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A survey on the Szlenk index and some of its applications

Gilles Lancien

Abstract. We describe how the Szlenk index has been used in various areas of the geometry of Ba-
nach spaces. We cover the following domains of application of this notion: non existence of universal
spaces, linear classification of C(K) spaces, descriptive set theory, renorming problems and non linear
classification of Banach spaces.

Una panorámica sobre el ı́ndice de Szlenk y algunas de sus aplicaciones

Resumen. Describimos como el ı́ndice de Szlenk ha sido usado en varias áreas de la geometrı́a
de los espacios de Banach. Consideramos las siguientes aplicaciones de esta noción: no existencia de
espacios universales, clasificación lineal de espacios C(K), teorı́a descriptiva de conjuntos, problemas
de renormamiento y clasificación no lineal de los espacios de Banach.

1. Introduction
In this survey paper, we have selected some of the fields, where the Szlenk index and its variants, have been
fruitfully used in the geometry of Banach spaces.

In section 2., we define the different slicing indices, including the Szlenk index, that will be studied in
this paper. Then, we gather some elementary or technical facts in section 3..

The Szlenk index of a Banach space X , denoted Sz(X), is an ordinal number, which is invariant under
linear isomorphisms. As it is suggested by its name, it was first introduced by W. Szlenk [62] in order
to prove that there is no separable reflexive Banach space universal for the class of all separable reflexive
Banach spaces. This aspect is briefly treated in section 4.. Very recent developments are also indicated.

Another striking fact is that the isomorphic classification of a separable C(K) space is perfectly deter-
mined by the value of its Szlenk index. This is a consequence of some classical work by C. Bessaga and A.
Pełczyński [8], D.E. Alspach and Y. Benyamini [1] and C. Samuel [59]. We give in section 5. a recent short
proof [33] of the computation of Sz(C(α)) when α is a countable ordinal.

It follows rather simply from Baire’s Great Theorem that a separable Banach space has a separable dual
if and only if its Szlenk index is countable. This can be made more precise by using the Kunen-Martin
Theorem and other tools from descriptive set theory. The interactions between the geometry of Banach
spaces and descriptive set theory have been widely investigated and for a complete reference, we suggest
the survey paper by S.A. Argyros, G. Godefroy and H.P. Rosenthal [3]. In section 6., we try to give a simple
example of this type of results by showing, using the work of B. Bossard ([9],[10]), how one can justify the
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following statement: the set of all separable Banach spaces with a separable dual is coanalytic non Borel
and the Szlenk index is a coanalytic rank for this set.

These tools from descriptive set theory, together with a geometric construction using a dentability index
allow us to prove in section 7. a first renorming result. More precisely, we show that a Banach space with
countable Szlenk index admits an equivalent norm, whose dual norm is locally uniformly rotund. Then we
explain how this dentability index provides us with a simple geometric formula for building an equivalent
uniformly convex norm with power type modulus on super-reflexive Banach spaces.

Section 8. is devoted to another renorming question. We consider the problem of building an equivalent
norm with a dual weak∗ uniformly Kadec-Klee norm on a Banach space with finite Szlenk index. This was
solved positively by H. Knaust, E. Odell and T. Schlumprecht ([44]), who along their way gave a detailed
study of the linear structure of these spaces. We also present a different approach ([30]) yielding some
precise quantitative estimates that will be crucial in the last section.

Finally, in section 9., we show that the Szlenk index, when finite, is, in a very precise quantitative
way, an invariant under Lipschitz homeomorphisms or uniform homeomorphisms. Then we derive some
important results on the non linear classification of certain classical Banach spaces, such as c0, subspaces
of c0, subspaces of `p (p > 2) or quotients of `p (p > 2).

We also refer the reader to a more synthetic survey on this subject that has already been written by G.
Godefroy ([28]).

2. Notation

We first give the definition of the Szlenk index and the Szlenk derivation. Suppose X is a real Banach space
and K is a weak∗-compact subset of X∗. For ε > 0 we let V be the set of all relatively weak∗-open subsets
V of K such that the norm diameter of V is less than ε and sεK = K \ ∪{V : V ∈ V}. Then we define
inductively sα

ε K for any ordinal α by sα+1
ε K = sε(sα

ε K) and sα
ε K =

⋂

β<α

sβ
ε K if α is a limit ordinal.

We denote by BX∗ the closed unit ball of X∗. We then define Sz(X, ε) to be the least ordinal α so that
sα

ε BX∗ = ∅, if such an ordinal exists. Otherwise we write Sz(X, ε) = ∞. The Szlenk index is defined by
Sz(X) = supε>0 Sz(X, ε).
Let us point out that this definition differs slightly from the original definition of W. Szlenk in [62]. How-
ever, both definitions coincide if X is a separable Banach space which does not contain any isomorphic
copy of `1(N) (see [46] for instance).

We also introduce an alternative convex Szlenk index. If K is a weak∗-compact and convex subset of
X∗, we may define cεK = σ∗(sεK) (namely, the weak∗-closed convex hull of sεK). Then Cz(X, ε) and
Cz(X) are defined as before, using the derivation cε instead. Let us notice that a geometrical way to define
this derivation is to say that it removes the weak∗-slices that can be covered by a union (and therefore by a
finite union) of weak∗-open sets of diameter less than ε.

Now, if K is a weak∗-compact and convex subset of X∗, we call weak∗-slice of K any non empty set
of the form S = {x∗ ∈ K, x∗(x) > t}, where x ∈ X and t ∈ R. Then we denote by S the set of all
weak∗-slices of K of norm diameter less than ε and dεK = K \ ∪{S : S ∈ S}. From this derivation, we
define similarly the weak∗-dentability index of X that we denote Dz(X, ε) and Dz(X).

We shall also briefly use the following derivation on subsets of X itself. Let C be a closed convex
subset of X . A slice of C is a set of the form T = {x ∈ C, x∗(x) > t}, where x∗ ∈ X∗ and t ∈ R. We
denote by T the set of all slices of C of norm diameter less than ε and DεC = C \ ∪{T : S ∈ T }. From
this derivation, we define D(X, ε) to be the least ordinal α so that Dα

ε BX = ∅, if such an ordinal exists,
and D(X, ε) = ∞ otherwise. The dentability index of X is as usual D(X) = supε>0 D(X, ε).
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3. A few basic properties
In the following proposition, we gather without proof some elementary facts.

Proposition 1 Let X be a Banach space.
(i) Sz(X) ≤Cz(X) ≤Dz(X).
(ii) The indices Sz, Cz and Dz are invariant under linear isomorphisms.
(iii) For each of our three definitions, the indices of subspaces or quotients of X are bounded above by the
index of X .
(iv) X is finite dimensional if and only if Sz(X)=Cz(X) = 1.
(v) If X 6= {0}, then for any ε > 0, Dz(X, ε) ≥ ε−1 and therefore Dz(X) ≥ ω, where ω is the first infinite
ordinal.
(vi) Since weak∗-compactness implies that Dz(X, ε) is never a limit ordinal, we have that Dz(X) ≤ ω if
and only if Dz(X, ε) < ω for any ε > 0. The same is true for Sz(X) or Cz(X).
(vii) If X is separable, K a weak∗-compact subset of X∗ and ε > 0, we denote

lεK = {x∗ ∈ K ∃(x∗n)n≥1 ⊂ K st ∀n ‖x∗ − x∗n‖ ≥ ε and x∗n
w∗−→ x∗}.

Then the index associated with this derivation is equal to Sz(X).

Remark 1 Despite the lack of compactness, we also have that D(X, ε) is never a limit ordinal. It relies
on the fact that Dα

ε BX is convex symmetric and therefore contains 0, whenever it is not empty.

Our next proposition, is a rather technical fact, that was first mentioned in a paper of A. Sersouri [61]
on similar indices.

Proposition 2 Let X be a Banach space. Then, either Sz(X) = ∞ or there exists an ordinal α such that
Sz(X) = ωα.
The same is true for the other indices.

PROOF. We only give the argument for the Szlenk index and use the following fact: for any Banach
space X and any ordinal α

1
2
sα

ε BX∗ +
1
2
BX∗ ⊂ sα

ε/2BX∗ . (1)

The proof is a straightforward transfinite induction.
Then let us show that Sz(X) > ωα implies that Sz(X) ≥ ωα+1. This will clearly yield the conclusion.
So assume that Sz(X) > ωα. We can find ε > 0 such that sωα

ε BX∗ 6= ∅. Then, by (1), 0 ∈ sωα

ε/2BX∗ and
1
2BX∗ ⊂ sωα

ε/4BX∗ . So

0 ∈ sωα

ε/4(
1
2
BX∗) ⊂ sωα.2

ε/4 BX∗ .

Proceeding inductively, we can show that for any integer n, 0 ∈ sωα.2n

ε/2n+1BX∗ . Thus Sz(X) ≥ ωα+1. ¥
Another simple but useful fact is the following.

Proposition 3 Let X be a Banach space and α an ordinal. Assume that

∀ε > 0 ∃δ(ε) > 0 sα
ε (BX∗) ⊂ (1− δ(ε))BX∗ .

Then
Sz(X) ≤ α.ω

A similar statement is true for the other indices.
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PROOF. Let ε > 0. An easy homogeneity argument shows that for any n ∈ N :

sα.n
ε (BX∗) ⊂ (1− δ(ε))nBX∗ .

Consequently, there exists an integer N so that sα.N
ε (BX∗) ⊂ ε

3BX∗ and therefore sα.N+1
ε (BX∗) = ∅.

This finishes the proof. ¥
We shall also need the following property of the Szlenk index.

Proposition 4 Let X be a Banach space.
a) The function Sz(X, .) is submultiplicative. More precisely:

∀ε > 0 ∀ε′ > 0 Sz(X, εε′) ≤ Sz(X, ε).Sz(X, ε′).

b) If Sz(X) = ω, then

∃C > 0 ∃p ∈ [1,+∞) ∀ε > 0 Sz(X, ε) ≤ Cεp.

PROOF. Let ε > 0 and ε′ > 0. It is enough to show (omitting the obvious case when Sz(X, ε′) = ∞)
that for any ordinal α,

s
α.Sz(X,ε′)
εε′ (BX∗) ⊂ sα

ε (BX∗).

