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Universal spaces for strictly convex Banach Spaces

Gilles Godefroy

Abstract. We show that if a separable Banach space X contains an isometric copy of every strictly
convex separable Banach space, then X contains an isometric copy of `1 equipped with its natural norm.
In particular, the class of strictly convex separable Banach spaces has no universal element. This provides
a negative answer to a question asked by J. Lindenstrauss.

Espacios universales para los espacios de Banach estrictamente convexos

Resumen. Probamos que si un espacio separable X contiene una copia isométrica de todo espacio
estrictamente convexo separable, entonces X contiene una copia isométrica de `1 con su norma natural.
En particular, la clase de los espacios de Banach estrictamente convexos no tiene elemento universal. Esto
responde negativamente a una pregunta de J. Lindenstrauss.

1. Introduction
A classical result, which goes back to Mazur, asserts that every separable Banach space is isometric to a
linear subspace of the space of continuous functions on the Cantor set. Let us consider more generally some
isometric property (P ) of separable Banach spaces, and assume that (P ) is hereditary, that is, any subspace
of a space with (P ) shares this property. It is natural to wonder whether there is a universal space for (P ).
In other words, is there a separable space U enjoying (P ) such that every space with (P ) is isometric to a
subspace of U?

When (P ) yields to some modulus, such as uniform convexity or uniform smoothness, is is usually easy
to show that the above question has a negative answer, by considering spaces with (P ) but an “arbitrarily
bad” modulus. Hence quantitative properties are quite easy to deal with in this context. Qualitative prop-
erties such as strict convexity are more difficult to handle. And in fact, a question which goes back to J.
Lindenstrauss ([11], p. 241) asks if there is a strictly convex separable space which isometrically contains
every strictly convex separable Banach space.

Quite naturally, the answer to this problem is also negative, and the solution relies again on a somewhat
quantitative argument, but this time of a transfinite nature. Indeed the gist of our approach is that the
collection of separable strictly convex Banach spaces is a coanalytic non Borel family (which means that
the “modulus of strict convexity” is a countable ordinal) while the collection of subspaces of a given space
is analytic.

Proving the non Borel character of the property of strict convexity requests the construction of strictly
convex spaces whose modulus is an arbitrarily large countable ordinal. These spaces will be supported by
well-founded trees of arbitrarily large height, and we will rely heavily on the method of [3].
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Let us outline the contents of this note. The first section contains the construction of a special norm on
`1. The corresponding space is what will be obtained on every infinite branch. Section 2 displays the space
E(ω<ω) where our work is done, and it is proved that a subspace E(T ) supported by a tree T is strictly
convex if and only if T is well-founded. The main results follow quite easily in section 3, through some
simple topological lemmas. Finally, section 4 presents a topological frame in which these results can easily
be expressed, and which is an isometric version of a notion introduced in the recent work of S. Argyros and
P. Dodos [1]. Our hope is to stimulate research along these lines and some open questions conclude the
article.

The notation we use is classical or it will be explained before use. We denote by ω = {0, 1, 2, ...} the
set of integers.

2. A special norm on `1

This section is devoted to the construction of a peculiar norm on `1(ω) = `1. The technical Proposition 1
gathers the properties of this norm which will be useful later. We equip `1 with its natural basis (ek)k≥0.
We denote by (e∗k)k≥0 the coordinate functionals, and by (πn)n≥0 the projections such that

πn(x) =
n∑

k=0

e∗k(x)ek.

For x ∈ `1, we denote
supp (x) = {n ∈ ω; e∗n(x) 6= 0}

Proposition 1 There exists an equivalent norm ‖| · |‖ on `1 such that:

i For every x ∈ `1 and every n ≥ 1, ‖|πn(x)‖|2 ≥ ‖|πn−1(x)‖|2 + 1
2 |e∗n(x)|2

ii For every v ∈ `1 with v 6= 0 and supp (v) finite, ‖| · ‖| is uniformly convex in the direction v.

iii There exists a subspace X of `1 such that ‖|y‖| = ‖y‖1 for all y ∈ X and such that X is isometric
to (`1, ‖ · ‖1).

