we give a proof, we need two more combinatorial results.
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Theorem 8 Let B be a barrier on M , and let s 7→ (ts, as, bs) is a mapping such that for every s ∈ B
(a) ts, supp as, supp bs ⊆ s,
(b) ‖as‖∞, ‖bs‖∞ ≤ 1, and
(c) as ¹ ts and bs ¹ ts have constant signs.

Then for every ε > 0 there are s, u ∈ B such that

|〈as, bu〉| ≥ 1
4 + ε

|〈as ¹ ts, b
s〉|

max{1, log2(osc0(as ¹ ts))} − ε. (36)

PROOF. The proof has two parts depending on the following to functions fϕ, gϕ, hϕ : B → N defined as
follows

fϕ(s) = max{1, log2 (osc0(as ¹ ts))}
gϕ(s) =‖as ¹ ts‖∞
hϕ(s) =

f(s)
g(s)

.

Notice that g ≤ 1 ≤ f and h ≥ 1. Observe that h is bounded (i.e. sups∈B f(s) < ∞) iff f is upper-bounded
and g is lower bounded.
CASE 1. h bounded. In this case we the following stronger result: For every ε > 0 there are s, u ∈ B such
that

|〈as, bu〉| ≥ 1
2 + ε

|〈as ¹ ts, b
s〉|

max{1, log2(osc0(as ¹ ts))} . (37)

As f : B → N is bounded, By the Ramsey property of B, we may assume that f is constant with value
L. Let ε̄ > 0 be such that (2 + ε)(1 − ε̄) > 2. Let r0 ∈ N be such that (1 − ε̄)r0 < infs∈B g(s), and
color each s ∈ B by 1 ≤ r ≤ r0 iff (1 − ε̄)r < g(s) ≤ (1 − ε̄)r−1. By Ramsey, we assume also that B is
monochromatic with constant color r. Observe that this implies that for every s, u ∈ B

g(s)
g(u)

≥ 1− ε̄. (38)

For a given s ∈ B and 1 ≤ l ≤ L, let

tls = {n ∈ ts :
g(s)
2l

≤ |as
n| ≤

g(s)
2l−1

}.

Observe that if s, u ∈ B and n ∈ tls ∩ tlu, then

as
n

au
n

≥
g(s)
2l

g(u)
2l−1

≥ (1− ε̄)
2

. (39)

We color each s ∈ B by 1 ≤ l ≤ L iff (l is the first such that)

〈as ¹ tls, b
s〉 ≥ 1

L
〈as ¹ ts, b

s〉,

(this is well defined because ts =
⋃L

l=1 tls). By Ramsey, we may assume that B is monochromatic, with
color l0.

Now consider the mapping from B into FIN defined by s 7→ tl0s . By Corollary 6, there are s, u ∈ B
such that
(c) tl0s v tl0u and
(d) s ∩ u = tl0s .

We compute:
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〈au, bs〉 =
∑

n∈t
l0
s

au
nbs

n ≥
1− ε̄

2

∑

n∈t
l0
s

as
nbs

n ≥
1

(2 + ε)L
〈as ¹ ts,a

s〉

as desired.
CASE 2. h is unbounded. Since by Corollary 9 (a) the mapping s 7→ bs is almost-Lipschitz, we assume,
after restricting to some appropriate subset, that for every t ∈ B and every s, u ∈ B such that t v s, u we
have that

‖bs ¹ t− bu ¹ t‖`1 ≤ ε.

Now use Corollary 8 to find some N ⊆ M and v ∈ B ¹ N such that
(a) |h(s)− h(u)| ≤ ε if v v s, u ∈ B ¹ N and
(b) |v| < εh(s) for every s ∈ B ¹ N such that v v s.