This will be achieved with a transfinite induction on α. The statement is clearly true for α = 0 and passes
easily to limit ordinals. So, let us assume it is true for some ordinal α. Let now x∗ ∈ BX∗ \ sα+1

ε (BX∗).
We need to show that x∗ /∈ s

(α+1).Sz(X,ε′)
εε′ (BX∗), so we may assume that x∗ ∈ sα

ε (BX∗). Then, there
is a weak∗-open set V containing x∗ and such that diam(V ∩ sα

ε (BX∗)) < ε and therefore diam(V ∩
s

α.Sz(X,ε′)
εε′ (BX∗)) < ε. But, we have by homogeneity that every set C with diameter less than ε satisfies

s
Sz(X,ε′)
εε′ (C) = ∅. So x∗ /∈ s

(α+1).Sz(X,ε′)
εε′ (BX∗), and the proof of a) is finished.

The statement b) is classical for N-valued submultiplicative functions. ¥

Remark 2 We do not know if the functions Cz(X, .) and Dz(X, .) are submultiplicative, but we will see in
sections 7.2. and 8. that they satisfy the property stated in b). One of the ingredients for that, will be the
next simple comparison lemma, that we state and prove now.

Lemma 1 Let X be a Banach space and L2(X) be the space of all square Bochner-integrable functions
with respect to the Lebesgue measure on [0, 1]. Then, for any ε > 0:

Dz(X, 2ε) ≤ Sz(L2(X), ε).

PROOF. For simplicity, we denote K = BX∗ and L = B(L2(X))∗ . We recall that L2(X∗) is
canonically identified with a subspace of (L2(X))∗. Then, it is enough to show that for any ε > 0 and any
ordinal α:

∀k ∈ N ∀x∗1, .., x∗k ∈ dα
2ε(K),

k∑

i=1

x∗i1[ i−1
k , i

k [ ∈ sα
ε (L).

For a given ε > 0, this will be proved by transfinite induction. The statement is clear for α = 0 and passes
trivially to limit ordinals. So assume it is true for an ordinal α and let x∗1, .., x

∗
k ∈ dα+1

2ε (K). It follows
easily from the Hahn-Banach Theorem, that for all i ∈ {1, .., k}, x∗i belongs to the weak∗-closed convex
hull of dα

2ε(K) \ (x∗i + εBX∗). By induction hypothesis, φ =
∑k

i=1 x∗i1[ i−1
k , i

k [ ∈ sα
ε (L). Let V be a

weak∗-open subset of (L2(X))∗ containing φ. Then, there exist n ∈ N and (x∗i,j)1≤i≤k, 1≤j≤n ⊂ dα
2ε(K)

so that:

∀i ≤ k ∀j ≤ n ‖x∗i,j − x∗i ‖ ≥ ε and f =
k∑

i=1

(
1
n

n∑

j=1

x∗i,j)1[ i−1
k , i

k [ ∈ V.
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We now consider the function ψ of period 1 and such that, for all i ≤ k and all j ≤ n, ψ = x∗i,j on
[ i−1

k + j−1
kn , i−1

k + j
kn [. Next we set, for l ∈ N and t ∈ [0, 1], ψl(t) = ψ(lt). Then the sequence (ψl)l

converges to f for the weak∗-topology of (L2(X))∗. So, for l large enough, ψl ∈ V . On the other hand,
ψl ∈ sα

ε (L) (by induction hypothesis) and ‖ψl − φ‖ ≥ ε. This finishes our proof. ¥
Not surprisingly, these indices are related to Baire’s fundamental characterization of pointwise limits of

sequences of continuous functions. Indeed we have:

Theorem 1 Let X be a separable Banach space. The following assertions are equivalent.
(i) X∗ is separable.
(ii) Dz(X) < ω1, where ω1 is the first uncountable ordinal.
(iii) Cz(X) < ω1.
(iv) Sz(X) < ω1.
(v) The identity map from (BX∗ , w∗) into (X∗, ‖ ‖) is of first Baire class.

PROOF. Notice first that the separability of X implies that (BX∗ , w∗) is a complete metric space.
(i) ⇒ (ii). A fundamental result of I. Namioka and R. Phelps ([53]) asserts that if X∗ is separable, then

any non empty bounded subset of X∗ has non empty weak∗-slices of arbitrarily small diameter. So, for
any ε > 0, (dα

ε BX∗)α is a strictly decreasing family of weak∗-closed subsets of BX∗ . Since (BX∗ , w∗) is
separable, we get that for any ε > 0, Dz(X, ε) < ω1. Thus Dz(X) = supn∈NDz(X, 1/n) < ω1.

(ii) ⇒ (iii) and (iii) ⇒ (iv) are obvious.
(iv) ⇒ (v). Let φ = Id : (BX∗ , w∗) → (X∗, ‖ ‖). If Sz(X) < ω1, then it follows from Baire’s lemma

that for any non empty weak∗-closed subset F of BX∗ , φ|F has a point of continuity. Indeed, otherwise,
there would exist F weak∗-closed subset of BX∗ and n ∈ N such that the set Fn of all x∗ in F so that
the oscillation of φ|F at x∗ is at least 1/n has a non empty interior in F . Thus, for any ordinal α and any
ε < 1/n, the interior of Fn is included in sα

ε (F ) and therefore in sα
ε (BX∗). Hence we can apply Baire’s

great theorem (see [4] for a historical reference) to conclude that φ is the pointwise limit of a sequence of
weak∗ to norm continuous functions.

(v) ⇒ (i). Let (fn) be a sequence of continuous functions from (BX∗ , w∗) into (X∗, ‖ ‖) so that for
any x∗ ∈ BX∗ , ‖fn(x∗) − x∗‖ → 0. Since BX∗ is weak∗-separable, we have that for any n, fn(BX∗) is
norm separable. Thus BX∗ , which is included in the norm closure of ∪nfn(BX∗), is norm separable. ¥

Remark 3 The oscillation index of a Baire class 1 function, among other indices, is defined and studied
in detail by A. Kechris and A. Louveau in [43]. Then, the Szlenk index is simply the oscillation index of the
identity map from (BX∗ , w∗) into (X∗, ‖ ‖).

Let us now recall that a Banach space X is called an Asplund space if every convex continuous function
defined on a convex open subset U of X is Fréchet differentiable on a dense Gδ subset of U . The following
statement summarizes the classical theory of Asplund spaces (see the book of R. Deville, G. Godefroy and
V. Zizler [17] for a complete reference).

Theorem 2 Let X be a Banach space. The following assertions are equivalent:
(i) X is an Asplund space.
(ii) Every bounded non empty subset of X∗ has non empty weak∗-slices of arbitrarily small diameter.
(iii) X∗ has the Radon-Nikodým property.
(iv) Every separable subspace of X has a separable dual (in particular, a separable Banach space is an
Asplund space if and only if its dual is separable).
(v) Dz(X) < ∞.
(vi) Cz(X) < ∞.
(vii) Sz(X) < ∞.

We will now show that if the indices Sz(X), Dz(X) and Cz(X) of a Banach space X are countable,
then they are determined by the separable subspaces of X ([48]). More precisely, we have:
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Theorem 3 Let X be a Banach space and let α < ω1. If Dz(X) > α, then there is a closed separable
subspace Y of X such that Dz(Y ) > α.
The same is true for the other indices.

PROOF. We will only indicate the proof for the dentability index Dz. For this, it is enough to show
that there is a family of separable subspaces of X , (Xα)α<ω1 such that for any countable ordinal α and
any γ ≤ α: if x∗ ∈ dγ

ε BX∗ then x∗|Xα
, the restriction of x∗ to Xα, belongs to dγ

ε BX∗
α

. Let us denote this
statement by (Hα,γ).

We will first build (Xα) by transfinite induction. We pick x 6= 0 in X and set X0 = Rx.
If α is a limit ordinal, we define Xα to be the closed linear span of ∪β<αXβ .
If α = β + 1, we call V0 = Xβ . Let D0 be a countable dense subset of V0 and S0 be the collection of all
half spaces S = {x∗ ∈ X∗ : x∗(z) > q} with z ∈ D0 and q ∈ Q. If S ∈ S0 intersects dγ+1

ε BX∗ for some
γ ≤ β, then the diameter of S ∩ dγ

ε BX∗ is greater than ε and therefore we can find u∗, v∗ in S ∩ dγ
ε BX∗

and x = x(γ, S) in BX such that (u∗ − v∗)(x) > ε. Let us now denote by V1 the closed linear span of
Xβ ∪ {x(γ, S), γ ≤ β, S ∈ S0} and pick a countable dense subset D1 of V1. Then V2, D2, V3, D3,.. are
constructed similarly and Xα is the closed linear span of

⋃∞
n=0 Vn.

We will now prove by induction on α, that (Hα,γ) is true for any γ ≤ α. If α = 0 or if α is a limit
ordinal, the conclusion is clear. So assume that α = β + 1 and that for any γ ≤ β, (Hβ,γ) is true. Clearly,
we only need to prove (Hα,α). So let x∗ ∈ dβ+1

ε BX∗ and let S be a slice of dβ
ε BX∗ containing x∗. We

may assume that S = {x∗ ∈ X∗ : x∗(z) > q}, with z in some Dn and q in Q (following the notation used
above in the construction of Xβ+1). Let u∗ and v∗ in S ∩ dβ

ε BX∗ such that (u∗ − v∗)(x(β, S)) > ε. By
induction hypothesis u∗|Xβ

and v∗|Xβ
belong to dγ

ε BX∗
β

. Thus the diameter of S ∩ dβ
ε BX∗

β
and therefore the

diameter of S ∩ dβ
ε BX∗

α
are greater than ε. So x∗|Xα

∈ dγ+1
ε BX∗

α
. ¥

Remark 4 It is also proved in [48] that if X is a Banach space with separable dual such that Sz(X) > α
for some countable ordinal α, then there is a quotient Y = X/Z of X , with a shrinking basis and such that
Sz(Y ) > α.

