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Numerical Ranges of Some Composition Operators

Catherine Finet

Abstract. This paper is a short survey on the numerical range of some composition operators. The first
part is devoted to composition operators on the Hilbert Hardy space H2 on the unit disk. The results are
due to P. Bourdon, J. Shapiro and V. Matache.

In the second part we study the numerical range of composition operators on the Hilbert space H 2

of Dirichlet series. These results are due to H. Queffélec and the author.
The third part is devoted to compactness connected with fixed points in the setting of H2 and H 2.

These results are due to H. Queffélec and the author.

Rango numérico de ciertos operadores de composición

Resumen. Este trabajo describe un breve panorama sobre el rango numérico de algunos operadores de
composición. La primera parte está dedicada a los operadores de composición sobre el espacio de Hilbert
Hardy H2 sobre el disco unidad. Los resultados se deben a P. Bourdon, J. Shapiro y V. Matache.

En la segunda parte estudiamos el rango numérico de operadores de composición sobre el espacio de
Hilbert H 2 de las series de Dirichlet. Estos resultados se deben a H. Queffélec y a la autora.

La tercera parte se dedica a la compacidad relacionada con puntos fijos en el contexto de H2 y H 2.
Estos resultados se deben a H. Queffélec y a la autora.

Introduction

The setting is the following : a set X , a Banach space of a collection of functions on X . If φ maps X into
itself, the composition operator Cφ is defined by (Cφ f )(x) = f (φ(x)), for x in X and functions f in the
Banach space. The function φ is called the symbol of the composition operator.

The numerical range of a linear bounded operator T on a Hilbert space H is the set

W (T ) =
{〈T f , f 〉, f ∈ H, ‖ f‖= 1

}
.

The numerical range has the following properties :

a) it contains every eigenvalue of T (obvious),

b) it lies in the disk {|w| ≤ ‖T‖} (obvious),

c) its closure contains the spectrum of T (easy),
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C. Finet

d) it is convex (Toeplitz-Hausdorff theorem), therefore Lebesgue measurable,

e) it is even a Borel set ([1]),

f) for compact T , it is closed if and only if it contains 0 ([6]).

We describe the shape of the numerical range of some composition operators Cφ . Of course this is
clearly connected with the functional properties of φ .

In the first part we work in the Hilbert Hardy space H2 of analytic functions f (z) =
∞
∑
0

f̂ (n)zn on the open

unit disk D with square-summable coefficients : ‖ f‖2 =
∞
∑
0
| f̂ (n)|2 < ∞ and reproducing kernel Ka (a ∈ D),

i.e. f (a) = 〈 f ,Ka〉 and Ka(z) = 1/(1−az).
In the second part we work with the Hilbert Hardy-Dirichlet space H 2 of analytic functions f admitting

a Dirichlet series expansion f (s) =
∞
∑
1

ann−s with square-summable coefficients ‖ f‖2 =
∞
∑
1
|an|2 < ∞. As we

will see the two situations are very different.
The last part is essentially devoted to the study of the connection between compactness and fixed points.

This part has not been published.
We only give the proofs not published.

1. Composition operators on H2

By the famous Littlewood’s subordination principle [14], each holomorphic selfmap φ of D induces on H2

a bounded composition operator Cφ with

‖Cφ‖ ≤
(

1+ |φ(0)|
1−|φ(0)|

)1/2

.

Let us also mention if φ is inner then we have the equality :

‖Cφ‖=
(

1+ |φ(0)|
1−|φ(0)|

)1/2

.

1.1. Numerical range for monomial symbols [12]
1. φ(z) = z

W (Cφ ) = {1}.

2. φ(z) = r

• If r = 0, then W (Cφ ) = [−1,1],

• If r 6= 0, |r| < 1, then W (Cφ ) is the closed elliptic disk whose boundary is the ellipse of foci 0
and 1 having horizontal axis of length 1/

√
1− r2.

3. φ(z) = ωz, |ω|= 1, ω 6= 1 (φ is a ω-rotation).

• If ω is a primitive root of unity of order n≥ 2 then W (Cφ ) is the convex hull of all the n-th roots
of unity. In particular, when n = 2, W (Cφ ) is just the closed segment [−1,1].

• If ω is not a root of unity then W (Cφ ) is the union of D and the set {ωn,n≥ 0}.

4. φ(z) = rz, |r|< 1 (φ is a dilatation, more precisely, an r-dilatation)

• r > 0 (φ is a positive dilatation), W (Cφ ) = ]0,1]
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Numerical Ranges of Some Composition Operators

• r ≤ 0, W (Cφ ) = [r,1]

• r /∈ R, W (Cφ ) is a closed polygonal region, whose vertices form a finite subset of the set {rn,
n≥ 0}.