Notice that this implies that for every s ∈ B ¹ N such that v v s

|〈as ¹ (ts ∩ v), bs〉| ≤ |v|gϕ(s) ≤ εf(s). (40)

Define ϕ̄ : Bv ¹ N → FIN × c00 × c00 by ϕ̄(w) = (tv∪w ∩ w, av∪w ¹ w, bs ¹ v ∪ w). This new mapping
fulfills the conditions of Case 1 (i.e Hϕ̄ is bounded), so, there is w, z ∈ Bv ¹ N such that

|〈av∪w ¹ w, bv∪z ¹ z〉| ≥ 1
2 + ε

|〈av∪w ¹ tv∪w ∩ w, bv∪w〉|
fϕ̄(w)

. (41)

From this and (40) we have that

|〈av∪w ¹ w, bv∪z ¹ z〉| ≥ 1
2 + ε

(
|〈av∪w ¹ (tv∪w ∩ w), bv∪w〉|

fϕ̄(w)
− ε) ≥

≥ 1
2 + ε

(
|〈av∪w ¹ (tv∪w ∩ w), bv∪w〉|

fϕ(v ∪ w)
− ε). (42)

Finally we consider two cases:
SUBCASE 2.1 |〈av∪w, bv∪z〉| ≥ (1/2)|〈av∪w ¹ w, bv∪z ¹ z〉|. The desired inequality in Claim 1 follows

immediately from (41).
SUBCASE 2.2 |〈av∪w, bv∪z〉| < (1/2)|〈av∪w ¹ w, bv∪z ¹ z〉|. This means that

|〈av∪w ¹ v, bv∪z ¹ v〉| > (1/2)|〈av∪w ¹ w, bv∪z ¹ z〉|. (43)

Let u ∈ B be such that v v u and u ∩ s = v. As we are assuming that s 7→ bs is (1 + ε)-Lipschitz, we
have that

|〈av∪w, bu〉| = |〈av∪w ¹ v, bu〉| ≥ |〈av∪w ¹ v, bv∪z〉| − ε, (44)

that together with (41) and (43) Gives the inequality in Claim 1. ¥

Corollary 18 Suppose that s ∈ B 7→ (ts, as, bs) is as in Theorem 8. Then for every ε > 0 there are
s, u ∈ B such that

|〈as, bu〉| ≥ 1
8 + ε

|〈as ¹ ts, b
s〉|

1 + log2

( ‖as¹ts‖`1
|〈as,bs¹ts〉|

) − ε. (45)

PROOF. Define

t̄s = {n ∈ ts : bn ≥ 1
2
|〈as, bs ¹ ts〉|
‖as ¹ ts‖`1

}.
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Observe that

|〈as ¹ (ts \ t̄s), bs〉| < 1
2
|〈as, bs ¹ ts〉|
‖as ¹ ts‖`1

‖as ¹ ts‖`1 =
1
2
|〈as, bs ¹ ts〉|, (46)

so |〈as ¹ t̄s, b
s〉| ≥ (1/2)|〈as ¹ ts, b

s〉|. Also, by definition of t̄s,

log2 (osc0(bs ¹ ts)) ≤ log2

(
1

m(bs ¹ t̄s)

)
≤ log2

( ‖as ¹ ts‖`1

|〈as, bs ¹ ts〉|
)

+ 1. (47)

We apply Theorem 8 to s 7→ (t̄s, bs, as) and ε̄ = ε/2, to obtain s, u ∈ B such that

|〈bs, au〉| ≥ 1
8 + ε̄

|〈bs ¹ t̄s,a
s〉|

max{1, log2(osc0(bs ¹ ts))} .

This, together with (46) and (47) give the desired inequality. ¥
We are now ready to give a proof of Theorem 7.

PROOF. First of all, observe that (34) is invariant under multiplication by scalars, i.e. the corresponding
inequalities for a and for λa are the same (λ ∈ R). So we may assume that we deal with sequences of
scalars a with ‖a‖∞ = 1. Consider

F ={(s,a) ∈ FIN × c00 : s ⊆ supp a, ‖a‖∞ = 1}
w(t, a) = min {max{1, log2(osc0(a ¹ t))}, 2(1 + log2(oscx

1 (a ¹ t)))} .