In a recent work [63], S. Todorcevic proved that under a suitable “Baire-like” axiom, every Banach
space of density character ℵ1, has a quotient with a transfinite basis. One can wonder if this deep result
leads to a non separable version of the above remark.

4. Universal spaces
Let us first recall that a Banach space X is universal for a class of Banach spaces F if any Banach space
Y in F is isomorphic to a subspace of X . For instance, it is a well known result, due to S. Mazur, that
C(∆), the space of continuous functions on the Cantor set, is universal for the class of all separable Banach
spaces. In [62], W. Szlenk introduced his index to prove the following fundamental result.

Theorem 4 There is no separable reflexive Banach space universal for all reflexive separable Banach
spaces.

PROOF. Since every separable reflexive Banach space has a countable Szlenk index, it is enough
to build a family (Xα)α<ω1 of separable reflexive Banach spaces such that for any countable ordinal
α, Sz(Xα, 1) > α. We define Xα inductively as follows: X1 = `2, Xα+1 = Xα ⊕1 `2 and Xα =
(
∑

β<α

⊕Xβ)`2 if α is a limit ordinal. One can prove, by a straightforward transfinite induction that for any

countable ordinal α, Xα is separable and reflexive. Then, another induction shows that for any α < ω1,
0 ∈ sα

1 BX∗ . This relies on the following: if x∗ ∈ sα
1 BX∗ , then for any n ∈ N (x∗, en) ∈ sα

1 (BX∗⊕∞`2),
where (en) is the canonical basis of `2. Since (0, en) is weak∗ null in X∗⊕∞ `2 = (X ⊕1 `2)∗, we get that
(x∗, 0) ∈ sα+1

1 (B(X⊕1`2)∗). ¥
Note that J. Bourgain [12] significantly improved this result by showing:
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Theorem 5 If a Banach space X is universal for all separable reflexive Banach spaces then X contains
an isomorphic copy of C(∆).

Remark 5 1) A recent important result of E. Odell and T. Schlumprecht [55] asserts the existence of a
separable reflexive space, which is universal for the class of all separable superreflexive Banach spaces. In
fact, they obtain a stronger result, which is that this space is universal for the class of all reflexive Banach
spaces X such that Sz(X) ≤ ω and Sz(X∗) ≤ ω.
In a work in preparation, E. Odell, T. Sclumprecht and A. Zsak improve this result and show that for any
fixed countable ordinal α, there is a reflexive space which is universal for all reflexive Banach spaces X
such that Sz(X) ≤ α and Sz(X∗) ≤ α (private communication).

2) However, one can show, with a simple transfinite induction (see [45] for details), that the spaces
(Xα)α<ω1 satisfy the following property: for any α < ω1, Xα admits a Schauder basis (eα

n)∞n=1 so that

∀n ≥ 1 ∀x ∈ sp{eα
1 , .., eα

n} ∀y ∈ sp{eα
n+1, ..} ‖x + y‖2 ≥ ‖x‖2 + ‖y‖2.

Then, it follows easily that for any α < ω1, Sz(X∗
α) ≤ ω. Thus, there is no separable reflexive space

universal for the class of reflexive spaces X with Sz(X) ≤ ω. As well, there is no separable reflexive space
universal for the class of reflexive spaces X with Sz(X∗) ≤ ω.

3) Universality problems in a descriptive set theoretical context are revisited in the important recent
work by S. Argyros and P. Dodos ([2]). This point of view is further developed in an even more recent
work of P. Dodos and V. Ferenczi ([19]). As a consequence of their study of some strongly bounded classes
of Banach spaces (a notion introduced in [2]), they obtain for instance that for every countable ordinal
α, there exists a Banach space Yα with separable dual such that every separable Banach space X with
Sz(X) ≤ α embeds into Yα.

5. The Szlenk index of C(K) spaces

Another classical feature of the Szlenk index is that it perfectly describes the isomorphic classification of
C(K) spaces when K is a countable compact space. In this section, we shall detail this property.

First, we need to recall some standard facts about ordinals. For that purpose, we follow the notation of
[58]. An ordinal α is identified with the set of ordinals β such that β < α. For an ordinal α, we denote
α+ = α + 1. We always consider that the sets of ordinals are topological spaces equipped with the order
topology. Then, for any ordinal α, C(α+) is the space of all real valued continuous functions on [0, α]
equipped with the supremum norm and C0(α) = {f ∈ C(α+), f(α) = 0}. Note that for any infinite α,
C(α+) is isomorphic to C0(α). Through the natural isometries, we will identify the dual space of C(α+)
to `1([0, α]) and the dual space of C0(α) to `1([0, α)). For α and β countable ordinals, we set eα(β) = 1 if
α = β and 0 otherwise.

The isomorphic classification of these spaces is described by the following fundamental result due to C.
Bessaga and A. Pełczyński [8].

Theorem 6 Let α and β be two ordinals so that ω ≤ α ≤ β < ω1. Then C(α+) is isomorphic to C(β+)
if and only if β < αω .

Then, C. Samuel [59] performed the following computation.

Theorem 7 For any 0 ≤ α < ω1,
Sz(C(ωωα

+)) = ωα+1.

By a result of A.A. Milutin [52], C(K) and C(L) are isomorphic, whenever K and L are two compact
uncountable metrizable spaces. In that case, C(K) and C(L) are not Asplund. So we can state:
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Corollary 1 The Szlenk index characterizes the isomorphism class of C(K) spaces, for K compact and
metrizable.

Samuel’s proof contains more information but is rather complicated and relies on the following deep
result of D. Alspach and Y. Benyamini [1].

Theorem 8 Let X be a L∞-space. Then X has a quotient isomorphic to C(ωωα

+) if and only if Sz(X) >
ωα.

We shall indicate here a direct and elementary proof due to P. Hájek and G. Lancien [33]. H.P. Rosenthal
conjectured that there should be such a proof in his survey paper on C(K) spaces [58].

PROOF. Showing the inequality Sz(C(ωωα

+)) ≥ ωα+1 is the easy part of the proof. Indeed, using
the fact that the set (eγ)γ≤β is 2-separated for the norm of `1([0, β]) and w∗-homeomorphic to [0, β], we
get that for any β < ω1, Sz(C(ωβ+), 1) > β (see [58] for details). Then Proposition 2 implies that
Sz(C(ωωα

+)) ≥ ωα+1.
So we now concentrate on the converse inequality. For a fixed 0 ≤ α < ω1, we denote Z = `1([0, ωωα

))
equipped with the weak∗-topology induced by C0(ωωα

). Then, for all γ < ωωα

, we set Zγ = `1([0, γ])
equipped with the weak∗-topology induced by C(γ+) and Pγ the canonical projection from Z onto Zγ .
The following lemma is the crucial step of our argument (in this statement, the Szlenk derived sets are
meant with the weak∗-topologies described above for Z and Zγ).

Lemma 2 Let α < ω1, γ < ωωα

, β < ω1 and ε > 0.
If z ∈ sβ

3ε(BZ) and ‖Pγz‖ > 1− ε, then Pγz ∈ sβ
ε (BZγ

).

PROOF. Given α < ω1, γ < ωωα

, and ε > 0, we denote, for β < ω1, by (Hβ) the implication to
be proved. This will be done by transfinite induction on β. (H0) is trivially true and (Hβ) passes easily
to limit ordinals. So assume (Hβ) is true and let us prove (Hβ+1). Let z ∈ BZ such that ‖Pγz‖ > 1 − ε

and Pγz /∈ sβ+1
ε (BZγ ). We need to show that z /∈ sβ+1

3ε (BZ), so we may assume that z ∈ sβ
3ε(BZ)

and therefore that Pγz ∈ sβ
ε (BZγ ). Then, there is a weak∗-open subset V of Zγ containing Pγz such

that d =diam(V ∩ sβ
ε (BZγ )) < ε. Using the Hahn-Banach separation theorem, we may choose V so that

V ∩ (1− ε)BZγ = ∅. We may also assume that

V =
n⋂

i=1

{x ∈ Zγ , fi(x) > αi},

where αi ∈ R and fi ∈ C(γ+). We now define functions gi ∈ C0(ωωα

) by gi = fi on [0, γ] and gi = 0 on
(γ, ωωα

). Then we consider the weak∗-open subset of Z:

U =
n⋂

i=1

{y ∈ Z, gi(y) > αi}.

It is clear that z ∈ U ∩ sβ
3ε(BZ). For any y ∈ U ∩ sβ

3ε(BZ), Pγy ∈ V , so ‖Pγy‖ > 1 − ε and by the
induction hypothesis Pγy ∈ V ∩ sβ

ε (BZγ ). Therefore for all y, y′ ∈ U ∩ sβ
3ε(BZ), ‖Pγy−Pγy′‖ ≤ d < ε.

Since moreover ‖Pγy‖ > 1− ε and ‖Pγy′‖ > 1− ε, we have that ‖y− y′‖ ≤ d+2ε < 3ε. We have shown
that diam(U ∩ sβ

3ε(BZ)) < 3ε and therefore z /∈ sβ+1
3ε (BZ). This finishes our induction. ¥

In order to conclude the proof of Theorem 7, it is enough to show that

∀0 ≤ α < ω1 ∀γ < ωωα ∀ε > 0 sωα

ε (BZγ ) = ∅. (2)

This will be done by transfinite induction on α. If α = 0, then for any γ < ω, Zγ is finite dimensional
and therefore sε(BZγ ) = ∅. So the statement is true for α = 0. It also passes easily to limit ordinals. So
assume now that it is true for α. Then Lemma 2 implies that

∀ε > 0 sωα

ε (BZ) ⊂ (1− ε

3
)BZ , (3)
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where Z = `1([0, ωωα

)) is equipped with the weak∗-topology induced by C0(ωωα

). It now follows from
(3) and Proposition 3 that

∀ε > 0 sωα+1

ε (BZ) = ∅ (4)

Now, Theorem 6 implies that for any ωωα ≤ γ < ωωα+1
, C(γ+) is isomorphic to C(ωωα

+) and therefore
to C0(ωωα

). So sωα+1

ε (BZγ ) = ∅, for any ε > 0 and any γ < ωωα+1
. This finishes our induction (Note that

we only used the “if” part of Theorem 6, which is the easy one). ¥

Remark 6 It is also shown in [33], that

∀α ∈ [ω1, ω1.ω), Sz(C(α+)) = ω1.ω.