PROOF.
We write ω =

⋃
j≥0 Ij , where the Ij’s are disjoint infinite subsets of ω. For all j ≥ 0, let xj ∈ `1 be

such that ‖xj‖1 = 1 and supp (xj) = Ij . Let

X = span ((xj)j≥0)

and let Q = `1 → `1/X be the canonical quotient map. Let

T = `1/X → `2

be a linear continuous one-to-one map such that ‖T‖ < 1
2 . We let S = TQ and we define our equivalent

norm on `1 by
‖|x‖|2 = ‖x‖21 + ‖S(x)‖22.

Condition (iii) is clearly satisfied.
For all x ∈ `1, we have

Sπn(x)− Sπn−1(x) = e∗n(x)Sen

hence
∣∣∣‖Sπn(x)‖22 − ‖Sπn−1(x)‖22

∣∣∣ ≤
(
‖Sπn(x)‖2 + ‖Sπn−1(x)‖2

)∣∣∣e∗n(x)
∣∣∣‖Sen‖2

≤ ‖S‖2
(
‖πn(x)‖1 + ‖πn−1(x)‖1

)
|e∗n(x)|.
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On the other hand,

‖πn(x)‖21 − ‖πn−1(x)‖21 =
(
‖πn(x)‖1 + ‖πn−1(x)‖1

)
|e∗n(x)|

and thus

|‖πn(x)‖|2 − |‖πn−1(x)|‖2 ≥
(
1− ‖S‖2

)(
‖πn(x)‖1 + ‖πn−1(x)‖1

)
|e∗n(x)|

≥
(
1− ‖S‖2

)
|e∗n(x)|2

>
1
2
|e∗n(x)|2

and this shows (i).

Finally, let v 6= 0 with finite support, and let (xn) and (yn) be two sequences in `1 such that

xn − yn = λnv

and
lim

[
2
(
‖|xn‖|2 + ‖|yn‖|2

)
− ‖|xn + yn‖|2

]
= 0

The usual convexity argument ([6, Fact II. 2. 3]) shows that

lim
[
2
(
‖|S(xn)‖|2 + ‖|S(yn)‖|2

)
− ‖|S(xn) + S(yn)‖|22

]
= 0

hence by the parallelogram identity

lim ‖|S(xn − yn)‖|22 = lim λ2
n‖|S(v)‖|22 = 0

Since v /∈ X we have S(v) 6= 0 and thus lim(λn) = 0, which shows (ii). ¥

Remark 2 The space X is contractively complemented in (`1, ‖ · ‖1) and we have ‖x‖1 = ‖|x‖| for all
x ∈ X , and ‖y‖1 ≤ ‖|y‖| for all y ∈ `1. It follows that X is contractively complemented in (`1, ‖|.‖|).

3. The spaces E(T )

Let ω<ω be the set of all finite sequences of elements of ω. If s ∈ ω<ω , we denote by |s| the length
of s. A subset T of ω<ω is called a tree if for all s = (s0, s1, . . . , s|s|−1) ∈ T and all k < |s|, s¹k =
(s0, s1, . . . , sk) ∈ T . Of course, ω<ω itself is a tree. If there is σ ∈ ωω such that σ¹k ∈ T for all k ∈ ω,
we say that T is not well-founded, and T is well-founded otherwise. We denote by T the set of all trees, and
by WF ⊆ T the set of all well-founded trees. The set T is a closed subset of 2(ω<ω) and therefore it is a
compact metric space for the induced topology.

Let c00(ω<ω) be the vector space of all functions from ω<ω to R with finite support.

If σ ∈ ωω and s ∈ ω<ω , we write s ≺ σ if there is k ∈ ω such that s = σ¹k. We denote

σ∗ = {s ∈ ω<ω; s 6< σ}
We define a norm ‖ · ‖ on c00(ω<ω) by the formula

‖y‖2 = sup
σ∈ωω

‖|
∑
s≺σ

y(s)e|s|‖|2 +
1
2

∑
s∈σ∗

y(s)2, (1)
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and we denote by E(ω<ω) the completion of c00(ω<ω) with respect to this norm. It is easily seen that the
sequence {χs; s ∈ ω<ω}, where

χs(s′) = 1, if s′ = s
χs(s′) = 0, if s′ 6= s

}

is an unconditional basis of the space E(ω<ω). For every tree T ⊆ ω<ω , we define the subspace E(T ) of
E(ω<ω) by

E(T ) = span {χs; s ∈ T}
With this notation, we have:

Proposition 3 If T is not well-founded then E(T ) contains a subspace isometric to (`1, ‖| · ‖|).