We show that C(Fw,x) ≤ 8. Otherwise, fix C such that 8 < C < C(Fw,x) and work to produce a
contradiction. Fix ε > 0. As x is a semi-normalized weakly-null sequence we may assume, by Proposition
13 that ‖a ·x‖ ≥ (1− ε)L‖a‖∞ for every a ∈ c00, and where L = infn∈N ‖xn‖ ∈ (0, 1] is independent of
ε. Observe also that w(t0, a) ≤ w(t1, a) if t0 ⊆ t1, so we can apply By Corollary 17 to obtain an infinite
set M , a uniform barrier B on M and ϕ0 : B → FIN × c00 × SX∗ such that for every s ∈ B, setting
ϕ0(s) = (ts,as, x∗s), we have that
(a) ts ⊆ supp as = s,
(b) as ¹ ts and (x∗s(xn))n∈ts have constant signs independent of s,
(c) ‖as‖∞ = 1, and

∑
n∈M\s |x∗s(xn)| ≤ εL and

(d)

|x∗s(as ¹ ts · x)| = ‖as ¹ ts · x‖ >
C

2
w(ts, as)‖as · x‖. (48)

Also, by the Ramsey property of B we may assume that either
(e) w(ts, as) = max{1, log2(osc0(as ¹ ts))} for every s ∈ B, or else
(f) w(ts,as) = 2(1 + log2(oscx

1 (a ¹ t)) for every s ∈ B.
Define on B the mapping ϕ by ϕ(s) = (ts, as, (x∗(xn))n∈s). We apply to ϕ and ε̄ = εL either Theorem

8 if (e) above holds, or else Corollary 18 to obtain s, u ∈ B such that

|x∗u(
∑

n∈s∩u

anxn)| =|〈as, (x∗u(xn))n∈u〉| ≥ 1
4 + ε̄

‖as ¹ ts · x‖
w(ts, as)

− ε̄ >
C

8 + 2ε̄
‖as · x‖ − ε̄ ≥

≥ C

8 + 2ε̄
‖as · x‖ − ε

1− ε
‖as · x‖ =

(
C

8 + 2ε̄
− ε

1− ε

)
‖as · x‖, (49)

where we used that ‖as ¹ ts · x‖ = |〈x∗s(as ¹ ts · x)〉| for every s ∈ B, and inequality (48). On the other
hand we have that

‖as · x‖ ≥|x∗u(
∑
n∈s

as
nxn)| ≥ |x∗u(

∑
n∈s∩u

as
nxn)| − ‖as‖∞

∑

n∈s\u
|x∗u(xn)| =

=|x∗u(
∑

n∈s∩u

as
nxn)| − ε

1− ε
‖as · x‖. (50)
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So, by (49) and (50),

(1 +
ε

1− ε
)‖as · x‖ ≥

(
C

8 + 2ε̄
− ε

1− ε

)
‖as · x‖,

that clearly implies that C < (8 + 2εL)(1 + ε)(1 − ε)−1. As ε was arbitrary we conclude that C ≤ 8, a
contradiction. ¥

Remark 10 Observe that from Theorem 7 one obtains that for every 0 < δ ≤ 1 every normalized weakly-
null sequence has a δ-unconditional subsequence with constant C ≤ 9 log2(δ−1). It is an open question
if there is a universal constant C (i.e. independent of δ) such that for every 0 < δ ≤ 1 every normalized
weakly-null sequence has a δ-unconditional subsequence with constant C. This conjecture is closely related
to the corresponding fact for δ-convex unconditionality (see [10] for more details).

4.4. Sequences bounded away from zero.
The intention of this subsection is to generalize the dichotomy concerning sequences of characteristic func-
tions of C(K) presented in Corollary 4 to sequences x ⊆ C(K) bounded away from zero, i.e.

inf{|xn(ξ)| : |xn(ξ)| 6= 0, ξ ∈ K} > 0.