However, Z. Semadeni proved in [60] that when ω1 ≤ α < β < ω1.ω, C(α+) and C(β+) are isomorphic
if and only if ω1.n ≤ α < β < ω1.(n + 1), for some integer n. So, unlike in the separable case, the Szlenk
index does not distinguish the isomorphic classes for the non separable C(α+) spaces.

6. The Szlenk index as a coanalytic rank

Our first task will be to prove the following improvement of Theorem 1, which is based on ideas of B.
Bossard (see [9] or [10]).

Theorem 9 There exists a universal function ψ : [1, ω1) → [1, ω1) such that if α < ω1 and X is a Banach
space satisfying Sz(X) ≤ α, then Dz(X) ≤ ψ(α).

Before to proceed with the proof, we need to introduce some notation and background. Let K =
(B`∞ , σ(`∞, `1)). K is a compact metrizable space. We denote by F be the set of all closed subsets of
K and we equip F with the usual Hausdorff topology. Then F is again compact and metrizable. The next
lemma is due to B. Bossard ([9]):

Lemma 3 For any ε > 0, sε and dε are Borel maps on F .

PROOF. We will only detail the argument for dε. Then it is enough to prove that for any open subset
O of K, H = {F ∈ F , dεF ⊂ O} is a Borel subset of F .
For x ∈ `1 and a ∈ R, we denote Sx,a = {x∗ ∈ K, x∗(x) > a}. Let V be the set of all linear combinations
with rational coefficients of the elements of the canonical basis of `1. Then, we clearly have:

H = {F ∈ F : ∀x∗ ∈ F \O ∃(x, a) ∈ V ×Q, x∗ ∈ Sx,a and diam(Sx,a ∩ F ) < ε}.

Let P be the set of all finite subsets of V ×Q. Then, by compactness, we get that

H =
⋃

I∈P

(
{F ∈ F , F ⊂

⋃

(x,a)∈I

Sx,a ∪O} ∩
⋂

(x,a)∈I

Hx,a

)
,

where Hx,a = {F ∈ F , diam(F ∩ Sx,a) < ε}. Then it easy to verify that Hx,a is a closed subset of F .
Finally, since P is countable, we obtain that H is a Gδσ subset of F . ¥

PROOF. [Proof of Theorem 9] In view of Theorem 3, we may clearly assume that X is separable.
Then X is isometric to a quotient of `1 and we can identify BX∗ with an element of F . So, it is enough to
build ψ such that if α < ω1, F ∈ F and sα

ε F = ∅ for any ε > 0, then d
ψ(α)
ε F = ∅ for any ε > 0.

Let us denote
Bα = {F ∈ F , ∀ε > 0 sα

ε F = ∅}.
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By Lemma 3, Bα is a Borel subset of F . On the other hand, any F in Bα is norm separable and therefore
weak∗-dentable (see [18]), so

∀ε > 0 Bα ⊂ {F ∈ F , dω1
ε F = ∅} = Cε.

The crucial point is now to use the results of C. Dellacherie [14] on the applications of the Kunen-Martin
Theorem to the study of analytic derivations. It follows from this work that for any ε > 0 and any Borel
subset B of Cε, there exists β < ω1 such that B ⊂ {F ∈ F , dβ

ε F = ∅}. So,

∀α < ω1 ∀n ∈ N ∃ψn(α) < ω1, Bα ⊂ {F ∈ F , d
ψn(α)
1/n F = ∅}.

We can now conclude the proof by taking ψ(α) = sup
n≥1

ψn(α). ¥

Remark 7 Let us now denote
ψ(α) = sup

Sz(X)≤α

Dz(X).

It follows from Proposition 1 (iv) and v)) that ψ(1) = ω. It is easy to see that ψ(ω) ≥ ω2. Indeed,
Sz(c0(N)) = ω, while Dz(X) ≤ ω if and only if X is super-reflexive (as we will see in the next sections).
It is proved in [33] that ψ(ω) = ω2, but the values of ψ(ωα), for α ≥ 2 are not known.
Similarly, we can define

φ(α) = sup
Sz(X)≤α

Cz(X), and θ(α) = sup
Cz(X)≤α

Dz(X).

As we will show in section 8., φ(ω) = ω. But we do not know if the function φ is the identity.
Let us also mention, that it follows from recent results of F. Garcı́a, L. Oncina, J. Orihuela and S. Troyanski
(see [25] and [26]), that θ(α) ≤ ωωα.

We are very grateful to the referee for suggesting the following statement:

Proposition 5 There is an uncountable set S ⊂ [1, ω1) such that ψ is the identity on S.

PROOF. Let A = ψ([1, ω1)). We define f : A → [1, ω1) by

∀α ∈ A, f(α) = inf
X, Dz(X)≥α

Sz(X).

Assume that f(α) < α, for all α ∈ A. Then, the so-called “pressing down lemma” and the fact that A is
uncountable imply the existence of an uncountable subset B of A such that f is constant on B (we use here
the simplest version of this lemma due to J. Nowák [54]). This is clearly in contradiction with Theorem 9.
So, there is α ∈ A such that f(α) = α. Let β ∈ [1, ω1) so that ψ(β) = α. We now wish to prove that
β = α. So let us assume that β < α.
If there exists a separable Banach space X such that Sz(X) ≤ β and Dz(X) = α, we directly have a
contradiction with the equality f(α) = α. Otherwise, it follows from Proposition 2, that α = ωλ, where
λ is a limit ordinal. Besides, we can find a sequence of separable Banach spaces (Xn)∞n=0 such that
supn Dz(Xn) = α and for all n ∈ N, Sz(Xn) ≤ β. Let now X be the `2-sum of the Xn’s. We have
that Dz(X) ≥ α. On the other hand, one can show, using some techniques in the spirit of Lemma 2, that
Sz(X) ≤ β.ω < α. This is again a contradiction.

This proves the existence of α ≥ 1, such that ψ(α) = α. The same reasoning can be applied to f
restricted to any uncountable subset of A. This implies that S = {α ∈ [1, ω1), ψ(α) = α} is uncountable.
¥
Note. Let us say a few words on the formal setting developed by B. Bossard (see [9] and [10]) in which
Theorem 9 can be properly interpreted. The space E = C(∆) of all continuous functions on the Cantor
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set ∆ is isometrically universal for all separable Banach spaces. So we can consider the set of all closed
subspaces of E, denoted by G(E), as being the “set of all separable Banach spaces”. The set F of all closed
subsets of E can be equipped with the Effros Borel-structure, generated by the sets {F ∈ F , F ∩On 6= ∅},
where (On)∞n=1 is a basis for the topology of E. The above construction does not depend on the choice of
the basis (On)∞n=1 and defines a standard Borel structure. Then one can show that G(E) is a Borel subset
of F and therefore inherits its Borel structure. Let us also recall that a subset A of a standard Borel space
B is analytic if there is a standard Borel space B′ such that A is the canonical projection on B of a Borel
subset of B × B′. Then a subset C of B is coanalytic in B if B \ C is analytic. Finally, if C is coanalytic
in B, we say that a map r : B → ω1 is a coanalytic rank for C if C = {x ∈ B, r(x) < ω1} and the sets
{(x, y) ∈ B ×B, r(x) < r(y)} and {(x, y) ∈ B ×B, x ∈ C and r(x) ≤ r(y)} are coanalytic in B ×B.

The following result is fundamental in the descriptive set theory (see the book of A. Kechris [42] for a
complete exposition).

Theorem 10 1) Let C be a coanalytic subset of a standard Borel space. Then C admits a coanalytic rank.
2) Let C be a coanalytic subset of a standard Borel space B and r be a coanalytic rank for C. Then,

for every α < ω1, Bα = {x ∈ B, r(x) ≤ α} is a Borel subset of B. Moreover, for every analytic subset A
of C, there is α < ω1 such that A ⊂ Bα.

In this setting, B. Bossard proved the following.

Theorem 11 The set C = {X ∈ G(E), X∗ is separable} is coanalytic non Borel in G(E) and the
applications Sz and Dz are coanalytic ranks for C.

For an overview of the applications of the descriptive set theory in Banach space geometry, we refer
the reader to the survey paper by S.A. Argyros, G. Godefroy and H.P. Rosenthal [3] and references therein
(including in particular the work of B. Bossard).

7. Locally uniformly rotund norms, uniformly rotund norms
and slicing indices

7.1. The Szlenk index and locally uniformly rotund norms
First, we recall that a norm ‖ ‖ of a Banach space X is locally uniformly rotund (in short LUR) if lim ‖x−
xn‖ = 0, whenever ‖x‖ = ‖xn‖ = 1 for all n ≥ 1 and limn→∞ ‖x + xn‖ = 2. Our first proposition,
whose proof can be found in [17], describes the well known duality between local uniform rotundity and
Fréchet smoothness:

Proposition 6 Let (X, ‖ ‖) be a Banach space such that the dual norm of ‖ ‖ is LUR. Then ‖ ‖ is Fréchet
differentiable on X \ {0} (in short F-smooth).

It is known that if a Banach space has an equivalent F-smooth norm then it is an Asplund space (see
[17]) but R. Haydon proved that the converse is false [32]. However, it follows from the work of Asplund,
Kadets and Klee that this equivalence is true in the separable case. More precisely, we have:

Theorem 12 Let X be a separable Banach space. The following assertions are equivalent:
(i) X is an Asplund space.
(ii) X admits an equivalent norm whose dual norm is LUR.
(iii) X admits an equivalent F-smooth norm.

Our next result ([48]) can be seen as a non separable extension of this theorem.

Theorem 13 Let X be a Banach space. If Sz(X) < ω1, then X admits an equivalent norm whose dual
norm is LUR.
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PROOF. By Theorem 9, we have that Dz(X) < ω1. For n ≥ 1 and α <Dz(X, 2−n), we choose
an,α > 0 such that

∞∑
n=1

∑

α<Dz(X,2−n)

a2
n,α = 1.

