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Strongly compact algebras

Miguel Lacruz, Victor Lomonosov and Luis Rodriguez-Piazza

Abstract. An algebra of bounded linear operators on a Hilbert space is said to be strongly compact if
its unit ball is relatively compact in the strong operator topology. A bounded linear operator on a Hilbert
space is said to be strongly compact if the algebra generated by the operator and the identity is strongly
compact. This notion was introduced by Lomonosov as an approach to the invariant subspace problem
for essentially normal operators. First of all, some basic properties of strongly compact algebras are
established. Next, a characterization of strongly compact normal operators is provided in terms of their
spectral representation, and some applications are given. Finally, necessary and sufficient conditions for
a weighted shift to be strongly compact are obtained in terms of the sliding products of its weights, and
further applications are derived.

Algebras fuertemente compactas

Resumen. Un élgebra de operadores lineales en un espacio de Hilbert se dice que es fuertemente
compacta si su bola unidad es relativamente compacta en la topologia fuerte de operadores. Un ope-
rador lineal y continuo en un espacio de Hilbert es fuertemente compacto si el dlgebra generada por
el operador y la identidad es fuertemente compacta. Esta nocidén fue introducida por Lomonosov para
estudiar el problema del subespacio invariante para operadores esencialmente normales. En primer lugar,
se establecen algunas propiedades bésicas de las dlgebras fuertemente compactas. Se proporciona después
una caracterizacion de los operadores normales fuertemente compactos en términos de su representacién
espectral y se dan algunas aplicaciones. Finalmente, se obtienen condiciones necesarias y suficientes para
que un desplazamiento ponderado sea fuertemente compacto en términos de los productos deslizados de
sus pesos. Se proporcionan algunas otras aplicaciones.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a Hilbert space H. We say that a subalgebra
R of B(H) is strongly compact if the unit ball of R is relatively compact in the strong operator topology.
Also, we say that an operator T" in B(H) is strongly compact if the algebra generated by 7" and I is strongly
compact.

This notion was introduced by Lomonosov [3] as an approach to the invariant subspace problem for
essentially normal operators. Recall that an operator 7" in B(H) is essentially normal if and only if the
operator T*T — TT* is compact. Also, recall that the commutant of an operator is the algebra of all
operators that commute with the given operator. Lomonosov [3] proved that if ' € B(H) is an essentially
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normal operator such that neither the commutant of 7' nor the commutant of 7™ are strongly compact
algebras then 7" has a non-trivial invariant subspace.

Therefore, it is an interesting task to study the structure of strongly compact algebras, because a better
understanding of such algebras would give more insight on the invariant subspace problem for essentially
normal operators.

A classification of self-adjoint, strongly compact algebras was carried out by Marsalli [4], who showed
that a self-adjoint subalgebra of B(H) is strongly compact if and only if it can be written as a direct sum
of finite-dimensional, self-adjoint subalgebras of B(H ). Thus, every self-adjoint strongly compact operator
is unitarily equivalent to a diagonal operator. We will see later that, in general, a strongly compact normal
operator is not unitarily equivalent to a diagonal operator.

Let T be an operator on a Hilbert space H and let E C H be an invariant subspace of 7". There are
two operators associated to 7" and E, namely, the restriction operator 7| € B(E) defined by T\gx = Tz
for every x € F, and the quotient operator T' € B(H/E) defined by T'(x + E) = Ta + E for every
x4+ FE € H/E. It is natural to ask whether the restriction and the quotient of a strongly compact operator
are strongly compact, too. In sections 3. and 4. we construct counterexamples to both questions.

The paper is organized as follows. First of all, in section 2. we present two different examples of strongly
compact algebras and we give a procedure for constructing new strongly compact algebras out of old ones.
Next, in section 3. we provide a characterization of strongly compact normal operators in terms of their
spectral representation. Finally, in section 4. we obtain necessary and sufficient conditions for a weighted
shift with non-zero weights to be strongly compact in terms of the sliding products of its weights.

As a warm-up, it will be convenient to state two characterizations of compactness, one for the norm
topology of H and the other one for the strong operator topology of B(H).

Lemma 1 A subset S of H is relatively compact if and only if for every € > 0 there is a compact subset
K. of H such that S C K. + ¢By.

This characterization can be found in Diestel’s book [1, p.5]. The non-trivial part of its proof relies on the
fact that any totally bounded subset of H is relatively compact.

Lemma 2 Let S be a bounded subset of B(H). Then the following conditions are equivalent.
(a) S is relatively compact in the strong operator topology.
(b) {Tx : T € S} is relatively compact for all x € H.
(c) There is a dense subset D of H such that {T'xz : T € S} is relatively compact for all x € D.

The equivalence of (a) and (b) was noticed by Marsalli [4] and it does not need the assumption that S
be bounded because of the Uniform Boundedness Principle. The implication (a) = (b) follows from the
continuity of the map T' — Tz with respect to the strong operator topology. The implication (b) = (c)
is trivial. The implication (c) = (a) is a consequence of Tychonov’s Theorem on the product of compact
spaces in combination with Lemma 1.

Recall that a vector xg € H is said to be cyclic for a subalgebra R of B(H) if the orbit { Rz : R € R}
is dense in H. A vector 2y € H is said to be cyclic for an operator T' € B(H) whenever x is cyclic for the
subalgebra generated by 7" and [ in B(H).