More precisely, we have the following result proved independently and in different forms by A. Arvanitakis
[6], I. Gasparis, E. Odell, and B. Wahl in [17] and the authors in [21].

Theorem 9 Suppose that K is a compact space and suppose that x is a semi-normalized weakly-null
sequence of C(K) with the property that

inf{|xn(ξ)| : |xn(ξ)| 6= 0, n ∈ N, ξ ∈ K} = δ > 0. (51)

Then there is some M and a uniform barrier B on N such that x ¹ M is 2/δ-equivalent to the natural basis
(en) of the Schreier space XB. In particular, x ¹ M is unconditional.

PROOF. First of all, the set

L = {x(ξ) : ξ ∈ K} ⊆ c00 is weakly-pre-compact.

So, as we mentioned in the introduction, supp δL is also pre-compact, but by (51), we have that

supp δL = supp L = {supp (xn(ξ))n∈N : ξ ∈ K},
where supp ξ = {n ∈ N : xn(ξ) 6= 0}. Use Theorem 2 to find an infinite N ⊆ N such that F =
(suppL)[N ] is the closure of a uniform barrier C on N . Observe that for every a,

‖a · xN‖ ≤ sup{‖a ¹ s‖`1 : s ∈ F} : (52)

Let ξ ∈ K be such that ‖a · xN‖ = |(a · xN )(ξ)|. As (supp ξ) ∩ N ∈ F we obtain that ‖a · xN‖ =
|(a · xN )(ξ)| = |∑n∈supp ξ∩N anxn(ξ)|, so we are done because ‖xn‖ ≤ 1.

Let

F ={(suppa,a) : a ∈ c00, supp a ⊆ N}

w(t,a) =
‖a · x‖

sups∈F ‖a ¹ s‖`1

.

Note that, for every M ⊆ N the sequence x ¹ M is (Fw, C)-unconditional iff for every a we have that

sup
s∈F¹M

‖a ¹ s‖`1 ≤ C‖a · x ¹ M‖. (53)
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Claim 2 X2/δ(Fw,xN ) 6= ∅.

Before we give a proof of this fact, let us see how to find the desired subsequence: Let M ∈ X2/δ(Fw, xN ),
i.e. x ¹ M is (Fw, 2/δ)-unconditional. Let π : M → N be the unique order-preserving onto mapping, and
let

B = π”(C ¹ M) = {π”s : s ∈ C ¹ M}.
This is a uniform barrier on N (see remark 1). Let e = (en) be the natural basis of the Schreier space XB.
Fix a sequence a = (an)n∈M of scalars. Observe that, by Proposition 5 (b),

sup
s∈F¹M

‖a ¹ s‖`1 = sup
s∈C¹M

‖a ¹ s‖`1 = sup
t∈B

|
∑
n∈t

aπ−1(n)| = ‖
∑

n∈N
aπ−1(n)eπ−1(n)‖B. (54)

Now using (52), (53) and (54) we obtain that

2
δ
‖

∑

n∈N
aπ−1(n)en‖B ≤ ‖

∑

n∈M

anxn‖X ≤ ‖
∑

n∈N
aπ−1(n)en‖B,

as desired. Finally, let us prove the Claim: Suppose not, i.e. X2/δ(Fw, xN ) = ∅. The idea is to use, as for
the previous results, Corollary 17. However this is not possible because the weight w we use here does not
satisfy the hypothesis of that corollary. So we use Lemma 7 instead to find M ⊆ N , a barrier D on M and
ϕ : B → F ¹ M × c00, s 7→ (t̄s, as), such that t̄s ⊆ suppas = s, t̄s ∈ F ¹ M (F is hereditary), and such
that

‖as ¹ t̄s‖`1 >
2
δ
‖as · x ¹ N‖. (55)