Then, we set

∀x∗ ∈ X∗ : f(x∗) = ‖x∗‖2 +
∞∑

n=1

∑

α<Dz(X,2−n)

f2
n,α(x∗),

where fn,α(x∗) = an,α dist(x∗, dα
2−nBX∗).

Lemma 4 Let x∗ in X∗ and (x∗k)∞k=1 be a sequence in X∗ such that

∀k ≥ 1 f(x∗) = f(x∗k) = 1 and lim
k→∞

f(
x∗ + x∗k

2
) = 1.

Then
lim

k→∞
‖x∗ − x∗k‖ = 0.

PROOF. The first step is to show that

∀n ≥ 1 ∀α < Dz(X, 2−n), lim
k→∞

fn,α(x∗k) = fn,α(x∗). (5)

By convexity of f , we get that
(‖x∗‖+ ‖x∗k‖

2

)2

+
∞∑

n=1

∑

α<Dz(X,2−n)

(
fn,α(x∗) + fn,α(x∗k)

2

)2

→ 1.

Then, (5) follows easily from the uniform convexity of `2(N).
Let us now fix ε > 0 and pick n so that 2−n < ε/2. Then, there exists α < Dz(X, 2−n) such that

x∗ ∈ dα
2−nBX∗ \ dα+1

2−n BX∗ . Using (5) and a simple approximation argument, we may as well assume
that (x∗k) ⊂ dα

2−nBX∗ . Thus (x∗ + x∗k)/2 is also in dα
2−nBX∗ . If we assume that ‖x∗ − x∗k‖ ≥ ε, then

any weak∗-slice of dα
2−nBX∗ containing (x∗ + x∗k)/2 has diameter at least ε/2 and therefore (x∗ + x∗k)/2

belongs to dα+1
2−n BX∗ . This implies that

fn,α+1(
x∗ + x∗k

2
) = 0 and

1
2
(fn,α+1(x∗) + fn,α+1(x∗k)) ≥ 1

2
fn,α+1(x∗) > 0.

Since limk→∞ f(x∗+x∗k
2 ) = 1 and all fm,β’s are convex, this is impossible for k large enough. Therefore

limk→∞ ‖x∗ − x∗k‖ = 0. ¥
Clearly, f(x∗) ≥ ‖x∗‖2. On the other hand, for any n ∈ N and any α < Dz(X, 2−n), 0 ∈ dα

2−n(BX∗)
and therefore dist(x∗, dα

2−nBX∗) ≤ ‖x∗‖. Thus f(x∗) ≤ 2‖x∗‖2. Moreover, since the sets dα
2−nBX∗

are weak∗-closed, convex and symmetric, f is weak∗ lower semicontinuous and the Minkowski functional
N of {x∗ ∈ X∗, f(x∗) ≤ 1} is the dual norm of an equivalent norm on X . Finally, the local uniform
rotundity of N follows easily from Lemma 4. ¥

We will now explain how this theorem applies to the C(K)-spaces. If K is a compact space, we denote
by K ′ the set of all accumulation points of K. Then, we define inductively Kα+1 = (Kα)′ for any ordinal
α and Kα = ∩β<αKβ if α is a limit ordinal. A compact space K is said to be scattered if Kα = ∅ for some
ordinal α. it is known (see [53]) that C(K) is an Asplund space if and only if K is scattered. R. Haydon [32]
showed the existence of a compact space K such that Kω1 is a singleton, but so that C(K) does not admit
any equivalent Gâteaux-smooth norm. However, we can deduce from Theorem 13 the following result of
R. Deville [15], which can now be seen as an optimal result about F-smooth renormings of C(K)-spaces:
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Theorem 14 Let K be a compact space such that Kω1 = ∅. Then C(K) has an equivalent norm whose
dual norm is LUR.

In view of Theorem 13, we have to show that Sz(C(K)) < ω1. More precisely, we will prove:

Proposition 7 Let K be a compact space such that Kωα 6= ∅ and Kωα+1
= ∅, with α < ω1. Then

Sz(C(K)) = ωα+1.

PROOF. A straightforward transfinite induction shows that if t ∈ Kβ , then the Dirac mass δt belongs
to sβ

1BC(K)∗ . Thus Sz(C(K)) > ωα and therefore, by Proposition 2, Sz(C(K)) ≥ ωα+1.
We now turn to the converse inequality. Let X be a separable subspace of C(K). For t ∈ K, we

denote by φ(t) the restriction of δt to X . Clearly, φ is a continuous map from K into BX∗ equipped with
its weak∗-topology. Then L = φ(K) is metrizable and compact and X embeds isometrically into C(L) in
a canonical way. By a simple transfinite induction, we get that for any ordinal β, Lβ ⊂ φ(Kβ) (see Lemma
VI.8.1 in [17] for details). So Lωα+1

= ∅. Therefore L is countable and it follows from Theorem 7 that
Sz(C(L)) ≤ ωα+1. Thus Sz(X) ≤ ωα+1. Finally, Theorem 3 about separable determination yields the
conclusion. ¥

7.2. The dentability index, uniformly rotund renormings and supereflexiv-
ity

We recall that, if (X, ‖ ‖) is a Banach space, the modulus of convexity of the norm ‖ ‖ is defined by

∀ε ∈ (0, 2] δ‖ ‖(ε) = inf{1− ‖x + y‖
2

, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

The norm ‖ ‖ is uniformly rotund (in short UR) if δ‖ ‖(ε) > 0, for all ε > 0.
The norm ‖ ‖ is said to have a power type modulus of convexity if

∃C > 0 ∃p ≥ 2 such that ∀ε ∈ (0, 2] δ‖ ‖(ε) ≥ Cεp.

Without any use of supereflexivity, we shall prove the following (this is taken from [47]).

Theorem 15 Let X be a Banach space. The following assertions are equivalent:
(i) X admits an equivalent UR norm.
(ii) D(X) ≤ ω.
(iii) X admits an equivalent UR norm with power type modulus of convexity.

Proof. (iii) ⇒ (i) is trivial.
(i) ⇒ (ii). Let | | be an equivalent UR norm on X , B its unit ball, ε > 0 and x ∈ B \ (1 − δ| |(ε))B.

By Hahn-Banach Theorem there is a slice T of B containing x and whose intersection with (1− δ(ε))B is
empty. Then it is clear from the definition of δ| |, that the diameter of T is at most ε. So we have shown that
Dε(B) ⊂ (1− δ| |(ε))B. The conclusion now follows from Proposition 3.

(ii) ⇒ (iii). Let ‖ ‖ be the original norm on X and BX its unit ball. For k ∈ N, D(X, 2−k) is by
assumption an integer and we denote Nk =D(X, 2−k) − 1. Then we define on X the following convex
function:

f(x) = ‖x‖+
∞∑

k=1

Nk∑
n=1

2−k

Nk
dist(x,Dn

2−k(BX)).

Finally, we define on X an equivalent norm | | as the Minkowski functional of the set {x ∈ X, f(x) ≤ 1}.
The crucial step of the proof is to show
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Lemma 5 Let x, y ∈ X so that f(x) = f(y) = 1 and ‖x− y‖ ≥ ε. Then

f(
x + y

2
) ≤ 1− ε2

32 (D(X, ε
8 ))2

. (6)

PROOF. Let k ∈ N so that ε
8 ≤ 2−k < ε

4 .
Set γ = ε

4Nk
and n = max{m ≥ 0, x ∈ Dm

2−k(BX) and y ∈ Dm
2−k(BX)}.

Notice that ‖x− y‖ ≥ ε implies that n < Nk.
Assume that

f(
x + y

2
) > 1− 2−kγ

Nk
.

Then, all functions involved in the definition of f being convex, we get that for all 1 ≤ l ≤ Nk − n,

1
2
(
d(x,Dn+l

2−k (BX)) + d(y,Dn+l
2−k (BX)

)− d(
x + y

2
, Dn+l

2−k (BX)) < γ. (7)

Then we show by induction that

∀1 ≤ l ≤ Nk − n,
1
2
(
d(x,Dn+l

2−k (BX)) + d(y, Dn+l
2−k (BX)

)
< lγ. (8)

Indeed, since x, y ∈ Dn
2−k(BX) and ‖x− y‖ ≥ ε, x+y

2 ∈ Dn+1
2−k (BX). Then (7) implies that (8) is true for

l = 1.
Assume now that (8) is true for l. Then, there exist x′, y′ ∈ Dn+l

2−k (BX) such that 1
2 (‖x−x′‖+‖y−y′‖) <

lγ. This implies that ‖x′ − y′‖ > ε
2 and therefore that x′+y′

2 ∈ Dn+l+1
2−k (BX). Thus

d(
x + y

2
, Dn+l+1

2−k (BX)) ≤ ‖x + y

2
− x′ + y′

2
‖ < lγ.

This, together with (7) finishes our inductive proof of (8).
But, if we apply (8) for l = Nk − n, we obtain that

1
2
(
d(x,Dn+l

2−k (BX)) + d(y,Dn+l
2−k (BX)

)
<

ε

4
.

This yields again the existence of x′, y′ ∈ DNk

2−k(BX) with ‖x′−y′‖ > ε
2 and therefore that DNk+1

2−k (BX) 6=
∅, which is a contradiction.
Thus

f(
x + y

2
) ≤ 1− 2−kγ

Nk
≤ 1− ε2

32 (D(X, ε
8 ))2

.

¥
PROOF. [End of proof of Theorem 15] Now an elementary computation leads us to

∃a > 0 ∀ε > 0, δ| |(ε) ≥ aε2(D(X, aε))−2. (9)

Let us finally explain why | | has a power type modulus of convexity. Since X is reflexive, by Lemma 1 we
get

D(X, ε) = Dz(X∗, ε) ≤ Sz((L2(X))∗,
ε

2
).

Since X has an equivalent UR norm, so does L2(X). In particular, Sz((L2(X))∗) ≤ Dz((L2(X))∗) =
D(L2(X)) ≤ ω. So Proposition 4 yields:

∃C > 0 ∃p ∈ [1,+∞) ∀ε > 0 D(X, ε) ≤ Cεp.