A straightforward consequence of Lemma 2 is that a subalgebra R of B(H) with a cyclic vector zy € H
is strongly compact if and only if the set { Rz : R € R, | R|| < 1} is relatively compact. This fact will be
used later in the proofs of Theorem 4 and Theorem 5 .

2. Basic properties of strongly compact algebras

In this section we present two different examples of strongly compact algebras. These examples are the
bricks for building strongly compact algebras. We also give a procedure for constructing new strongly
compact algebras out of old ones.
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Proposition 1 Let H be an infinite-dimensional Hilbert space, and let (E;);c; be a family of finite-
dimensional subspaces of H whose union is dense in H. If R is a subalgebra of B(H) with the property
that E; is invariant under R for all R € R and i € I, then R is strongly compact.

Proof. Consider the dense subset D of H given by
D=|JE;
iel
If x € D then x € E; for some ¢ € I. Since E; is invariant under R for every R € R we have

{Rz:ReR,||R| <1} C |zl - Bg,.

It follows that the algebra R satisfies the condition (c) in Lemma 2 and therefore it is strongly compact.
]

An application of Proposition 1 is the following. Let H be a separable, infinite-dimensional Hilbert
space, let (ej)n>0 be an orthonormal basis of H, and let B denote the backward shift on H, that is,
Beyg = 0 and Be,, = e,_1 forn > 1. Put E,, = span{eg,eq,...,e,}. Itis clear that the union of the
FE,’sis dense in H and that every F,, is invariant under B. It follows that the backward shift is a strongly
compact operator.

Another situation to which Proposition 1 applies is the case of a compact normal operator, since it is a
well-known fact that every compact normal operator has an orthogonal basis of eigenvectors. In general,
any operator on H with lower triangular matrix with respect to an orthogonal basis (e, )n>0 is strongly
compact.

Proposition 2 The commutant R of a compact operator K with dense range is strongly compact.
Proof. Let D = KH and lety € D, say y = Kx. Then

{Ry:ReR,|R| <1} = {RKz:ReR,|R|<1}
— {KRs:ReR,|R|<1}C|e| KBy,

and again it follows from Lemma 2 that R is strongly compact. W

Although the above examples may overlap, they are essentially different, since the backward shift does
not commute with a non-zero compact operator. The proof goes by contradiction. Suppose BK = K B for
some non-zero compact operator K. Then K * is also a non-zero compact operator and we have K*(B*)" =
(B*)"K* for all n > 0. Fix an ng > 0 such that K*e,,, # 0. Then

(B*)"eny = €ntny — 0 weakly as n — oo,
so that || K*(B*)" ey, || — 0 as n — oco. But (B*)™ is an isometry for all n > 0, so that
I(B*)" K en, || = [| K ene || > 0
for all n > 0, which is a contradiction.
It is worth-while to observe that the assumption that K has dense range cannot be removed from Propo-

sition 2. This will be shown in Proposition 8 below.
The next result gives a procedure for constructing new strongly compact algebras out of old ones.

Proposition 3 The direct sum of a family of strongly compact algebras is also strongly compact.
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Proof. Let {H; : i € I} be a family of Hilbert spaces and consider the direct sum

H=@DH = (o= (2) 2 € Hy, ol = 3 lal]? < oo}

i€l i€l
Let R; be a strongly compact subalgebra of B(H;) for every i € I and look at the direct sum

R=@Ri=(T= (L) T e Ry, |T] = sup | T3] < oc}.

i€l

We have to show that R is a strongly compact subalgebra of B(H ). We will check that its unit ball satisfies
condition (b) of Lemma 2. Fix a vector x = (x;) € H, lete > 0, and choose a finite set Iy C I such that

Z 2|2 < €%

ieI\I,

Consider the vector z € H defined by 2; = z; if ¢ € Iy and z; = 0 otherwise. Since every R; is
strongly compact and Iy is finite we have that K, = {Tz : T € R, ||T|| < 1} is a relatively compact
subset of H. Also, {Tz : T € R, ||T|| < 1} € K. + ¢ - Bpy. It follows from Lemma 1 that the set
{Tz:T R, |T| <1} isrelatively compactin H. W

Notice that the algebra generated by the direct sum of a family of operators and the identity is a subalge-
bra of the direct sum of the algebras generated by the operators and the identity. Hence, as a consequence of
Proposition 3, the direct sum of a family of strongly compact operators is also a strongly compact operator.

The converse of Proposition 3 is false. In section 3. we will construct an example of a family of operators
{T; : © € I} such that T; fails to be strongly compact for every ¢ € I although the direct sum is a strongly
compact operator.

3. Strongly compact normal operators

Recall that an operator N on a Hilbert space is said to be normal if N*N = NN*. An example of a normal
operator can be constructed as follows. Let {2 C € be a compact set and let u be a finite measure defined
on the Borel subsets of €. Then the operator M, of multiplication by z defined on L2(u) by M, f = zf(z)
for every f € L?(y) is normal.

One version of the Spectral Theorem [6, p.15] can be stated as follows. If N is a normal operator defined
on a separable Hilbert space H, then there exist a finite or countable family (445, )»>1 of probability measures
on a compact subset of @, and a unitary operator U : @,,~, L?(un) — H such that U*NU = @, », Tp,,
where T}, is the operator of multiplication by z on L?(j1,,). Hence, N is strongly compact if and only if so
is D,,>1 Tn-

We start with a characterization of those measures p for which the operator M, of multiplication by
z is strongly compact on L?(11). Let 7 denote the space of all polynomials p(z) in one complex variable
provided with the norm ||p||oo in L™ (p).