5. φ(z) = czk, |c|= 1, k ≥ 2
W (Cφ ) = D∪{1}.

6. φ(z) = czk, |c|< 1, c 6= 0,k ≥ 2
W (Cφ ) is the convex hull of the point 1 and the disk centered at 0 with radius 1/

√
t (see [12] for the

value of t).

1.2. Numerical range for automorphism symbols [12]

Automorphisms of the unit disk (one-to-one analytic maps of D onto itself) are the mappings

φ(z) = λ
a− z
1−az

, |λ |= 1, |a|< 1.

The classification of the automorphisms is the following :

• Elliptic automorphisms of D are conjugate to rotations.

• Hyperbolic automorphisms of D are conjugate to positive dilatations.

• Parabolic automorphisms of D are conjugate to translations.

• All other are conjugate to complex dilatations.

Let us mention

Theorem 1 ([7]) Let φ be any holomorphic selfmap of D, the following are equivalent:

1. Cφ is invertible,

2. Cφ is Fredholm,

3. φ is an automorphism of the unit disk.

1. φ is an automorphism of D that is either parabolic or hyperbolic.
W (Cφ ) is a disk centered at the origin.
W (Cφ ) is either open or closed.

2. φ is an elliptic automorphism of D.
Then φ is conjugate to a rotation, φ = τ−1 ◦ϕ ◦ τ where ϕ is a ω-rotation.

• If ω is not a root of unity, W (Cφ ) is a disk centered at the origin.

• If ω is a primitive root of order 2, W (Cφ ) is an elliptic disk with foci at ±1.

• If ω is a primitive root of order n > 2, the situation is not well-known.
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1.3. Zero containement [4]
Let us recall that the numerical range of a compact operator is closed if an only if it contains the origin [6].
As we saw before the positive dilatations induce a class of compact composition operators with non closed
numerical range (W (Cφ ) = ]0,1]).

Theorem 2 If φ is any holomorphic selfmap of D that is not the identity then 0 ∈W (Cφ ).

Let us now consider the following question: For which φ does int W (Cφ ) contain the origin ?
The case φ is constant is solved in Section 1.1..

Theorem 3 Let φ be a non constant holomorphic selfmap of D. If φ is not one-to-one then 0 ∈ intW (Cφ ).

We now consider this question for maps that fix the origin. The case of dilatations has already been
treated before. Let us consider the non dilatation case.

Theorem 4 Let φ be a non constant holomorphic selfmap of D. If φ is not a dilatation and φ(0) = 0 then
0 ∈ intW (Cφ ).

Let us mention as a consequence of this theorem that when φ is not a positive dilatation with φ(0) = 0, if
Cφ is compact then W (Cφ ) is closed. What’s happening for maps that fix a non-zero point ? The theorem
carries over except for positive conformal dilatations !

Let us recall that a conformal dilatation is a map that is conformally conjugate to an r-dilatation, i.e.,
a map ϕ = α−1 ◦ δr ◦α , where r ∈ D and α is a conformal automorphism of D. Each such map fixes the
point p = α−1(0) ∈ D.

Theorem 5 If φ is a holomorphic selfmap of D that fixes a non-zero point in D and is neither the identity
map on D nor a positive conformal dilatation. Then 0 ∈ intW (Cφ ).

The special case of positive dilatations is treated in the following theorem.

Theorem 6 If φ is a positive conformal dilatation that fixes a point p ∈ D and has dilatation parameter r
(0 < r < 1). Then the following are equivalent:

1. 0 ∈W (Cφ )

2. 0 ∈ intW (Cφ )

3. |p|>√
r.

1.4. What about the point 1? [12]
Theorem 7 Suppose φ is a holomorphic selfmap of D.

1. φ(0) = 0 if and only if the point 1 is an extreme boundary point of W (Cφ ).

2. If φ(0) 6= 0, then 1 ∈ intW (Cφ ).

2. Composition operators on H 2

H 2 is the Hilbert space of Dirichlet series with square-summable coefficients, equipped with the norm

‖ f‖=
( ∞

∑
n=1

|an|2
)1/2

if f (s) =
∞
∑

n=1
ann−s belongs to H 2. By the Cauchy-Schwarz inequality, the functions

in H 2 are all holomorphic on the half-plane C1/2 = {s ∈ C,ℜs > 1/2}, with reproducing kernel Ka
(a ∈ C1/2), i.e. f (a) = 〈 f ,Ka〉 an Ka(s) = ζ (s+a) where ζ denotes the Riemann Zeta-function.
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For the space H 2 not any analytic function in a half-plane can be represented as a Dirichlet series. Thus
the situation is different than the one of H2. The analog of the classical Littlewood subordination principle
in the context of Dirichlet series is a theorem due to Gordon and Hedenmaln [11]. We denote by Cθ the
half-plane Cθ = {s ∈ C,ℜs > θ}.