Then the conclusion follows immediately from (9). ¥
We can now combine Theorem 15 with Enflo’s renorming Theorem ([24]), which asserts that every

supereflexive Banach space admits an equivalent uniformly rotund norm.
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Theorem 16 Let X be a Banach space. The following assertions are equivalent:
(i) X is supereflexive.
(ii) D(X) ≤ ω.
(iii) There exist C > 0 and p ∈ [1, +∞) such that: ∀ε > 0 D(X, ε) ≤ Cεp.
(iv) X admits an equivalent UR norm with power type modulus of convexity.

PROOF. We already know, from the previous proof, that (ii) implies (iii) and (iii) implies (iv).
The definition of uniform rotundity is a property of finite sets (pairs) of vectors. Thus it is clear that, if
the norm of X is uniformly rotund, so is the norm of any space Y which is finitely representable in X .
Therefore (iv) implies (i).
We obtain that (i) implies (ii), by combining Enflo’s renorming Theorem and the easy implication in Theo-
rem 15. ¥
Comment. One can see this as a new proof of Pisier’s improvement ([56]) of Enflo’s Theorem, knowing
Enflo’s result. Let us also mention that a direct proof of the fact that (i) implies (ii), using an earlier work
of R.C. James ([35]), can be found in [27].

However, the main interest of the above construction is probably not to reprove Pisier’s Theorem, but
rather to give a simple geometric formula for constructing an equivalent UR norm with power type modulus.

8. The Szlenk index and uniformly Kadec-Klee renormings
The purpose of this section is to give a renorming result similar to Theorem 15 for the condition “Sz(X) ≤
ω”.
If (X, ‖ ‖) is a Banach space, we define θ‖ ‖(ε) for ε > 0 to be such that 1 − θ‖ ‖(ε) is the supremum of
‖x∗‖ over all x∗ ∈ BX∗ so that every weak∗-neighbourhood of x∗ in BX∗ has a ‖ ‖-diameter greater than
ε.
The norm of X∗ is weak∗ uniformly Kadets-Klee (in short w∗-UKK) if for any ε > 0, θ‖ ‖(ε) > 0.
Let us also recall the definition of the modulus of asymptotic smoothness of a Banach space X:

∀τ > 0, ρ(τ) = sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

(‖x + τy‖ − 1).

This modulus was first introduced by V.D. Milman in [51]. Then a Banach space X is said to be uniformly
asymptotically smooth if limτ→0 ρ(τ)/τ = 0.

The following proposition, which can be found in [22] (Proposition 3.6), relates these two notions.

Proposition 8 Let X be a separable Banach space. Then, the norm of X∗ is weak∗ uniformly Kadets-
Klee if and only if the norm of X is uniformly asymptotically smooth.

It is clear that sε(BX∗) ⊂ (1 − θ‖ ‖(ε))BX∗ and therefore that cε(BX∗) ⊂ (1 − θ‖ ‖(ε))BX∗ . It
follows now from Proposition 3, that Cz(X) ≤ ω and Sz(X) ≤ ω, whenever X admits an equivalent norm
whose dual norm is w∗-UKK. It is then natural to ask whether the converse is true. This question has been
answered positively by H. Knaust, E. Odell and T. Schlumprecht ([44]) in the separable case. In fact they
obtain the following theorem, which contains much more information on the structure of these spaces.

Theorem 17 Let X be a separable Banach space such that Sz(X) ≤ ω. Then there exist a Banach space
Z = Y ∗ with a boundedly complete finite dimensional decomposition (Hj) and p ∈ [1, +∞) so that X∗

embeds isomorphically (norm and weak∗) into Z and

‖
∑

zj‖p ≥
∑

‖zj‖p for all block bases (zj) of (Hj). (10)

Remark 8 We already mentioned in Remark 7 that Dz(X) ≤ ω2, whenever Sz(X) ≤ ω. Let us just
mention that the proof of this result ([33]) is based on the above structural theorem.
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We shall concentrate here on our renorming problem. It follows easily from the upper estimate (10) that
for every ε > 0, θ‖ ‖(ε) ≥ εp. Then one can deduce.

Corollary 2 Let X be a separable Banach space. The following assertions are equivalent.
(i) X admits an equivalent norm, whose dual norm is w∗-UKK.
(ii) Cz(X) ≤ ω.
(iii) Sz(X) ≤ ω.
(iv) X admits an equivalent norm, whose dual norm is w∗-UKK with a power type modulus.
(v) There exist C > 0 and p ∈ [1, +∞) such that: ∀ε > 0 Cz(X, ε) ≤ Cεp.
(vi) There exist C > 0 and p ∈ [1, +∞) such that: ∀ε > 0 Sz(X, ε) ≤ Cεp.

In [30], the relationship between the different exponents involved in the above statement are precisely
described. The two main results are the following:

Theorem 18 Let X be a separable Banach space with Sz(X) ≤ ω and suppose p > 1 is such that

sup
ε>0

εpSz(X, ε) < ∞.

Then
sup
ε>0

εpCz(X, ε) < ∞.

Theorem 19 Let X be a separable Banach space with Sz(X) ≤ ω. Then there exists an absolute constant
C > 0 such that for any ε > 0 there is a 2-equivalent norm | | on X so that

∀ε > 0 θ| |(ε) ≥ (Cz(X,
ε

C
))−1.

The main applications of this result will be explained in section 9.. But as a first consequence we obtain:

Corollary 3 Let X be a separable Banach space with Sz(X) ≤ ω and define the Szlenk power type of X
to be

pX := inf{q ≥ 1, sup
ε>0

εqSz(X, ε) < ∞}.

Then
pX = inf{q ≥ 1, there is an equ. norm | | on X, ∃c > 0 ∀ε > 0, θ| |(ε) ≥ cεq}.

PROOF. It follows rather easily from the proof of Proposition 3, that pX ≤ q, whenever X admits an
equivalent norm | | such that θ| |(ε) ≥ cεq, for some c > 0 and all ε > 0.

So, we need to show that, conversely, for any q > pX , there is an equivalent norm | | on X satisfying

∃c > 0 ∀ε > 0 θ| |(ε) ≥ cεq. (11)

Fix pX < r < q. By Theorems 18 and 19, there exists C > 0, such that for each k ∈ N there is a norm | |k
on X which is 2-equivalent to the original norm and so that θ| |k(2−k) ≥ C2−rk. Now define the norm | |
on X∗ by

|x∗| =
∞∑

k=1

2(r−q)k|x∗|k.

This defines an equivalent dual norm on X∗ and an easy computation shows that it satisfies (11). ¥
We refer the reader to [30] for the detailed proofs of Theorems 18 and 19. However, we will try to

give the general scheme of the argument. Even for that limited purpose, we need to introduce quite a lot of
notation.

224



A survey on the Szlenk index and some of its applications

Let (FN,¹) be the set of finite sequences of positive integers equipped with its natural partial order.
For a = (a1, .., an) ∈ FN, we denote |a| = n, a− = (a1, .., an−1) the predecessor of a and a+ =
{(a1, .., an, k), k ∈ N} the set of successors of a. A subset S of FN is said to be a full tree of height N if
the following conditions hold

∅ ∈ S.
∀a ∈ S \ {∅}, a− ∈ S.
If a ∈ S and |a| = N then a + ∩S = ∅.
If a ∈ S and |a| < N then a + ∩S is infinite.

If S is a full tree of height N , a branch of S is a set of the form B = {b, b ¹ a}, with a ∈ S and |a| = N .
Let now V be a vector space. A tree map of height N in V is any map (xa)a∈S from a tree of height N
into V . If τ is a topology on V , we say that a tree map (xa)a∈S of height N is τ -null if for any a ∈ S with
|a| < N , {xb}b∈a+ is a τ -null sequence.

It is easy to show, in the spirit of (vii) in Proposition 1, that Sz(X, ε) is equivalent to the maximal height
of a weak∗-null tree map (x∗a)a∈S in X∗ such that for all a ∈ S, ‖x∗a‖ ≥ ε and for any branch B of S,
‖∑

a∈B x∗a‖ ≤ 1. However, we shall use a more efficient dual approach. If σ > 0, define N = N(σ) to be
the least integer so that there exists a weakly-null tree map (xa)a∈S in X of height N + 1 such that for all
a ∈ S, ‖xa‖ ≤ σ and for any branch B of S, ‖∑

a∈B xa‖ > 1. The crucial step is to prove the following

Theorem 20 Let X be a separable Banach space and σ > 0.
(i) If N(σ) < ∞ there is a norm | | on X satisfying 1

2‖x‖ ≤ |x| ≤ ‖x‖ and

lim sup
n→∞

|x + xn| ≤ 1 +
1

N(σ)
,

whenever |x| = 1, limn→∞ |xn| = σ
2 and xn

w−→ 0.
(ii) If N(σ) = ∞, then, for any ε > 0, there is a norm | | on X satisfying 1

2‖x‖ ≤ |x| ≤ ‖x‖ and

lim sup
n→∞

|x + xn| ≤ 1 + ε,

whenever |x| = 1, limn→∞ |xn| = σ
2 and xn

w−→ 0.

PROOF. [Sketch of proof] We mention first how the norm is constructed in (i). Define f0(x) = ‖x‖
and then for k > 0 define fk(x) to be the infimum of all λ > 0 so that, whenever (xa)a∈S is a weakly
null tree-map of height k with ‖xa‖ ≤ σ for all a ∈ S, there is a full subtree T of height k of S so that
‖x+

∑
a∈B xa‖ ≤ λ for every branch B of T . Then we check that (fk) is an increasing sequence of convex

symmetric functions. The key property of these functions is that

lim sup
n→∞

fk(x + xn) ≤ fk+1(x), whenever ‖xn‖ ≤ σ and xn
w−→ 0.

Then we conclude the proof by considering

g(x) =
1

N(σ)

N(σ)−1∑

k=0

fk(x) and | | to be the gauge of {x ∈ X, g(x) ≤ 2}.