Theorem 1 The following conditions are equivalent:
(a) M., is strongly compact.
(b) The natural embedding J : © — L*(p) is compact.
(c) Any bounded sequence in T has a pi-almost everywhere convergent subsequence.

Proof. Let p be any polynomial and notice that p(M.) = M.y, where M, denotes the operator of

multiplication by p. It is easy to check and it is shown in Halmos’s book [2, p.210] that the norm of the
operator M of multiplication by f is the norm of f in L>°(x) and so ||p(M..)|| = ||p]|c-
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(a) = (b): Assume M, is strongly compact on L?(1). Then

{pemilplo <1} ={p(M.) -1:pem, [p(M,)] <1}

is a relatively compact subset of L?(y) and therefore J is compact.
(b) = (c): Let (pn)n be a bounded sequence in 7. Since .J is compact, there is a subsequence (p,, ); that
converges in L? (1) to g, say. Hence, there is a subsequence (pnjk ). that converges p-almost everywhere to

g.
(c) = (a): Let f € L?(u1) and let us show that

{p(M.)f :pem |p(M)| <1} ={p-f:pem [plle <1}

is a relatively compact subset of L?(y). Let (py, )., be a sequence with ||p,, ||o < 1 for all n and take a sub-

sequence (pn, )k that converges p-almost everywhere to g, say. Then |p,, - f| < |f| u-almost everywhere.
It follows from the Bounded Convergence Theorem that ||p,, - f —¢g- fll2 = 0ask —oco. W

As an application of Theorem 1 we present two examples to show that the operator M, of multiplication
by z may or may not be strongly compact.

Corollary 1 (V. Shulman, private communication.) Let ID denote the open unit disc provided with the
two-dimensional Lebesgue measure. Then the operator M, of multiplication by z on L*(ID) is strongly
compact.

Proof. If (pn)n is a sequence of polynomials with ||p,||e < M for all n then Montel’s Theorem gives a
subsequence (py,,, )« that converges uniformly on compact subsets of ID and so almost everywhere. W

Since M, has no eigenvectors, Corollary 1 provides an example of a strongly compact normal operator
that is not unitarily equivalent to a diagonal operator.

Recall that the Bergman space is the subspace A%(ID) of all functions in L2(ID) which are analytic on
ID. The above argument shows that multiplication by z is also a strongly compact operator on the Bergman
space. We will come back to this fact in section 4..

Corollary 2 Let [0, 1] be the unit interval provided with the one-dimensional Lebesgue measure. Then the
operator M, of multiplication by x on L?[0, 1] fails to be strongly compact.

Proof. Let C[0, 1] denote the space of continuous functions on [0, 1] provided with the sup norm. The
Stone-Weierstrass Theorem ensures that 7 is dense in C|0, 1]. Therefore it suffices to show that the natural
embedding J : C[0,1] — L2[0, 1] fails to be compact. Consider the sequence of functions defined by
fn(t) = cos2mnt. Then (f,,), is bounded in C[0, 1] and it has no convergent subsequence in L?[0,1]. W

Proposition 4 Let T be any operator on H such that ||T|| < 1 and let Ty be any norm-one strongly
compact operator on a Hilbert space Hy, whose spectrum is equal to the closure of ID. Then the operator
T & T is strongly compact on H & H;.

Proof. Let p be any polynomial and apply von Neumann’s inequality to get ||p(T)|| < ||plleo = |lp(T1)]l
so that

Ip(T @ Th) || = max{[lp(T)|[, Ip(T)I} = [Pl

A proof of von Neumann’s inequality can be found in Halmos’s book [2, p.330]. Since the set {p(77) :
Iplleo < 1} is relatively compact in the strong operator topology of B(H7) it suffices to prove that the set
{p(T) : |Ipllec < 1} is relatively compact in the strong operator topology of B(H). We will show that
condition (b) of Lemma 2 is satisfied. Fix a vector z € H\{0}, let £ > 0, and choose an ng such that

oo

9
17" < 7
2 |

n=no+1
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Let E = span{z,Tz,...,T™x}, put M = ||z|| + ||[Tz| + --- + ||T™°«]|, and consider the compact
set K. = M - Bg. Take a polynomial p(z) = ag + a1z + --- + ayz" with ||p|l« < 1 and notice
that |a,| < 1 forevery 0 < n < N. Thus, apx + a1Tx + -+ + an, T2z € K.. On the other hand,
(Ang 1T + -+ anTN)z € e - By. Hence, p(T)x € K. + ¢ - By. Now it follows from Lemma 1
that {p(T)z : p € 7, ||p|lec < 1} is arelatively compact subsetof H. W

Notice that the operator 7" in Proposition 4 need not be strongly compact. Thus, the direct sum of two
operators may be strongly compact when one of the summands is not. Later on we will provide a stronger
version of this result, namely, none of the summands will be strongly compact. For the time being we have
an example of a strongly compact operator with a restriction and a quotient that fail to be strongly compact.

Recall that two measures are equivalent if they have the same null sets, and they are orthogonal if they
are concentrated on disjoint sets. In the sequel we will use the following result.

Lemma 3 Let g and pie be two finite measures on a compact set Q0 C €, and let T; denote the operator
of multiplication by z on L?(y;) fori = 1,2.

(a) If p1 and po are equivalent then Ty and Ts are unitarily equivalent.

(b) If p1 and po are orthogonal then the operator of multiplication by z on L*(uy + po) is unitarily
equivalent to Ty & Ts.