Theorem 8 An analytic self-map φ :C1/2 →C1/2 induces a bounded composition operator Cφ : f 7→ f ◦φ
on H 2 if and only if

1. φ is “representable” i.e., φ(s) = c0s+ϕ(s), where c0 is a non-negative integer, and where the analytic

function ϕ can be written as a convergent Dirichlet series
∞
∑
1

cnn−s for ℜs large enough: ℜs > θ (in

short ϕ ∈D).

2. φ is “extendable” with ”controlled range”, namely φ has an analytic extension to C0, still denoted
by φ , and such that

(a) φ(C0)⊂ C0 if c0 ≥ 1.

(b) φ(C0)⊂ C1/2 if c0 = 0.

Let us mention that the cases c0 ≥ 1, c0 = 0 are very different. Let us recall [9] the following:

If φ(s) = c0s+ϕ(s) : C0 → C0, ϕ ∈D , ϕ(s) =
∞
∑
1

cnn−s, then:

1. if ϕ(s) = c1, we have ℜc1 ≥ 0,

2. if ϕ is not constant, we have ℜc1 > 0.

In the case of H2, Cφ is invertible if and only if φ is an automorphism of D (Theorem 1).
In the case of H 2 (when Cφ is a bounded operator on H 2), Cφ is invertible if and only if φ(s) = s + ik,
k ∈ R.
Thus the situation is power in the case of H 2 than in the case of H2.
Let us recall the following results of F. Bayart [2].

Theorem 9 For a bounded composition operator Cφ : H 2 →H 2, the following are equivalent:

1. Cφ is invertible,

2. Cφ is Fredholm,

3. φ(s) = s+ ik, where k is a real number.

Theorem 10 Let Cφ : H 2 →H 2 be a bounded composition operator. Then:

1. Cφ is normal if and only if φ(s) = s+ c1, where ℜc1 ≥ 0.

2. Let φ(s) = c0s+ϕ(s). Assume that the Dirichlet series of ϕ converges uniformly for ℜs≥ 0, then Cφ
is isometric if and only if φ(s) = c0s+ ik, where c0 ≥ 1 and k ∈ R.

2.1. Numerical range for symbols φ(s) = c0s+ c1, c0 ∈ N, ℜc1 ≥ 0 [9]
1. φ(s) = s

W (Cφ ) = {1}
2. φ(s) = c1 ∈ C1/2

W (Cφ ) is the closed elliptic disk whose boundary is the ellipse of foci 0 and 1 having horizontal axis

of length ‖Kc1‖=
(
ξ (2ℜc1)

)1/2.
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3. φ(s) = s+ c1, c1 6= 0

(a) If c1 > 0, W (Cφ ) =]0,1]. If ℜc1 > 0 and c1 /∈ R, W (Cφ ) is a closed polygon containing the
origin in its interior.

(b) If ℜc1 = 0, W (Cφ ) = D∪{n−c1 ,n≥ 1}.

4. φ(s) = c0s+ c1,c0 ≥ 2

(a) If c1 = ik, k ∈ R, one has W (Cφ ) = D∪{1}. And this remains true if φ is any symbol such that
Cφ is a non-surjective isometry of H 2 into itself.

(b) If ℜc1 > 0, one has W (Cφ ) = co
(
D(0,r)∪{1}), where r < 1 is given by the relation

r = sup
{

∑
h≥0

ahah+1 2−ch
0γ1 ; ah ≥ 0,

∞

∑
0

a2
h = 1

}
, γ1 = ℜc1. (1)

(c) In particular, we always have 0 ∈ intW (Cφ ).

2.2. Zero containement [9]

As in the case of H2 we get

Theorem 11 For any symbol φ that is not the identity, 0 ∈W (Cφ )

We consider as in the section 1.3. the following question: For which φ does int W (Cφ ) contain the
origin ?