The proof is almost identical for (ii), except that one considers gm(x) = 1
m

∑m−1
k=0 fk(x) for arbitrarily

large choices of m. ¥
Comment. For a Banach space X , having an equivalent norm, whose dual norm is weak∗-UKK, can
be roughly interpreted as: X∗ has an “`1-like” behavior, as far as the weak∗ converging sequences are
concerned. The above theorem (especially (ii)) describes a “c0-like” behavior of a Banach space X . The
end of our argument is to show that these statements are equivalent. Thus, very naturally, it will rely on the
Young’s duality between the function N−1 and the “best” modulus of an equivalent w∗-UKK norm.
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At this point we need to introduce more terminology and notation. Let f, g be continuous monotone
increasing functions on [0, 1] which satisfy f(0) = g(0) = 0. We say that f C-dominates g if f(τ) ≥
g(τ/C) for every 0 ≤ τ ≤ 1 and that f, g are C-equivalent if f C-dominates g and g C-dominates f. For
any such monotone increasing function f we denote by f∗ its dual Young’s function.

For the sequel, let X be a Banach space with a separable dual. We define for 0 ≤ σ ≤ 1, ρ(σ) = ρX(σ)
to be the least constant so that

lim sup
n→∞

‖x + xn‖ ≤ 1 + ρX(σ),

whenever ‖x‖ = 1, xn
w−→ 0 and lim supn→∞ ‖xn‖ ≤ σ.

We define η(τ) = ηX(τ) for 0 ≤ τ ≤ 1 to be the greatest constant so that

lim inf
n→∞

‖x∗ + x∗n‖ ≥ 1 + ηX(τ)

whenever x∗, x∗n ∈ X∗, ‖x∗‖ = 1, x∗n
w∗−→ 0 and lim infn→∞ ‖x∗n‖ ≥ τ.

Note that ηX is equivalent to θX introduced earlier in this section.
We finally set

ϕ(σ) = inf{ρY (σ) : d(X,Y ) ≤ 2} and ψ(τ) = sup{ηY (τ) : d(X, Y ) ≤ 2}.

We now consider H(ε) = (Cz(X, ε)−1)−1. By applying Proposition 3, we easily get that H dominates
ψ.
An other important step is to show that H∗ dominates N−1. The idea is to show that when N(σ) is “small”,
then there exists a “large” weak∗-null tree in BX∗ (we skip the rather technical argument). On the other
hand, it follows from Theorem 20, that N−1 dominates ϕ. It follows from a duality argument similar to the
forthcoming Lemma 6 that ϕ∗ is equivalent to ψ. Therefore ψ dominates H∗∗. Then, it is easily seen that
H is equivalent to a convex function and thus to H∗∗. Finally, we obtain that H is equivalent to ψ, which
is the statement of Theorem 19.

For the proof of Theorem 18, we show the more precise estimate:

∃C > 0, ∀ε ∈ (0, 1] Cz(X, ε) ≤
∑

k≥0

2kε/C≤1

2kSz(X, 2kε/C).

For that purpose, we prove that K∗ dominates N−1, where

K(ε) =
( ∑

k≥0

2kε/C≤1

2k[Sz(X, 2kε/C)− 1]
)−1

.

This again is done by constructing special weak∗-null trees in BX∗ , depending on the value of N(σ). Then,
arguing as with H , we show that K is equivalent to K∗∗.

9. Applications to Lipschitz or uniform classification of Ba-
nach spaces

It follows from the work of S. Heinrich and P. Mankiewicz [34] that, for super-reflexive spaces, the best
modulus of an equivalent uniformly rotund norm or of an equivalent uniformly smooth norm is invariant
under uniform homeomorphisms. The results presented in this section, which are taken from [29] and [30],
show in a rather quantitatively precise way, that the functions Sz(X, ε), Cz(X, ε) and θX(ε) are invariant
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under Lipschitz or uniform homeomorphisms. Then we explain some important consequences of these
results such as: the class of subspaces of c0 is invariant under Lipschitz homeomorphisms, a Banach space
Lipschitz homeomorphic to c0 is linearly isomorphic to c0, the class of quotients of `p (for 1 < p < ∞) is
invariant under uniform homeomorphisms.

9.1. Statements of the main results
Theorem 21 Suppose X and Y are separable Banach spaces which are uniformly homeomorphic. Then
there is a constant C ≥ 1 such that for any η > 0 there exists a C-equivalent norm | |η on Y satisfying

∀0 < ε ≤ 1 θ| |η (ε) ≥ θX(ε/C)− η.

If ‖ ‖X∗ is w∗-UKK and Y is uniformly homeomorphic to X , the above result does not provide us with
an equivalent norm | | on Y such that θ| | is equivalent to θX . However, by considering for instance

∀y∗ ∈ Y ∗ |y∗| =
∞∑

k=1

1
k2
|y∗|2−k ,

one can easily deduce

Corollary 4 Suppose X and Y are separable Banach spaces which are uniformly homeomorphic and
‖ ‖X∗ is w∗-UKK. Then Y admits an equivalent norm | | such that

∃C ≥ 1 ∀0 < ε ≤ 1, θ| |(ε) ≥
θX(ε/C)
| ln(ε/C)|2 .

In particular, pX = pY , where pX is the Szlenk power type of X .

The most interesting consequence is that the convex Szlenk index turns out to be (up to equivalence) a
perfect invariant under uniform homeomorphisms. More precisely, we have

Corollary 5 Suppose X and Y are uniformly homeomorphic. Then
(i) There exists a constant C so that

∀0 < ε ≤ 1, Cz(X, Cε) ≤ Cz(Y, ε) ≤ Cz(X, ε/C).

(ii) Sz(X) ≤ ω0 if and only if Sz(Y ) ≤ ω0.

PROOF. It follows from Theorem 3 and a standard back and forth separable saturation argument, that
we may assume X and Y to be separable. Then one can easily obtain (i) by combining Theorem 21 and
Theorem 19, and (ii) is a consequence of (i) and Corollary 2. ¥

Remark 9 It is important at this point, to mention a fundamental counterexample due to M. Ribe (see [57]
or its exposition in [7]). Suppose (pn) is a sequence in (1, +∞) that is strictly decreasing to 1. Then let
X denote the `2-sum of the spaces `pn and Y = X ⊕ `1. M. Ribe showed that X and Y are uniformly
homeomorphic. It follows that uniform homeomorphisms do not preserve reflexivity or the separability of
the dual. Moreover, it is not difficult to show that Sz(X) = ω2. So, only the values of the Szlenk index not
exceeding ω are preserved under uniform homeomorphisms.

We now turn to the case of Lipschitz homeomorphisms, where we obtain a quantitatively better estimate.

Theorem 22 Suppose X and Y are separable Banach spaces which are Lipschitz homeomorphic. Then
there is an equivalent norm | | on Y such that

∃C ≥ 1 ∀0 < ε ≤ 1, θ| |(ε) ≥ θX(ε/C).
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Remark 10 It is proved in [5] that the separability of the dual is preserved under Lipschitz homeomor-
phisms. Using the tools from descriptive set theory described in section 6., Y. Dutrieux showed in [21]
that there is a universal function λ : ω1 → ω1 such that Sz(Y ) ≤ λ(Sz(X)), whenever X and Y are two
separable Asplund spaces which are Lipschitz homeomorphic.
We do not know if the function λ is the identity.

9.2. Applications
We start with our applications to the non linear classification of the subspaces of c0.

Theorem 23 (i) The class of all Banach spaces linearly isomorphic to a subspace of c0 is stable under
Lipschitz homeomorphisms.

(ii) If a Banach space is Lipschitz homeomorphic to c0, then it is linearly isomorphic to c0.
(iii) If a Banach space X is uniformly homeomorphic to c0, then X∗ is linearly isomorphic to `1.

PROOF. The arguments will consist in combining our result with various deep theorems on the linear
structure of these Banach spaces.

(i) It follows from Theorem 22 and the following result: a Banach space X is isomorphic to a subspace
of c0 if and only if it admits an equivalent norm | | such that

∃C ≥ 1 ∀0 < ε ≤ 1, θ| |(ε) ≥ ε/C.

This last result follows from the techniques developed by N.J. Kalton and D. Werner in [41]. A proof
written in this spirit can be found in [30]. A simpler argument, but yielding a larger isomorphism constant,
is given in [37].

(ii) It is known (see [34] by Heinrich and Mankiewicz) that the class of all L∞-spaces is stable under
uniform homeomorphisms. On the other hand, it has been proved by W.B. Johnson and M. Zippin in [40]
that any L∞-subspace of c0 is linearly isomorphic to c0.

(iii) Assume that X is uniformly homeomorphic to c0. Corollary 4 insures that X∗ is separable. Then
we apply a result of D.R. Lewis and C. Stegall ([49]) asserting that if X is a L∞-space with separable dual,
then X∗ is isomorphic to `1. ¥

Remark 11 It is not known if a Banach space uniformly homeomorphic to c0 is linearly isomorphic to c0.
The question of the non linear classification of the C(K) spaces, with K countable and compact, is still

widely open.
Y. Dutrieux ([20]) proved that if a Banach space X is Lipschitz homeomorphic to a quotient of c0 and

X∗ has the approximation property, then X is isomorphic to a quotient of c0.

In the non separable case, we still have the following characterization:

Theorem 24 Let K be a compact space. The following assertions are equivalent:
(i) Sz(C(K)) ≤ ω.
(ii) K(ω) = ∅.
(iii) C(K) is Lipschitz homeomorphic to c0(Γ), where Γ is the density character of C(K).
(iv) C(K) is uniformly homeomorphic to c0(Γ).
(v) C(K) admits an equivalent norm | | such that:

∃C ≥ 1 ∀ε > 0, θ| |(ε) ≥
ε

C
.

PROOF. (i) ⇒ (ii) follows from the fact that for any ordinal α and any x in K, the Dirac mass δx

belongs to sα
1 (BC(K)∗), whenever x is in K(α). (ii) ⇒ (iii) is due to Deville, Godefroy and Zizler ([16]),

(iii) ⇒ (iv) is trivial and the argument for (iv) ⇒ (ii) is in [38]. A simple and direct proof of (ii) ⇒ (v) is
given in [47], but it can now be deduced from (ii) ⇒ (iii) and Theorem 22 where the separability is not an
issue. Finally, (v) ⇒ (i) is clear. ¥
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Remark 12 1) Ciesielski and Pol have constructed in [13] a (non metrizable) compact space K such
that K(3) is empty but there is no weak-to-weak continuous injective map, in particular no bounded lin-
ear injective map, from C(K) into any c0(Γ); while the previous theorem insures that C(K) is Lipschitz
homeomorphic to some c0(Γ).
Then, W. Marciszewski provides in [50] a simple characterization of compact spaces K such that C(K) is
linearly isomorphic to some c0(Γ). This implies in particular that such a compact space is Eberlein. The
converse is not true as a counterexample of M. Bell and W. Marciszewski shows ([6]).