Proof. (a) Let h denote the Radon-Nikodym derivative of y; with respect to 1o and define
U:L* ) — L*(p2)
f — fVh.

It is easy to check that U is a unitary operator and 77 = U*ToU. N

(b) Let By and By be two disjoint Borel subsets of {2 such that for ¢ = 1, 2 the measure y; is concentrated
on B;, that is, p;(2\B;) = 0. Define

U: L) ® L (p2) —  L*(p1 + po)
(fi, f2) —  fixs, + faxB,-

It is easy to check that U is a unitary operator and that U (77 @ T5)U™* is the operator of multiplication by z
on L2(py + pz). W

Part (b) of Lemma 3 can be easily generalized to a countable family of measures as follows.

Lemma 4 Let (uy,), be a sequence of pairwise orthogonal probability measures on a compact set 2 CC,
let T,, denote the operator of multiplication by z on L?(u.,), and put p1 = >0 | Hn/2". Then the operator
of multiplication by z on L*(y) is unitarily equivalent to the operator @, T,.

Proof. For every n, let h,, denote the Radon-Nikodym derivative of j,, with respect to . Observe that the
sets {z € Q : hy,(z) # 0} are pairwise y-almost disjoint and therefore we can define

U5@L2(Mn) —  L*(p)
n=1

n=1

It is easy to check that U is a unitary operator and that U (@, T,,)U* is the operator of multiplication by
zon L%(p). M

The next result shows that the summands of a strongly compact direct sum need not be strongly compact.
Moreover, all the operators involved in the construction are normal.
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Proposition 5 Let (t,)n>1 be a sequence of distinct points dense in [0,27), let w, denote the one-
dimensional Lebesgue measure on the radial segment I,, = (0,¢e%"], and let T,, denote the operator of
multiplication by z on L*(uy,). Then T, fails to be strongly compact for every n. > 1 and the operator
@20:1 T, is strongly compact.

Proof. For every n, it is easily seen that T}, is unitarily equivalent to the operator e~ M,, where M,, is
the operator of multiplication by  on L?(0, 1). Then T, fails to be strongly compact thanks to Corollary
2. Notice that the radial segments I,, are pairwise disjoint and therefore the measures p,, are pairwise
orthogonal. Consider the measure 1 = Y | y1,,/2", let T' denote the operator of multiplication by z on
L?(p), and observe that, thanks to Lemma 4, T and @9, , T}, are unitarily equivalent. Finally, let us show
that 7" is strongly compact. Since the union of the radial segments I,, is a dense subset of ID it follows that
any bounded sequence of polynomials in L°°(u) is uniformly bounded on ID, and by Montel’s Theorem it
has a subsequence that converges uniformly on compact subsets of ID, so that condition (c) of Theorem 1
is satisfied. M

Now we provide an example of a strongly compact direct sum of two non strongly compact normal
operators.

Proposition 6 There exist two non strongly compact normal operators such that their direct sum is
strongly compact.

Proof. Let D1 = {z € € : |z —1/2| < 1} and Dy = {2 € € : |z + 1/2| < 1}, let o7 denote the
two-dimensional Lebesgue measure on D, and let o5 denote the two-dimensional Lebesgue measure on
Dy\D,. We will consider the arc-length measure on the boundary 0D; of D;, more precisely, 7 will be
the normalized arc-length measure on the arc (9D;) N Do and 75 will be the normalized arc-length measure
on the arc (90D3) N D;. Finally, let u; = o; + 7; and denote by T; the operator of multiplication by z on
L3(py ), for j =1,2.

The four measures o1, 09, 71, and 7 are pairwise orthogonal, so that p; and o are orthogonal, and
therefore T T is unitarily equivalent to the operator of multiplication by z on L? (11 +p2). A sequence of
polynomials which is bounded on L (114112 ) is uniformly bounded on D;UDs5, and by Montel’s Theorem
it has a subsequence that converges pointwise on D1 U Dy and therefore (111 + p2)-almost everywhere. It
follows from Theorem 1 that T} & T5 is strongly compact.

In order to prove that 77 is not strongly compact, observe that (D7) N Do is an arc whose length is
exactly one third of the length of the circle {z € € : |z — 1/2| < 1}, and it is easy to check for p,(z) =
(z — 1/2)3" that the sequence of polynomials (p;, ),, is an orthonormal system in L?(7). This sequence is
bounded in L°°(j11), but it is not relatively compact in L?(u;) because it is not so in L?(77). This shows
that 77 is not strongly compact. A similar argument with the sequence of polynomials p,,(z) = (z+1/2)3"
shows that 75 is not strongly compact. H

Now we turn to the general case of a normal operator NV on a separable Hilbert space H. We start with
the following result.

Lemma5 Let 2 C € be a compact set and let (ji,,)n>1 be a sequence of probability measures defined on
the Borel subsets of ), let T,, denote the operator of multiplication by z on L*(u.,), and assume that every
L is absolutely continuous with respect to j11. Thenl' = @70;1 T, is strongly compact if and only if T} is
strongly compact.