We already know (section 2.1., 4) that if φ(s) = c0s+ c1, c0 ≥ 2 then 0 ∈ int W (Cφ ). In fact, we get

Theorem 12 Let φ be the symbol of a composition operator on H 2. Then

1. Either φ(s) = s+ c1, c1 > 0. Or 0 belongs to the interior of W (Cφ ).

2. If φ(s) 6= s+ c1, c1 > 0, W (Cφ ) is closed as soon as Cφ is compact.

2.3. What about the point 1?

Let us recall that an eigenvalue λ of a bounded operator T on a Hilbert space is said to be normal if

ker(T −λ I) = ker(T ?−λ I).

Theorem 13 Let φ(s) = c0s+ϕ(s), ϕ ∈D .

1. c0 6= 0 if and only if 1 ∈ ∂W (Cφ ).

2. If c0 = 0 then 1 ∈ intW (Cφ ).

PROOF.

1. Let us recall that it is customary (see [14]) to say that ω , of modulus one, is a fixed point of φ :D→D
if lim

r
<−→1

φ(rω) = ω . Similarly, we will say here that ∞ is a fixed point of φ if limℜs→+∞ φ(s) = ∞.
That is always the case when c0 6= 0, since ϕ(s) is defined by an absolutely convergent (therefore
bounded) Dirichlet series for ℜs large enough. Then Cφ is a contraction [11] and W (Cφ ) ⊂ D, this
implies 1 ∈ ∂W (Cφ ).

Let us now suppose that 1 ∈ ∂W (Cφ ).
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As 1 is always an eigenvalue of Cφ and 1 ∈ ∂W (Cφ ), it follows [4] that 1 is a normal eigenvalue. It
means that C?

φ 1 = 1. One has C?
φ (Ka) = Kφ(a); where Ka(s) = ζ (a+ s) = ∑n≥1 n−a−s. It is easy to

see that
C?

φ 1 = lim
ℜa→+∞

C?
φ (Ka) = lim

ℜa→+∞
Kφ(a) = 1.

This is only possible if lim
ℜa→+∞

φ(a) = +∞.

2. It follows from [11] that, for n ≥ 2, one has n−φ(s) = n−c1
(

1 + ∑
`≥2

d(n)
` `−s

)
. Now consider f (s) =

a+b2−s, with |a|2 + |b|2 = 1. Then

Cφ f (s) = a+b2−c1
(

1+ ∑̀
≥2

d(2)
` `−s

)
.

And 〈Cφ f , f 〉= |a|2 + |b|22−c1 +ba2−c1d(2)
2 .

Therefore, W (Cφ )⊃W (A), where A is the matrix A =
[

1 2−c1d(2)
2

0 2−c1

]
on C2.

Then W (A) is an non degenerated elliptic disk with foci 1 and 2−c1 and 1 ∈ intW (Cφ ). ¥

Remark 1 It can be shown that if Cφ is a non unitary isometry then W (Cφ ) = D.

3. Compactness — Fixed points

3.1. H2-setting
Let us recall the following results

Theorem 14 ([14]) Let φ be a holomorphic selfmap of D. Then

1. If Cφ is compact, we have

lim
|z|→1

1−|φ(z)|
1−|z| = ∞.

2. The converse of 1 is true if φ is injective, or finitely valent.

3. If φ has restricted range (i.e. ‖φ‖∞ < 1), Cφ is compact, and even in any Schatten class Sp, p > 0.
The converge is not true.

Theorem 15 ([14]) If Cφ is compact then φ has a fixed point in D.

3.2. H 2-setting
By analogy with 3, and in view of the Gordon-Hedenmalm Theorem, we shall say that φ : C1/2 → C1/2,
giving rise to a bounded composition operator, has restricted range if

1. c0 ≥ 1 and φ(C0)⊂ Cε , for some ε > 0.

2. c0 = 0 and φ(C0)⊂ C1/2+ε , for some ε > 0.

The following simple fact was observed by Bayart ([2]):
If φ has restricted range, then Cφ : H 2 →H 2 is compact.
But the converse is not true and has been studied in [10, 3] (see also [5, 13]).

We are yet far from being able to prove the existence of a fixed point for φ if Cφ : H 2 →H 2 is compact,
and will content ourselves with the two following propositions.
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Proposition 1 Suppose φ(s) = c0s+ϕ(s), where:

1. φ(C0)⊂ Cε , for some ε > 0,

2. the Dirichlet series of ϕ converges uniformly in C0.

Then φ has a fixed point.

PROOF. As mentioned before, when c0 6= 0, then φ has a fixed point. Therefore we only have to prove
that φ has a fixed point when c0 = 0.