PROOF. Let σ ∈ ωω be such that

(σ) = {s; s ≺ σ} ⊆ T.

We claim that
E((σ)) = span {χs; s ≺ σ} ≡ (`1, ‖| · ‖|),

where ≡ means “is isometric to”. For y ∈ E(ω<ω) and σ′ ∈ ωω , we denote

σ′(y) =
∑

s≺σ′
y(s)e|s|. (2)

If y ∈ E((σ)) and σ′ 6= σ, there is n ∈ ω such that

σ′(y) =
∑

|s|≤n

y(s)e|s|,

hence if we let
γn(y) = ‖|

∑

|s|6n

y(s)e|s|‖|2 +
1
2

∑

|s|>n

y(s)2

we have by (1) that ∥∥∥
∑
s<σ

y(s)χs

∥∥∥
2

= sup
n∈ω

(γn)

But condition (i) of Proposition 1 shows that (γn) is increasing, and thus
∥∥∥

∑
s≺σ

y(s)χs

∥∥∥ = ‖|
∑
s≺σ

y(s)e|s|‖|.

¥

Remark 4 It follows easily from the monotonicity of the natural basis of `1 for the norm ‖| · ‖| (a con-
sequence of condition (i)) that the space E((σ)) is contractively complemented in E(ω<ω), the projection
being the restriction to (σ). Thus, by Remark 2, E(T ) contains a contractively complemented subspace
isometric to (`1, ‖ · ‖1) if T 6∈ WF .

We now check what happens when T is well-founded.

Proposition 5 If T ∈ WF , then E(T ) is strictly convex.
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PROOF. Let y, z ∈ E(T ) be such that

‖y‖ = ‖z‖ =
∥∥∥y + z

2

∥∥∥ = 1. (3)

For σ ∈ ωω and u ∈ E(ω<ω), we denote

‖u‖2σ = ‖|σ(u)‖|2 +
1
2

∑
s∈σ∗

u(s)2,

where σ(u) is defined by (2), and then (1) reads

‖u‖ = sup
σ∈ωω

‖u‖σ.

Let (σn) ⊆ ωω be such that

sup
n

∥∥∥y + z

2

∥∥∥
σn

= 1. (4)

By (3), we have
sup

n
‖y‖σn

= sup
n
‖z‖σn

= 1. (5)

Define v = y − z ∈ E(T ), and assume by contradiction that v 6= 0. ¥

Fact 6 The support supp (v) is finite, and there exists N ∈ ω such that supp (v) ⊆ (σn) if n ≥ N .

PROOF. We have to show that if v(t) 6= 0, then t ∈ (σn) for n large enough. We have

∥∥∥y + z

2

∥∥∥
2

σn

= ‖|σn

(y + z

2

)
‖|2 +

1
2

∑
s∈σ∗n

(
y + z

2

)
(s)2.

If t ∈ σ∗n for some n, we use the identity
(

y + z

2

)
(t)2 +

(
y − z

2

)
(t)2 =

1
2

[
y(t)2 + z(t)2

]

to obtain ∥∥∥y + z

2

∥∥∥
2

σn

≤ 1
2

(‖y‖2σn
+ ‖z‖2σn

)− 1
2

(
y(t)− z(t)

2

)2

≤ 1− 1
2

(
v(t)
2

)2

,

and (4) shows that this fails for n large enough.

It follows that for every t ∈ supp (v), there is N(t) ∈ ω such that t ∈ (σn) if n ≥ N(t). This implies
in particular that if t, t′ ∈ supp (v) then t and t′ are comparable (for ≺) in ω<ω , and since v ∈ E(T ) and
T is well-founded, it follows that supp (v) is finite.