Proof. Notice that for any polynomial p we have

[p(T)|| = sup [|p(T)[| = sup [Ipll Lo i,y = 12l z~ ) = (T
Assume T is strongly compact and notice that for every f1 € L?(u1) the set {p(T1)f1 : |[[p(Th)| < 1}

is the projection onto the first coordinate of the set {p(7')(f1,0,0,...) : ||p(T)|| < 1}, which is relatively
compact, and therefore 77 is strongly compact.
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Conversely, assume T is strongly compact and take a sequence of polynomials (p; ), such that ||p;(T)| <
1 for every j > 1. Since ||p;(T')|| = ||p;(T1)|| and T is strongly compact, there is a subsequence (pj, )k
that converges j1-almost everywhere. Since yi,, is absolutely continuous with respect to 1, it follows that
(pj,. )k converges pi,,-almost everywhere. Hence, for every f,, € L?(u,), the set {p(T},) f» : |p(T)|| < 1}
is relatively compact. Now fix f € H = @, | L*(u,), let e > 0, and choose ng so large that

oo

STl <

n=no+1
Consider the compact set K. = {(p(T1) f1, .., p(T0) f,0,0,...) : [|[p(T)] < 1}. We have
{p(D)f - Ip(T)|| <1} € K- + eBy

so it follows from Lemma 1 and Lemma 2 that T’ is strongly compact. W

Now we characterize strong compactness for a normal operator on a separable Hilbert space, that is, for
a direct sum of operators of multiplication by z. We will consider only countable direct sums, but a similar
result holds for finite sums.

Theorem 2 Let QO C T be a compact set, let (), be a sequence of probability measures defined on the
Borel subsets of S, let T,, be the operator of multiplication by z on L*(u,,), and let p = > 07| /2™
Then EB;ozl T,, is strongly compact if and only if the operator T of multiplication by z on L? (1) is strongly
compact.

Proof. 1t is clear that ., is absolutely continuous with respect to u. Let f, denote the Radon-Nikodym
derivative of y,, with respect to y and let A,, = {z € Q : f,(z) > 0}. Then p(Q2\ USZ; A,) = 0. Now
choose B,, C A, such that US2 ; A,, = US2, B,, and (B,,),, are pairwise disjoint. Let v,, = fin|B, and
On = [in|Q\B,» SO that p,, = v, + o,. Let S, and R,, denote the operators of multiplication by z on
L?(vy,) and L?(o,,), respectively. Also, let v = >_>7 v, /2". We have

n=1
P, =P(S.eRn).
n=1 n=1

Since the measures v, are pairwise orthogonal, Lemma 4 gives that @:;1 L?(v,) is isometrically isomor-
phic to L?(v), and the operator @, S, corresponds with the operator S of multiplication by z on L?(v).
Thus, @,-_, T), corresponds with S & (.-, R,,). Now every o, is absolutely continuous with respect
to v and it follows from Theorem 5 that S @ (€D, R,,) is strongly compact if and only if S is strongly
compact. Finally, ¢ and v are equivalent measures, and by Lemma 3, T is strongly compact if and only if
so is S, and Theorem 2 follows. W

Recall that a spectral measure on a Hilbert space H is any measure defined on the Borel subsets of a
compact set {2 C € with values on the orthogonal projections of H which is countably additive in the strong
operator topology and such that E(£2) = I. A common version of the Spectral Theorem [6, p.17] ensures
that if NV is a normal operator on a Hilbert space H then there exists a unique spectral measure £ on H
defined on the Borel subsets of o(IV') such that

N:/ AE}.
o(N)

The following result ensures that for every spectral measure on a separable Hilbert space one can find a
probability measure whose null sets are those of the given spectral measure.

Lemma 6 Let N be a normal operator on a separable Hilbert space H and let E be the spectral measure
associated to N. Then there exists a probability measure v such that E(B) = 0 if and only if v(B) = 0.
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Proof. Let (x,), be a dense sequence in By and define a sequence of finite positive measures (v, ), on
the Borel subsets of o(N) by v,,(B) = (E(B)zy,xy,). Then put v = Y >  1,/2". It is clear that if
E(B) = 0 then v, (B) = 0 for every n. Conversely, if v, (B) = 0 for every n then (E(B)x,x) = 0 for
every x € H and since F(B) is an orthogonal projection it follows that E(B) =0. W

We finish this section with a characterization of strong compactness for normal operators on a separable
Hilbert space in terms of their spectral measures.

Theorem 3 Let E be the spectral measure associated to a normal operator N on a separable Hilbert
space and let v be a probability measure defined on the Borel subsets of o(N) such that E(B) = 0 if and
only if v(B) = 0. Then N is strongly compact on H if and only if the operator of multiplication by z is
strongly compact on L?(v).

Proof. We know N is unitarily equivalent to a direct sum of multiplications by z. We will consider only
the case of an infinite sum, the case of a finite sum being similar. Thus, there exists a sequence (i, ), Of
probability measures on o (N) such that IV is unitarily equivalent to @, ; T',, where T,, is the operator
of multiplication by z on L*(p,,). Let u = > o7 | j1,,/2". From Theorem 2 we know that NN is strongly
compact if and only if so is the operator of multiplication by z on L?(y). If we prove that ;2 and v are
equivalent, we will be done thanks to Lemma 3. The spectral measure of N is equivalent to E'1, the spectral
measure of @~ , T),. It is easy to check that for every Borel set B C o(N), Ey(B) is the projection
defined by

ExB): P L) — DL un)
(fn)n | (anB)na

and therefore
w(B)=0<% p,(B)=0foralln < E1(B)=0«< E(B)=0< v(B) =0,

so that y and v are equivalent measures. W

In case the Hilbert space H is not separable, it is not true that for any normal operator N there is always
a probability v equivalent to the spectral measure E associated to N. In fact, it can be proven that such
a probability exists if and only if the set {E, , : « € H } is separable in the space M (o(N)) of Radon
measures on o(N), where E, , is the measure defined by E, ,(B) = (E(B)x,x). However, if such a
probability exists then Theorem 3 still holds, the arguments being similar. For instance, Lemma 5 is easily
seen to be true for an uncountable family of measures.