Now let ts ⊆ t̄s be such that as ¹ ts has constant sign and such that ‖as ¹ ts‖`1 ≥ ‖as ¹ t̄s‖`1 .
For each s ∈ D let ξs ∈ K be such that (supp ξs) ∩M = ts (F is downwards closed). For i = 0, 1, let

t
(i)
s = {n ∈ ts : (−1)ixn(ξs) > 0}, and choose now is = 0, 1 such that

‖as ¹ t(is)
s ‖`1 ≥

1
2
‖as ¹ ts‖`1 . (56)

By the Ramsey property of D, we may assume that s 7→ is ∈ {0, 1} is constant with value k. We have then
naturally defined a new mapping from D into FIN, s 7→ t

(k)
s . Use the matching result in Proposition 6 to

find s, u ∈ D such that
(a) t

(k)
s v t

(k)
u , and

(b) s ∩ u = t
(k)
s .

Finally, using that (xn(ξu))
n∈t

(k)
u

have constant sign and conditions (51) and (56), we obtain

‖as · x ¹ N‖ ≥|(as · x ¹ N)(ξu)| = |(as ¹ (supp ξu) · x ¹ N)(ξu)| = |(as ¹ t(k)
s · x ¹ N)(ξu)| = (57)

=|
∑

n∈t
(k)
s

as
nxn(ξu)| ≥ δ‖as ¹ t(k)

s ‖`1 ≥
δ

2
‖as ¹ ts‖`1 , (58)

which is contradictory with (55). ¥

4.5. Some canonical examples

In this subsection we show that mappings on barriers naturally lead to weakly null sequences in Banach
spaces showing thus that our approach to study weakly null sequences using mappings on barriers is in
some sense necessary.
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Definition 20 Suppose that B is a uniform barrier on M , ϕ : B → c00 is an L-mapping, ‖ϕ‖∞ ≤ 1 and
0 < λ ≤ 1. We define on c00 ¹ M the following norm ‖ · ‖ϕ,λ: for a ∈ c00 ¹ M , let

‖a‖ϕ,λ = max{‖a‖∞, sup
s∈B

|〈a, ϕ(s)〉|}.

Let Xϕ,λ be its completion. It is not difficult to see that the subsequence x(ϕ,λ) = eM of the Hamel basis
e of c00 is a semi-normalized weakly-null basic sequence of Xϕ,λ. We call such sequences L-sequences.

We call a sequence x a U-sequence if it is a L-sequence whose mapping ϕ is a U-mapping and λ = 1.

Remark 11 Another interpretation of Xϕ,λ is the following: Let L be the weak-closure of ϕ”B (i.e. L =
{ϕ(s) ¹ t : t v supp s}), and let

Kϕ,λ = L ∪ {λen}n∈M .

This is a weakly-compact subset of c00, and then Xϕ,λ is the closed linear span of the sequence e ⊆
C(Kϕ,λ).

Theorem 10 Let F ⊆ FIN × c00 and w be as in Definition 17 with the additional requirement that w is
bounded away from zero, i.e. inf w(t, a) > 0. If there is some semi-normalized weakly-null sequence x
with C(Fw, x) = ∞ (i.e. with no Fw-unconditional subsequence ) then there is a U-sequence y such that
C(Fw, y) = ∞.

PROOF. Fix all the ingredients in the statement. We assume that ‖a · x‖X ≥ λ‖a‖∞ for every a ∈ c00.
Let Cn ↑n ∞. As XCn(Fw,x) = ∅, we can repeatedly use Lemma 7 to find a fusion sequence (Mk),
uniform barriers Bk on Mk+1 and ϕk : Bk → F ¹ Mk, ϕk(s) = (t(s,k), a

(s,k)), such that for every k ∈ N
and every s ∈ Bn

(1) t(s,k) ⊆ supp a(s,k) = s, and
(2) ‖a(s,k) ¹ t(s,k) · x‖ > Cmin Mk

w(t(s,k), a
(s,k))‖a(s,k) · x‖.