Now, taking N = max{N(t); t ∈ supp (v)} concludes the proof of the Fact. ¥
Fact 6 implies that the vector

σn(y)− σn(z) = σn(v) ∈ `1

is independent of n ≥ N . On the other hand, it follows from (4), (5) and the standard convexity argument
that

lim
n

2
[
‖|σn(y)‖|2 + ‖|σn(z)‖|2

]
− ‖|σn(y + z)‖|2 = 0

but since ‖| · ‖| is uniformly convex in the direction σn(v) by condition (ii) of Proposition1, this implies
that σn(v) = 0 and thus v = 0. ¥
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4. Main results
We refer to [2] for a display —and use— of a proper parametrization of the collection of separable Ba-
nach spaces, which turns it into a standard Borel space. In short, we consider it as the set SE(C(2ω)) of
closed vector subspaces of the universal space C(2ω), and SE(C(2ω)) is a Borel subset of the set F(C(2ω))
equipped with the Effros-Borel structure, and thus it is a standard Borel space –in which the Lusin-Suslin
theory of analytic sets applies.

We denote by x = (xi)i∈ω sequences in C(2ω)ω = S.

Lemma 7 The relations:

(i) ≡: “is isometric to”

(ii)
=
↪→: “embeds isometrically into”

(iii) Q: “is a quotient of”

are analytic subsets of SE(C(2ω))2.

PROOF. We first prove (i) and (ii). If x and y belong to C(2ω)ω = S , we denote x ≡ y if
∥∥∥

∑
λixi

∥∥∥ =
∥∥∥

∑
λiyi

∥∥∥

for all (λi) ∈ R<ω . The relation ≡ is closed in S2. The set

{(X,x) ∈ SE(C(2ω))× S; span (x) = X}
is Borel in SE(C(2ω))× S ([2, Lemma 2.6]). It follows that the set of all

(x, y,X, Y ) ∈ S2 × SE(C(2ω))2

such that span (x) = X , span (y) = Y and x ≡ y is Borel, and (i) follows by projection on SE(C(2ω))2.
The proof of (ii) follows the same lines, except that the condition span (y) = Y is replaced by the condition
y ⊆ Y , which is also Borel.

For showing (iii), we observe that Y ≡ Q(X) for some quotient map Q if and only if there exist y, x,
and x′ such that span (y) = Y , span (x) = X , x′ ⊆ X , and moreover for every (λi) ∈ Q<ω

∥∥∥
∑

λiyi

∥∥∥ = inf
(αj)∈Q<ω

∥∥∥
∑

λixi +
∑

αjx
′
j

∥∥∥,

and this last equation defines a Borel subset of S3. Then (iii) follows by projection. ¥
We call J an isometric linear embedding of E(ω<ω) into C(2ω).

Lemma 8 The map Ψ = T ⇁ SE(C(2ω)) defined by Ψ(T ) = J(E(T )) is Borel.

PROOF.
The Effros-Borel structure is generated by the sets

BV = {F ; F ∩ V 6= ∅},
where V is an open subset of C(2ω). It is easy to check that the set {T ∈ T ; Ψ(T ) ∩ V 6= ∅} is open in T :
this follows from the definition of E(T ) and the fact that for all s ∈ ω<ω , {T ∈ T ; s ∈ T} is open in T .
This shows the lemma. ¥

Our first main result provides a strong negative answer to J. Lindenstrauss’ question.
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Theorem 9 Let X be a separable Banach space which contains and isometric copy of every strictly convex
separable Banach space. Then X contains an isometric copy of (`1, ‖ · ‖1).

PROOF.
By Lemma 7 (ii), the set

A = {Y ∈ SE(C(2ω));Y
=
↪→ X}

is analytic. By Lemma 8, the set Ψ−1(A) is analytic as well. Since X contains an isometric copy of every
strictly convex space, Proposition 5 shows that WF ⊆ Ψ−1(A). But WF is not analytic (see [9]) and thus
there exists T /∈ WF such that Ψ(T ) ∈ A. The corresponding space E(T ) embeds isometrically into X
and contains an isometric copy of (`1, ‖ · ‖1). ¥

We note that by ([7, Cor. 3.3]), a separable Banach space Y embeds isometrically (as a metric space)
into a Banach space X if and only if there exists a linear isometric embedding from Y into X. Hence, “iso-
metric copy” can be understood in the metric sense in Theorem 9.

Since the canonical norm ‖ · ‖1 of `1 is not strictly convex, Theorem 9 implies that there is no universal
strictly convex space.