4. Strongly compact weighted shifts

Let H be an infinite-dimensional, separable Hilbert space, let (e, ), >0 be an orthonormal basis for H, and
consider the weighted shift W induced on H by a bounded sequence (wy,)n>o of non-zero weights, that is,
We,, = wpen4+1 forevery n > 0.

The aim of this section is to discuss the conditions under which a weighted shift is strongly compact.
We start off with a necessary condition. We will show at the end of this section that this condition is not
sufficient.

Proposition 7 Let W be the weighted shift induced by a bounded sequence (wy, ) >0 0f non-zero weights.
If W is strongly compact then
1= w;
lim inf nj%oj =
e k20| T e,
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Proof. 1t is not hard to prove and it is shown in Halmos’s book [2, p.240] that the norm of W™, n > 1, is
the supremum of the sliding products of length n, or, explicitly,

n—1

W =sup | ] weqsl-
k20 5

The sequence of operators (W™ /||W™||),>0 lies inside the unit ball of the algebra generated by W and I.
Hence, the sequence of vectors (WW"eq/||W™||)n>0 is relatively compact. On the other hand,

n—1
Wneg <Hj—o w;

e\ e

) e, — 0 weakly asn — oo.

It follows that ||[W"eq||/||W™|| — 0 as n — oo, that is,

Hn—lw‘
.. i=0 Wj
lim inf J

Soo ko [T L =0,
nTookz Hj:o W5

The necessary condition stated in Proposition 7 can be used for constructing a counterexample to show
that the condition of having dense range cannot be removed from Proposition 2.

Proposition 8 There exists a compact operator with the property that none of the restrictions to its non-
zero invariant subspaces is strongly compact.

Proof. Let W be a weighted shift with decreasing sequence (wy, ), >0 of positive weights such that w,, — 0
as n — oo. Then W is compact and
n—1
inf 7Hj =0 %
. n—1
#2012 W+

so that T is not strongly compact. A Theorem of Nikolskii’s [5] ensures that if

o0
2 <
w;, < 00
n=0

then the non-trivial invariant subspaces of W are all of the form E = span{e,,, €ny+1, ...} for some
no > 1. But then again W) is a weighted shift with decreasing sequence (w;,)n>n, of positive weights,
so that W is not strongly compact. A proof of Nikolskii’s Theorem can be found in Halmos’s book [2,
p.303].

The following result gives another example of a restriction of a strongly compact operator to an invariant
subspace that is not strongly compact.

=1

)

Proposition 9 There exists a strongly compact bilateral weighted shift with an invariant subspace such
that the restriction of the operator to the invariant subspace fails to be strongly compact.

Proof. Let (w,)n>0 be a decreasing sequence of positive weights such that w, — 0 as n — oo, and
put w_,, = w,. Now let W be the bilateral weighted shift with sequence of weights (w,, )nez. Then W
is a compact operator with dense range, so by Proposition 2 we know that W is strongly compact. Let
E = span{eg, e1,...}. Then E is invariant under 1" and it follows from Proposition 8 that W fails to be
strongly compact, as we wanted.

Now we turn to the search of sufficient conditions for a weighted shift to be strongly compact.
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Theorem 4 Let W be the weighted shift induced by a bounded sequence (wy,)n>0 of non-zero weights

and assume that )

o0 n—1
. Hj:O W
>0 .
n=0"— szo Wk+j

Then W is strongly compact.

Proof. 1t follows from the computation in the proof of Proposition 7 that

—1
[W"eol| —in Hn o wj
e k20 H —o Wik |
so that the assumption is
Z ||Wn€0|\2
NG

Since ey is a cyclic vector for WV, thanks to the remarks after Lemma 2, it suffices to show that

S ={p(W)eo : pis apolynomial, [|p(W)] < 1}
is a relatively compact subset of H. Fix £ > 0 and choose n so large that
Z HW%OH2
PN e

Let K. denote the unit ball of span{eq,ei,...,en,} and let p(z) = ag + a1z + - + anz" be any
polynomial such that ||p(WW)|| < 1. We have for every k > 0

N n—1
p(W)ek = Qp€k + Z (£79) H wk;_i,_j Ck+n,
— i<o
so that
N n—1 2
laol? + > [ Nanl? | T] wrss| | = lp(W)ex]? < 1. (%)
n=1 7=0

In particular, with £ = 0 we get

no—1

Z a, W"eg

no—1

n—1
|a0|2—|— Z ‘anP ij
n=1 7=0

IN

N n—1
laol® + Y | lanl? [T wi| | = lpW)eol® < 1.
n=1 7=0

On the other hand, it follows from (x) that for every n with 1 < n < N we have

n—1
|an‘2 H W44 S 17
7=0
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and taking the supremum over k > 0 yields |a, |?||W"||? < 1. Thus,

2 2

N N N
SaWreol = 3 1l |[Twl| | = X lanPIWrel?
n=ng n=no 7=0 n=ngo
_ Z ‘ |2HW 60“ ||Wn||2 Z HW”€0||2
= G
PN e NG

Hence, p(W)ey € K. + By, and since € > 0 is arbitrarily small, it follows from Lemma 1 that S is a
relatively compact subsetof H. W

It will be shown in Corollary 4 below that the sufficient condition stated in Theorem 4 is not necessary
for a weighted shift to be strongly compact. Anyway, in the next corollary we apply this sufficient condition
to give an example of a compact weighted shift with non-zero weights which is strongly compact.