2) Y. Dutrieux and N. Kalton have obtained in [23] many important results on the non linear clas-
sification of C(K) spaces. Let K and L be two Hausdorff compact spaces. They show that K and L
are homeomorphic whenever the Gromov-Hausdorff distance between C(K) and C(L) is less than 1/10
(in particular when the uniform distance is less than 11/10). They also prove that C(K) and C(L) have
the same Szlenk index (and are therefore linearly isomorphic in the separable case), when their Kadets
distance is less than 1. We refer the reader to the original paper for the definitions of these non linear
distances between Banach spaces.

Next,we turn to the non linear classification of quotients of `p.

Theorem 25 Let p in (2, +∞) and let X and Y be two Banach spaces which are uniformly homeomor-
phic. If X is a quotient (resp. subspace) of `p, then Y is linearly isomorphic to a quotient (resp. subspace)
of `p.

In the quotient case, the proof, which appeared in [30], uses Corollary 4 and the work of W.B. Johnson
([36]) on quotients of Lp that are quotients of `p. Similarly, the subspace version combines Corollary 4 and
the results of Johnson and Odell ([39]) on subspaces of Lp which embed in `p. However, this later case can
also simply be deduced from the methods of [38].

Let us mention, that the question, whether the class of quotients, or the class of subspaces, of `p is
closed under uniform homeomorphisms is open for 1 ≤ p < 2.

9.3. Proofs of the main results
In this section, we will give the proofs of Theorems 21 and 22. They are taken from [29] and [30]. The
argument is partly based on a renorming technique (see Lemma 7) that we find interesting to explain here.
Therefore, we have chosen to include these proofs, despite some technical difficulties. It will also require
the use of an important tool from non linear analysis, known as the “Gorelik principle”. This principle
first appeared in [38] and was inspired to the authors by the earlier work of E. Gorelik [31]. We will use a
slightly different version, whose proof (very similar to the original one) can be found in [29].

Theorem 26 (The Gorelik principle) Let X and Y be two Banach spaces and U be a homeomorphism
from X onto Y with uniformly continuous inverse. Let b and d two positive constants and let X0 be a
subspace of finite codimension of X . If d > ω(U−1, b) (ω(U−1, .) is the modulus of uniform continuity of
U−1), then there exists a compact subset K of Y such that

bBY ⊂ K + U(2dBX0).

We will also need the following duality lemma.

Lemma 6 Let X be a separable Banach space and 0 < σ, ε < 1. Suppose X satisfies the following
property:

lim inf ‖x∗ + x∗n‖ ≥ 1 + σε, whenever x∗ ∈ SX∗ , x∗n
w∗−→ 0 and ‖x∗n‖ ≥ ε.

Then
lim sup ‖x + xn‖ ≤ 1 + σε, whenever x ∈ SX , xn

w−→ 0 and ‖xn‖ ≤ σ.
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PROOF. Assume ‖x‖ = 1, ‖xn‖ ≤ σ, xn
w−→ 0 and lim ‖x + xn‖ > 1 + σε. Then, pick y∗n in BX∗

such that lim y∗n(x + xn) > 1 + σε. Passing to a subsequence, we may assume that y∗n
w∗−→ x∗ ∈ BX∗ and

‖y∗n − x∗‖ → l. Then lim y∗n(x + xn) ≤ 1 + lσ and therefore l > ε. But the assumption in the statement
of the lemma yields

lim inf
∥∥ lx∗

ε‖x∗‖ − x∗ + y∗n
∥∥ ≥ l

ε
+ lσ.

So lim inf ‖y∗n‖ ≥ ‖x∗‖+ lσ. Hence ‖x∗‖ ≤ 1− lσ and

lim y∗n(x + xn) = lim(x∗ + y∗n − x∗)(x + xn) ≤ 1− lσ + lσ = 1,

which is a contradiction. ¥
PROOF. [Proof of Theorem 21] Let U be a uniform homeomorphism from X onto Y . Note that U

and U−1 are Lipschitz for large distances. So, there is a constant C > 0 such that:

‖Ux1 − Ux2‖ ≤ M max(‖x1 − x2‖, 1) x1, x2 ∈ X and

‖U−1y1 − U−1y2‖ ≤ M max(‖y1 − y2‖, 1) y1, y2 ∈ Y.

We now define a decreasing sequence of dual norms {| |k}∞k=1 on Y ∗ by

|y∗|k = sup
{ |y∗(Ux1 − Ux2)|

‖x1 − x2‖ ; x1, x2 ∈ X, ‖x1 − x2‖ ≥ 2k

}
.

It is clear that for all k ∈ N, we have M−1‖ ‖ ≤ | |k ≤ M‖ ‖.
We will need the following lemma.

Lemma 7 There exist C > 0 and k0 ∈ N such that for any k ≥ k0, any ε ∈ (0, 1) and any y∗, y∗n in Y ∗

satisfying ‖y∗‖ ≤ M , ‖y∗n‖ ≥ ε/M and y∗n
w∗−→ 0, we have:

lim inf
n→∞

|y∗ + y∗n|k ≥ 2|y∗|k+1 − |y∗|k + θX(
ε

C
). (12)

Let us first conclude the proof of Theorem 21. We set

∀N ∈ N ∀y∗ ∈ Y ∗ ‖y∗‖N =
1
N

k=k0+N∑

k=k0+1

|y∗|k,

which is a dual norm on Y ∗ with M−1‖ ‖ ≤ ‖ ‖N ≤ M‖ ‖.
If ‖y∗‖N = 1, ‖y∗n‖N ≥ ε and y∗n

w∗−→ 0, we can apply the above lemma and by summing over k we get:

lim inf ‖y∗ + y∗n‖N ≥ ‖y∗‖N − 2
N
|y∗|k0+1 +

2
N
|y∗|k0+N+1 + θX(

ε

C
).

We fix now η > 0 and get for N big enough:

lim inf ‖y∗ + y∗n‖N ≥ ‖y∗‖N − η + θX(
ε

C
).

¥
PROOF. [Proof of Lemma 7] Let k ∈ N. For a small δ > 0, to be chosen later, we can pick x, x′ ∈ X

so that ‖x− x′‖ ≥ 2k+1 and y∗(Ux−Ux′) ≥ (1− δ)‖x− x′‖|y∗|k+1. We may assume that x′ = −x and
Ux′ = −Ux. So ‖x‖ ≥ 2k and y∗(Ux) ≥ (1− δ)‖x‖|y∗|k+1.
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Let C > 0. We apply Lemma 6 to deduce the existence of a finite co-dimensional subspace X0 of X so that

‖x + z‖ ≥ ‖x‖ ≥ 2k ∀z ∈ X0 (13)

and
‖x + z‖ ≤ (1 + 2θX(

ε

C
))‖x‖ ∀z ∈ Cε−1θX(

ε

C
)‖x‖BX0 . (14)

Now, ω(U−1, b) < 2Mb for all b ≥ 1. Then we apply the Gorelik principle (Theorem 26) for b = σ‖x‖
4M

and d = σ‖x‖
2 , where σ = Cε−1θX( ε

C ). Note that for k large enough (say k ≥ k0), we have b > 1. Hence
there is a compact subset K of Y so that:

σ‖x‖
4M

BY ⊂ K + U(σ‖x‖BX0). (15)

Since y∗n → 0 uniformly on K, (15) yields the existence of (zn) ⊂ σ‖x‖BX0 so that

lim inf
n→∞

y∗n(−Uzn) ≥ σε

4M2
‖x‖.

Now ‖x + zn‖ = ‖zn − x′‖ so, by (13) and (14), we have

y∗(Ux + Uzn) = y∗(Uzn − Ux′) ≤ (1 + 2θX(
ε

C
))|y∗|k‖x‖

But
y∗(Ux) =

1
2
y∗(Ux− Ux′) ≥ (1− δ)|y∗|k+1‖x‖.

So
y∗(Uzn) ≤ (

(1 + 2θX(
ε

C
))|y∗|k − (1− δ)|y∗|k+1

)‖x‖.

Combining these estimates and letting δ tend to 0 gives

lim inf
n→∞

(y∗ + y∗n)(Ux− Uzn) ≥ |y∗|k+1‖x‖ − |y∗|k‖x‖+
σε

4M2
‖x‖ − 2θX(

ε

C
)|y∗|k‖x‖.

But

2k ≤ ‖Ux− Uzn‖ ≤ (1 + 2θX(
ε

C
))‖x‖ ≤ ‖x‖

1− 2θX( ε
C )

.

So
lim inf
n→∞

|y∗ + y∗n|k ≥ (1− 2θX(
ε

C
))(2|y∗|k+1 − |y∗|k +

σε

4M2
− 2θX(

ε

C
)M2)

Therefore, for C big enough, chosen before k0:

lim inf
n→∞

|y∗ + y∗n|k ≥ 2|y∗|k+1 − |y∗|k − θX(
ε

C
).

¥

PROOF. [Proof of Theorem 22] If U is a Lipschitz homeomorphism from X onto Y , we define at once

|y∗| = sup
{ |y∗(Ux1)− y∗(Ux2)|

‖x1 − x2‖ x1 6= x2

}
.

This will give us the desired norm. The computations are similar and simpler than for the previous case.
¥
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Remark 13 As we already mentionned, the question whether a Banach space uniformly homeomorphic to
c0 is linearly isomorphic to c0 is still open. The main obstacle is that, unlike the Lipschitz case, we cannot
build a single norm that does the job of Lemma 7. A natural suggestion would be to consider the limit of
the decreasing sequence (‖ ‖)N . Unfortunately, we are then confronted to the problem of exchanging the
weak∗-limit and limN ‖ ‖N .
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