It is natural to investigate alternative notions of universality, where quotient maps are involved. In this
direction, we obtain the following satisfactory result.

Theorem 10 Let X be a separable Banach space. If every strictly convex separable Banach space is
isometric to a quotient (resp. a subspace of a quotient) of X, then every separable Banach space is isometric
to a quotient (resp. a subspace of a quotient) of X.

PROOF.
If Z(X) be the subset of SE(C(2ω)), consisting of spaces which are isometric to a quotient of X. By

Lemma 7 the set Z(X) is analytic. Since WF ⊆ Ψ−1(Z(X)), it follows as above that there is T /∈ WF
such that E(T ) ∈ Z(X). By Remark 4, the space (`1, ‖ · ‖1) is contractively complemented in E(T ) and
thus (`1, ‖ · ‖1) ∈ Z(X). Since every separable Banach space is isometric to a quotient of (`1, ‖ · ‖1), the
result follows.

A simpler argument provides the “subspace of quotient” assertion. Again by Lemma 7, the set SZ(X)
of subspaces of quotients of X is analytic and thus it contains some E(T ) with T /∈ WF . By Proposition 3
and 1, the space (`1, ‖ · ‖1) belongs to SZ(X) and thus every separable Banach space does. ¥

Remark 11 Known results on the topological complexity of families of norms already provide (through
Lemma 7 and statements similar to Lemma 8) negative answers to Lindenstrauss’ question and other univer-
sality problems. For instance [3] implies that no strictly convex separable Banach space contains isometric
copies of all renormings of c0(ω) = c0 which are uniformly rotund in every direction.

Similarly, it follows from [4] that we may replace “uniformly rotund in every direction” by “locally uni-
formly rotund” in the above, and (again by [4]) that no Gâteaux-smooth separable Banach space contains
isometrically every Fréchet-smooth renorming of c0, or of `2. Quotients maps can be involved as well, as
in Theorem 10 and this provides more negative results.

However, Theorem 9 and its proof provide a somewhat better information, which is relevant to a weak
notion of “closure” on the collection of separable Banach spaces. We will display this notion in our last
section 5.
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5. The Bossard Topology
The concept we now display in the isometric version of a notion which is implicitely contained in the recent
article [1]. Our terminology follows [1] and refers to [2]. We recall that ≡ denotes isometry on the set
SE(C(2ω)). A subset H of U is ≡-saturated if X ∈ H and X ≡ Y implies that Y ∈ H . It is hereditary if
X ∈ H and Y ⊆ X implies that Y ∈ H . The word “Borel” refers of course to the Effros-Borel structure
on U .

Definition 12 A subset F of U is Bossard closed if F is an intersection of ≡-saturated hereditary Borel
sets. The Bossard topology β is the topology on U whose closed sets are the Bossard closed sets.

Note that Definition 12 is valid since the collection of Bossard-closed sets is stable under intersection
and finite (actually, countable) union. Since this topology (denoted below by β) deals with≡-saturated sets,
it can as well be defined on U/≡. However, it is handy to consider it on U . Note that it is not Hausdorff,
even when considered on U/≡.

Here is an important example of β-closed set.

Lemma 13 Every analytic ≡-saturated hereditary subset A of U is β-closed.

PROOF.
Assume that X /∈ A. Let

X̃ = {Y ∈ U ; X
=
↪→ Y }.

By Lemma 7, X̃ is analytic and A ∩ X̃ = ∅. By Suslin’s separation theorem, there exists a Borel set
B0 ⊇ A such that B0 ∩ X̃ = ∅. Let A1 be the smallest hereditary ≡-saturated set containing B0.

By Lemma 7, A1 is analytic and we still have A1 ∩ X̃ = ∅. Hence there is B1 ⊇ A1 a Borel set with
B1 ∩ X̃ = ∅. Continuing in this way, we construct a sequence (Bn) of ≡-saturated hereditary Borel sets. If

B = ∪n≥0Bn

we have A ⊆ B, X /∈ B and B is Borel ≡-saturated and hereditary. This shows that A is β-closed. ¥

Remark 14

1. Lemma 13 shows that we may replace “Borel” by “analytic” in Definition 12.

2. If we replace the relation≡,“being isometric”, by the isomorphism relation', we can define a topol-
ogy β′ as in Definition 12. Except for the notation, this is done in [1]: in their terminology, C is
Bossard X-generic if and only if X belongs to the β′-closure of C.