Corollary 3 Ler (g1,) be a sequence of positive numbers such that

1
€n S Shzapnil

for every h > 1, and define (wy,) by

1, ifn=0,1
Wn = Ehy ifn:2h
1, if2h <n<2ML

Then the weighted shift W induced by the sequence of weights (wy,) is strongly compact.

Proof. Put
-1
H;l o Wi

o, = Iinf
H] =0 wk+]

k>0 ’

take an n > 2, and choose h > 1 such that 2" < n < 2"*1 Notice that between 2" and 2" there are at
least h integers, so that cv,, < h/¢},. Thus,

o) co 2Rt
Zai < 1+Z Z o?
n=1 h=1 n=2h
< 1+22hh2h <1+Z

and it follows from Proposition 4 that W is strongly compact. W

Now look at the condition stated in Proposition 7 and assume that the sequence of weights has increasing
moduli, that is, |w,| < |wy,1| for all n > 1. Then there exists A = lim |w,,| and therefore

-1
H?:owj ~ im ‘H owj‘

[[Zo wits| m7°°

n—oo k>0

It turns out that under the monotony assumption the necessary condition stated in Proposition 7 is also
sufficient for a weighted shift to be strongly compact.
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Theorem 5 Let W be the weighted shift induced by a bounded sequence (wy,)n>0 of non-zero weights
with increasing moduli and assume that

-1
H?:o Wi

71_[”_1 4 =0.
j=0 Wk+j

lim inf
n—oo k>0

Then W is strongly compact.

Proof. Since e is a cyclic vector for W, thanks to the remarks after Lemma 2 it suffices to show that the set

S = {p(W)eq : pisapolynomial, |p(W)| < 1}

is relatively compact in H. Let A = lim |w,|, fix € > 0, and choose ng so large that if n > ng then

n—1
H wj| < eA™.
=0

Let K. denote the unit ball of span{eq, ey, ...,en,} and let p(z) = ag + a1z + --- + anz" be any
polynomial such that ||p(WW)|| < 1. We have for every k > 0

N n—1
p(W)ek = apex + Z [e2% H Witj | €k+n,
n=1 7=0
so that
N n—1 2
Jaol? + > [ Han | ] wiss| | = IIp(W)ex]? < 1. (%)
n=1 7=0
In particular, with £ = 0 we get
2 2

TLo—l

E an,W'heg
n=0

no—l

n—1
jaol® + >~ | lanl* | T] wj
n=1 7=0

IN

2
N n—1
jao* + D [ lanl* | TT wi| | = Ip(W)eol® < 1.
n=1 7=0
On the other hand, taking limits as £ — oo in (x) gives

N
Jaol® + ) lanPA" < 1,

n=1

so that
2 2
N N n—1 N
E ap,Wheg|| = E |an|2 H W <e? E \an\2)\2" < 2.
n=ngo n=no 7=0 n=no

Hence, p(W)ey € K. + By, and since € > 0 is arbitrarily small, it follows from Lemma 1 that S is a
relatively compact subsetof H. W
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Observe that when (|w,,|) is an increasing sequence that converges to \, the condition stated in Theorem

5 is just
Jim, l_T

y‘g

and this happens if and only if

oo

Z — |wp]) = 0.

As an application of Theorem 5 we come back to Corollary 1 and take a look at the operator of multi-
plication by z on Bergman space from a different point of view.

Corollary 4 The operator M, of multiplication by z on A?(ID) is strongly compact.

Proof. It is shown in Halmos’s book [2, pp.190 and 241] that A%(ID) is isometrically isomorphic to a
weighted sequence space so that M, is unitarily equivalent to the weighted shift W whose weights are

given by
n1\ V2
Wy, = .
<n+ 2>

A quick computation shows that this sequence of weights satisfies the condition of Theorem 5. Thus, M,
is strongly compact on A2(ID). M

Notice that this weighted shift does not satisfy the condition stated in Theorem 4 and therefore that
condition is not necessary for a weighted shift to be strongly compact.

We finish this section with an example to show that the necessary condition stated in Proposition 7 in
general is not sufficient for a weighted shift to be strongly compact.

Proposition 10 There exists a sequence of non zero weights (w, ), >0 such that the corresponding weighted
shift is not strongly compact but
n—1
I1 j=0 Wj

— | =0.
n—1 )
Hj:() W+

lim inf
n—oo k>0

Proof. Let (ny)>1 be an increasing sequence of positive integers satisfying

(@) ngy1 > 4ng.

(b) (k + 2)m/mr41 < 2,

For instance, the sequence ny, = (k+43)! works. Let p, = (k+1)/"*. Then (py )y, is a decreasing sequence
in the interval [1, 2], since pp, < (k + 1)*/% < 2 and, thanks to (a),

Pt =k 1> (k+ 2> (k4 2)" /e = pit

Define the sequence (wy,),>o of positive weights by w,, = 1 for n < nq, and if ny, < n < nyy; for
certain k then

1/VE+1, ifn=mng1 —2ngorn = ngy,
Wy, = 1, ifng <n < ngpr—2ngorngy; —ng < n < Nk,
Pr, ifngrr —2n, <n <ngyp — ng.