It follows from the hypothesis (2) that |φ(s)| ≤ M for s ∈ C0. Let now h : C0 → D be the Cayley
map defined by h(z) = z−1

z+1 , and ψ : D→ D be the conjugate of φ by h : ψ = h ◦ φ ◦ h−1. Observe that
1−|h(z)|2 = 4ℜz/|z+1|2, so that 1−|h(φ(s))|2 ≥ 4ε/(M +1)2 for s ∈ C0, and that ψ sends D into Dr =
{|z| ≤ r}, where r =

√
1− 4ε

(M+1)2 < 1. Then, by well-known results (Brouwer’s or Rouche’s theorem), ψ

has a fixed point a ∈ D, and φ has the fixed point h−1(a) ∈ C0. ¥
If a is a fixed point of Cφ , then C?

φ (Ka) = Kφ(a) = Ka, and Ka is a non-zero fixed vector of C?
φ ; by

extension, we will say that φ has a weak fixed point if there exists a non-zero f ∈H 2 such that C?
φ ( f ) = f .

If we make the stronger assumption that φ has restricted range (which guarantees the compactness of
Cφ ), we can get rid of the regularity assumption on ϕ , for a weaker conclusion.

Proposition 2 Suppose that, for some ε > 0, we have φ(C0)⊂ C1/2+ε . Then, φ has a weak fixed point.

PROOF. We will use the notations of Gordon and Hedenmalm ([11]); let p1 < · · ·< ph < · · · be the prime

numbers; for f (s) =
∞
∑
1

ann−s =
∞
∑
1

an(p−s
1 )α1 · · ·(p−s

r )αr (where n = pα1
1 · · · pαr

2 ) ∈H 2, we write D f (z) =
∞
∑
1

anzα1
1 · · ·zαr

r (formally), and it follows from a result (summation process) of Cole and Gamelion ([8]) that

D f may be considered as an analytic function of infinitely many variables z = (z1, . . . ,zr, . . .) on the open
set D∞∩ `2 of the Hilbert space `2, D∞ denoting the infinite polydisk: D∞ =

{
z = (z1, . . . ,zr, . . .); |z j| < 1

for each j
}

. Also set φh(s) = p−φ(s)
h , φ̃(z) = (Dφ1(z),Dφ2(z), . . . ,Dφh(z), . . .) for z ∈D∞∩`2 we have (see

[8]): DCφ D−1 = Cφ̃ , where φ̃ is an analytic self-map of D∞∩ `2.
Now fix an integer k, and consider the following diagram:

Dh jh−→ D∞∩ `2
φ̃−→ D∞∩ `2

ph−→ Dh,

φ̃h = ph ◦ φ̃ ◦ jh, where jh is the canonical injection and ph the orthogonal projection; that is:

φ̃h(z1, . . . ,zh) =
(
Dφ1(z1, . . . ,zh,0, . . .), . . . ,Dφh(z1, . . . ,zh,0, . . .),0, . . . ,0, . . .

)
.

Denote by ∆h the compact subpolydisk of Dh defined by

∆h =
{

z = (z1, . . . ,zh); |z j| ≤ p−1/2−ε
j for 1≤ j ≤ h

}
.

From the assumption on φ , we see that φ̃h maps ∆h into itself, therefore has a fixed point
(
a(h)

1 , . . . ,a(h)
h

)
, by

the Brouwer fixed point theorem. That is:
∣∣a(h)

j

∣∣≤ p−1/2−ε
j , for 1≤ j ≤ h

a(h)
j = Dφ j

(
a(h)

1 , . . . ,a(h)
h ,0, . . .

)
for 1≤ j ≤ h. (2)

Now, set A =
{

z = (z1, . . .) ∈ D∞ ∩ `2; |z j| ≤ p−1/2−ε
j for each j

}
, and a(h) =

(
a(h)

1 , . . . ,a(h)
h ,0, . . .

)
. Since

∑ j
(

p−1/2−ε
j

)2
< ∞, A is a compact (of “Hilbert cube type”) subset of D∞ ∩ `2, and a(h) ∈ A, so (up to the
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extraction of a subsequence), we may assume that a(h) converges strongly to a∈ A, and we get from (2) that
a j = Dφ j(a) for each j, that is φ̃(a) = a.

If Ka is the reproducing kernel of the functional Hilbert space H2
(
D∞∩`2

)
at a, we then have C?

φ̃ (Ka) =

Ka. None, D is unitary, so that Cφ = DCφ̃ D−1 and C?
φ = D−1C?

φ̃ D . So that C?
φ ( f ) = f , with f = D−1(Ka) 6=

0. This ends the proof of Proposition 2. ¥
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