3. For any X ∈ U , the set
SE(X) = {Y ∈ U ; Y

=
↪→ X}

is analytic by Lemma 7, hereditary and ≡-saturated, hence it is β-closed. Therefore, every class C
which admits a universal space is β-closed. However, the converse is false. For instance, the set
SE(`1) ∩ SE(`2) is β-closed but contains no universal space.

We now revisit Lemma 13 and show:

Proposition 15 Let X ∈ U , and C a subset of U . If there exists a Borel map Ψ = T → U such that

144



Universal spaces for strictly convex Banach spaces

1. If T ∈ WF , then Ψ(T ) ∈ C

2. If T /∈ WF , then X
=
↪→ ψ(T ). Then X ∈ Cβ

PROOF. Let B ⊇ C be a Borel hereditary ≡-saturated set. Since Ψ−1(B) ⊇ WF and is Borel, there
exists T0 /∈ WF such that Ψ(T0) ∈ B. Therefore X

=
↪→ Ψ(T0) and thus X ∈ B. This concludes the proof.

¥
Examples: Sections III and IV above show that (`1, ‖ · ‖1) belongs to the β-closure of the set SC of

strictly convex spaces. Actually, if a space (X, ‖| · ‖|) with a basis and the corresponding sequence of pro-
jections (πn) satisfies conditions (i) and (ii) of Proposition 1, then (X, ‖|·‖|) belongs to the β-closure of SC.

Along similar lines, it follows from Proposition 15 and [3] that the non-strictly convex space (c0, ‖| · ‖|)
(in the notation of [3]) belongs to the β-closure of the set of URED renormings of c0.

Also, it is shown in [10] through James tree spaces (see [5]) that the quasi-reflexive James space J [8]
belongs to the β-closure of the set of reflexive spaces with a uniformly Kadec-Klee norm.

This work leaves open a fair number of natural questions. Let us formulate some of them.

1. Problem. Which classical non-smooth spaces belong to the β-closure of the set of Gâteaux-smooth
spaces? Of the set of Fréchet-smooth spaces?

The next problem is really to know whether the optimal version of Theorem 9 holds true. Along
these lines, note that an open problem which goes back to S. Rolewicz ([12], Pb. IX. 9. 4) asks
whether a separable Banach space which contains an isometric copy of every finite dimensional Ba-
nach space, contains also isometric copies of every separable Banach space.

2. Problem. Let X be a separable Banach space which contains isometric copies of every strictly convex
separable Banach space. Does X contain an isometric copy of every separable Banach space?

In view of Theorem 14, our last problem is a strong version of the previous one.

3. Problem. Does the space (C(2ω), ‖·‖∞) belong to the β-closure of the set of strictly convex separable
Banach spaces?

Acknowledgement.
I gladly thank Professor Vicente Montesinos Santalucia for his help in the preparation of this article.

References
[1] Argyros, S. and Dodos, P. (2005). Genericity and amalgamation of classes of Banach spaces. (Preprint).

[2] Bossard, B. (2002). A coding of separable Banach spaces, Fund. Math. 172, 117–152.

[3] Bossard, B. (1996). Coanalytic families of norms on a separable Banach space, Illinois J. Math. 40, (2), 162–
181.

[4] Bossard, B., Godefroy, G. and Kalton, N.J. (1996). Hurewicz’s theorems and renormings of Banach spaces, J.
of Funct. Anal. 140, 1, 142–150.

[5] Brackebusch, R.E. (1988). James spaces on general trees, J. of Funct. Anal. 79, 446–475.

[6] Deville, R., Godefroy, G. and Zizler, V. (1995). Smoothness and Renormings in Banach spaces, Pitman Mono-
graphs and Surveys, 164, Longman Ed.

145



G. Godefroy

[7] Godefroy, G. and Kalton, N.J. (2003). Lipschitz-free Banach spaces, Studia Math. 159, (1), 121–141.

[8] James, R.C. (1950). Bases and reflexivity of Banach spaces, Ann. of Math. 52, 518–527.

[9] Kechris, A.S. (1995). Classical descriptive set theory, Springer, New-York.
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