Let W denote the corresponding weighted shift. We have W"ey = 7,,e,, where 7, = H;I;Ol wj. Itis easy
to check that 7, = 1 for n < nq, and for every k& > 1,

1, ifng <n < ngge1 — 2ng,
—( —2np+1 .
Tn =14 pp (M1 =2n+ )/\/kz +1, ifngrr —2ng <n < ngi1— ng,
VvVk+1, ifnger —ng <n <ngy.
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Observe that for n < nj41 we always have 1/v/k + 1 < 7,, < v/k + 1. In order to prove that ||IW"eo|| /|| W ™| —
0 as n — oo, we are going to distinguish two cases. First of all, if ny, < n < ngy1 — 2ny for some k& > 1,
then ||W"eq|| = 7, = 1, and

Nk+1—2Nk+n

||WnH > HWnende*anJrlH = H W,
m=ng41—2nr+1
_ Tng41—2ng+n+1 > 1 :\/m7

Tnjpi—2ne+1 1/VE+1

using that, thanks to (a), ngy1—ng < N1 —2n+n+1 < 2ngy1 < N2 —2nk41. Therefore, in this case,
[Wreo| /W™ < 1/vE + 1. Otherwise, if ngy1 —2ng < n < ngyq then |[Wneo| = 7, < Vk + 1, and
using (b) we get

Ng42—2Nk1+1+n
||Wn|| 2 ||Wnenk+2—2nk+1+1 ” = H Wm = p;cl—&-l
m=ngi2—2ng41+1
k+2

> pnk+1—2nk _ (k+2)(k+2)—2"k/nk+1 > .

ket1
These estimates yield |W™egl|/||W"| — 0 as n — cc.

In order to check that W is not strongly compact we will consider the sequence of polynomials (pg)x
defined by

This sequence of polynomials satisfies the following property.
Claim A For every k > 1 we have ||p, (W)|| < 1.
Before proving Claim A we finish the proof of Proposition 10. This is now easy, since

2k
1 -
pr(Weg = o g \/ieni — 0 weakly as k — oo,
i=k-+1
and
1k(k+1) _ 1
2 _
B S S
||pk( )eOH 36k2 6 2 — 367

1=k+1

so that the set {p(W)eg : ||[p(W)]| < 1} is not relatively compact and therefore TV is not a strongly compact
operator. W

Notice that for every 2 > 1 and j > 0 there exists a;; > 0 such that W"ie; = a;;€;4,,. We will need
the following estimates for a;;.
Claim B For every ¢ > 2 and j > 0 we have

\[Z', lfj <My —Ni—1
ai; < q i+1, ifn;—ni_1 <j<nigp—n;
2, if Ni4+1 — Ny S ]

Proof of Claim B. We know that a;; = H]+"1 Wk = Tjin,;/Tj. If j = 0then a;; = 7, = Vi, and if
0<j<mn;—mni—ithenn; <j—+mn; < 2n; < niy1 — 2n, so that 7j4,, = 1and 7; > 1/V/i. This
takes care of the first estimate. Now observe that 1/v/i+1 < 7, < /i + 1 for every n < n;41, and
Qij = Tjqn, /Ty < 4+ 1, since j, j + n; < nipq if j < nip1 — n,. Thus, the second estimate follows. In
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order to get the third estimate, notice that for j = n;; — n; we have a;; = p; < 2, and for j > n;11 — ny
we have w; < p;y1 and so a;; < p?j_l =(i+ 2)’”/””1 < 2, thanks to (b), and the proof of Claim A is
finished. W

Proof of Claim A. Fix an i such that £ + 1 < ¢ < 2k and let us split W™ as the sum of two operators
Wni = §; + T; defined by
Se. — { VVni@j7 lf_] < MNjg1 — Ny
v 0, 1f]2nl+1—nl

and
Te — 0, lf] < Miy1 — Ny
v Whie;, if j > njp1 —ny.

The third estimate of Claim B yields ||T;|| < 2 for k + 1 < i < 2k and so

2k

1 1 & 1
= Ti|| < = Tl < 5-
o 2 T =g 2 1Tl <3
i=k+1 1=k+1
Now let R = Z?i k41 Si- Our aim is to show that || R|| < 4k because this will produce
2k
1 1 2 1
W) < — IR + || = T|<Z+2=1,
Il < G+ g 3 T < 5+ 3

which is what we want.

In order to estimate the norm of R we observe that if S;e; # O then j < n;41 —n; andn; < j+n; <
n;41. This implies that if ¢ # ¢’ then S;e; and S;-e;s are orthogonal vectors, no matter what j and j' are.
On the other hand, if j # j then S;e; and S;e; are also orthogonal. Therefore Re; is orthogonal to Re;
whenever j # j' and we may conclude that

||| = sup || Re;||.
j=0

Now define I; = min{i > 1: n;41 —n; > j} and notice that

Rej = E Aj5€54m,; -

k+1<i<2k,i>1,

If I; > 2k then ||Re;|| = 0. Assume I; < 2k. Using the estimates of Claim B and observing that
J <mn; —mn;_y fori > I; we get

[Rej|> = Z a?j < ai-j + Z a’?j

E4+1<i<2k,i>I; k+1<i<2k,i>1;
2k
< (I +1)%+ )0 i< (2k+1)? + 2k% < 16k
i=k+1

Thus, | Re;|| < 4k for every j > 0,

R|| < 4k, and Claim A follows. H
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