Consider the sequence (αk)k of ranks of Bk’s, and find a subset I ⊆ N such that (αk)k∈I is either
constant or strictly increasing, and let α = supk∈I αk. Let M = {mk}k∈I , where mk = min Mk. Define
now B ⊆ P(M) by s ∈ B iff ∗s ∈ Bk, where k ∈ I is such that min s = mk. This is an uniform family on
M (it is α + 1-uniform if (αk)k∈I is constant with value α and α-uniform otherwise). Let N ⊆ M be such
that B ¹ N is in addition a barrier on N . Define ϕ : B ¹ N → F ¹ N by

ϕ(s) = (t(s,k),a
(s,k))

where k ∈ I is such that min s = mk. Set ϕ(s) = (ts,as) for s ∈ B ¹ N . Then for every s ∈ B ¹ N , if
k ∈ I is such that min s = mk, then we have that,

ts = t(∗s,k) ⊆ supp a(∗s,k) = ∗s ⊆ s

so ts ⊆ supp as ⊆ s, and also,

‖as ¹ ts · x‖ > Cmin sw(ts, as)‖as · x‖. (59)

Now for every s ∈ B ¹ N pick x∗s ∈ SX∗ such that

‖as ¹ ts · x‖ = |x∗s(as ¹ ts · x)|.

Define ψ : B ¹ N → c0 by ψ(s) = (x∗s(xn))n∈N . We are going to “perturb” ψ to make it uniform: Apply
Proposition 11 (b) to ψ and λ to produce some P ⊆ N , and some U-mapping $ : B ¹ P → c00 such that

‖$(s)− ψ(s) ¹ P‖`1 ≤ λw̄ for every s ∈ B ¹ P , (60)
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and where w̄ = inf(t,a) w(t, a). Let y be the U-sequence associated to $. First of all, from (60) we obtain
that for every s ∈ B ¹ P and every a ∈ c00 ¹ N ,

|〈a, $(s)〉 − 〈a, ψ(s)〉| ≤ ‖a‖∞‖ϕ(s)− ψ(s) ¹ P‖`1 ≤ λw̄‖a‖∞. (61)

Hence

‖as‖$ = max{‖as‖∞, sup
u∈B¹P

|〈as, $(u)〉|} ≤ max{‖as‖∞, λw̄‖as‖∞ + sup
u∈B¹P

|〈a, ψ(u)〉|}

≤max{‖as‖∞, λw̄‖as‖∞ + ‖a · x‖X} ≤ max{ 1
λ

, 1 + w̄}‖a · x‖X . (62)

Set λ̄ = max{λ−1, 1 + w̄}. Using (59), (61) and (62), we get that for every s ∈ B ¹ P

‖as ¹ ts · y‖$ ≥|〈as ¹ ts, $(s)〉| ≥ |〈as ¹ ts, ψ(s)〉| − λw̄‖as ¹ ts‖∞ =
=|x∗s(as ¹ ts · x)| − λw̄‖as ¹ ts‖∞ > Cmin sw(ts, as)‖as · x‖X − λw̄‖as ¹ ts‖∞ ≥

≥Cmin sw(ts,as)
λ̄

‖as‖$ − λw̄‖as ¹ ts‖∞ ≥ (
Cmin s

λ̄
− λ)w(ts, as)‖as‖$.

Since Cmin s ↑ ∞ if min s ↑ ∞, we obtain that

C(Fw, y) ≥ sup
s∈B¹P

(
Cmin s

λ̄
− λ) = ∞,

as desired. ¥

Remark 12 (a) In addition, one can get, with similar proof, the following: for arbitraries F and w, and
semi-normalized weakly-null sequence x there is an L-sequence y such that C(F, x) ≤ C(F, y).
(b) Observe that to every unconditionality notion (F, w) such that there is some semi-normalized weakly
null sequence with no unconditional subsequence, we can naturally define a rank as

α(Fw) = min{α(x) : x is U-sequence with C(Fw,x) = ∅},
and where α(x) is such that the barrier associated to x is α(x)-uniform. For example, we show in the next
subsection that α(U) = ω2, i.e. every U-sequence of rank strictly smaller than ω2 has an unconditional
subsequence, while there is a U-sequence of rank ω2 with no unconditional subsequence (Maurey-Rosenthal
example).

4.6. Maurey-Rosenthal example
Let us return back to an even more basic problem that must be solved before even considering various no-
tions of partial unconditionality: Does every normalized weakly-null sequences has a subsequence which is
unconditional? If not, then by Theorem 10 there must be a U-sequence with no unconditional subsequence.
We present now (as in [21]) the famous example of Maurey-Rosenthal [24] of a normalized weakly-null
sequence with no unconditional subsequence (see also [23]):

Example 2 First of all, for a fixed 0 < ε < 1 choose a fast increasing sequence (mi) such that

∞∑

i=0

∑

j 6=i

min((
mi

mj
)1/2, (

mj

mi
)1/2) ≤ ε

2
. (63)

Let FIN[<∞] be the collection of all finite block sequences s0 < s1 < · · · < sk of nonempty finite subsets
of N. Now choose a 1− 1 function

σ : FIN[<∞] → {mi} (64)
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such that σ((si)n
i=0) > sn for all (si) ∈ FIN[<∞] Now let BMR be the family of unions s0 ∪ s1 ∪ · · · ∪ sn

of finite sets such that
(a) s0 = {n}.
(b) (si) is block and, and
(c) |si| = σ(s0, . . . , si−1) (1 ≤ i ≤ n).

It is not difficult to see that BMR is a ω2-uniform barrier on N. Observe that by definition, every
s ∈ BMR has a unique decomposition s = s0 ∪ · · · ∪ sn satisfying (a), (b) and (c) above. Now define the
mapping ϕ : BMR → c00,

ϕ(s) =
n∑

i=0

1
|si| 12

χsi
. (65)

Observe that ϕ is a U-mapping (i.e. it is internal and uniform). Notice also that for every a ∈ c00

‖a‖ϕ ≥ ‖a‖∞. The corresponding U-sequence x it has no unconditional subsequence. Moreover x has
the property that the summing basis (Si) of c, the Banach space of convergent sequences of reals, is finitely-
block representable in the linear span of every subsequence of x (and so the summing basis of c0), more
precisely, for every M , every n ∈ N and every ε > 0 there is a normalized block subsequence (yi)n−1

i=0 of
x ¹ M such that for every sequence of scalars (ai)n−1

i=0 ,

max{|
m∑

i=0

ai| : m < n} ≤ ‖
n−1∑

i=0

aiyi‖ϕ ≤ (1 + ε)max{|
m∑

i=0

ai| : m < n}.

Acknowledgement. The second author was partially supported by NSERC

References

[1] Alspach, D. and Argyros, S.A. (1992). Complexity of weakly null sequences, Dissertationes Mathe-
maticae, 321, 1–44.

[2] Argyros, S.A. and Gasparis, I. (2001). Unconditional structures of weakly null sequences. Trans. Amer.
Math. Soc. 353, no. 5, 2019–2058.

[3] Argyros, S.A., Godefroy, G. and Rosenthal H.P. (2003). Descriptive set theory and Banach spaces.
Handbook of the geometry of Banach spaces, Vol. 2, 1007–1069, North-Holland, Amsterdam.

[4] Argyros, S.A., Mercourakis, S. and A.Tsarpalias. (1998). Convex unconditionality and summability
of weakly null sequences. Israel J. Math. 107, 157–193.

[5] Argyros, S A. and Todorcevic, S. (2005). Ramsey methods in analysis. Advanced Courses in Mathe-
matics. CRM Barcelona. Birkhäuser Verlag, Basel.
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(1975–1976), Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No.16,
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Université Paris 7- Denis Diderot
C.N.R.S. -UMR 7056
2, Place Jussieu- Case 7012
France
E-mail: stevo@math.jussieu.fr

277




