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Abstract. In this paper we discuss the problem of when the projective tensor product of two Ba-
nach spaces has the Radon-Nikodym property. We give a detailed exposition of the famous examples
of Jean Bourgain and Gilles Pisier showing that there are Banach spaces X and Y such that each has
the Radon-Nikodym property but for which their projective tensor product does not; this result depends
on the classical theory of absolutely summing, integral and nuclear operators, as well as the famous
Grothendieck inequality for its punch-line. In the last section of this paper we discuss many results of a
positive character, due to Qingying Bu and various of his coauthors; in particular, we mention results of
Bu, Diestel, Dowling and Oja to the effect that if one of the spaces has a boundedly complete FDD then
the projective tensor product of two spaces with the RNP has it and a modification of a result of Bu and
Pei-Kee Lin to the effect that if X is a Banachlattice with RNP and Y is any Banach space with RNP then
their projective product has RNP.

El producto tensorial proyectivo II: La propiedad de Radon-Nikodym

Resumen. En este trabajo discutimos el problema de cuándo el producto tensorial proyectivo de
dos espacios de Banach tiene la propiedad de Radon-Nikodym. Damos una exposición detallada de los
famosos ejemplos de Bourgain y Pisier de dos espacios de Banach X e Y con la propiedad de Radon-
Nikodym tales que su producto tensorial proyectivo no la tiene; este resultado depende de la teorı́a clásica
de operadores absolutamente sumantes, integrales y nucleares, ası́ como de la famosa desigualdad de
Grothendieck como herramienta básica. En la última sección de este trabajo discutimos muchos resulta-
dos positivos, debidos a Qingying Bu y a varios de sus coautores; en particular, mencionamos resultados
de Bu, Diestel, Dowling y Oja en la dirección de que si uno de los espacios tiene una FDD acotadamente
completa, entonces el producto tensorial proyectivo de dos espacios con la RNP la tiene, y una modifi-
cación de un resultado de Bu y Pei-Kee Lin en el sentido de que si X es un retı́culo de Banach con la
RNP e Y es cualquier espacio de Banach con la RNP entonces su producto tensorial proyectivo tiene la
RNP.
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1. Introduction

In this survey, we discuss when the projective tensor product of two Banach spaces has the Radon-Nikodym
property. The topic is, admittedly, a narrow one; however, it is one area in which the projective tensor
product exhibits strikingly regular stability results. Indeed, other than the remarkable set of examples of
L∞-spaces invented by Jean Bourgain and Gilles Pisier, the probablistic/measure theoretic basis upon
which the Radon-Nikodym property is built seems to be a perfect fit for preservation in the projective mold.

The Bourgain-Pisier examples are very special indeed and so we spend considerable time and effort
discussing them. Our presentation does not stray far from the original; its value, if any, is in the few added
details provided, details that confounded us to some extent and, unprovided, might dissuade others from
studying this amazing construct.

We open with a discussion of an abstract construction due to Sergei Kislyakov followed by some rami-
fications of that construct noted by Bourgain and Pisier.

In the next section, the basic ideas related to the Radon-Nikodym property make their entrance; this is
followed by the main details of the construction. In the fourth section of this paper, we detail what all that
goes before has to do with the projective tensor product. Here the theory of absolutely summing, integral
and nuclear operators, accompanied by Grothendieck’s ever-potent inequality, make their contributions.

In the last section, we discuss more recent results that renew the belief that the Bourgain-Pisier examples
are indeed very special: our discussion centers around some work of Qingying Bu and various coauthors
that establishes mainfold situations where spaces with the Radon-Nikodym property have a projective tensor
product with the property as well.

Our terminology and notation is fairly standard. For sources, we call on the standard references on
the subject of Banach spaces: [23] and [24], along with the still-fresh precursor [22] and wonderfully-
informative overview [17]. For vector measures, we use [13] as our source.

2. Kislyakov Magic, As Practised By Bourgain And Pisier

The following construct was conjured up by S. Kislyakov and used by him, J. Bourgain and G. Pisier in
remarkable ways; we hope to expose but a few of these.

Theorem 1 (Kislyakov) Let S be a closed linear subspace of the Banach space B, E be a Banach space,
η ≤ 1 and u : S → E be a bounded linear operator with ‖u‖ ≤ η.

Then there exist a Banach space E1, an isometric embedding j : E → E1 and an operator ũ : B → E1

such that ‖ũ‖ ≤ 1,
ũ|S = ju,

and E1/E and B/S are isometrically isomorphic.

PROOF. Look at the `1 -direct sum B ⊕1 E of B and E; inside B ⊕1 E lies N

N =
{
(s,−us) : s ∈ S

}
,

a closed linear subspace. Define E1 by

E1 =
(
B ⊕1 E

)
/N.

Let π : (B ⊕1 E) ³ E1 denote the natural quotient map and define

j : E → E1 , ũ : B → E1

as follows: for e ∈ E, b ∈ B

j(e) = π(0, e) ũ(b) = π(b, 0).
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j is an isometry: For any e ∈ E

‖j(e)‖ = ‖π(0, e)‖
= inf

n∈N

{‖(0, e)− n‖}

≤ ∥∥(0, e)
∥∥

B⊕1E
= ‖e‖.

Further, for any s ∈ S

∥∥(0, e)− (−s, us)
∥∥ =

∥∥(−s, e− us)
∥∥

= ‖ − s‖+ ‖e− us‖
≥ ‖s‖+ ‖e‖ − ‖us‖
≥ ‖s‖+ ‖e‖ − ‖s‖
= ‖e‖

so

‖j(e)‖ = inf
s∈S

{‖(0, e)− (−s, us)‖}

≥ ‖e‖

‖ũ‖ ≤ 1: For any b ∈ B

‖ũ(b)‖ = ‖π(b, 0)‖ ≤ ‖π‖ ‖(b, 0)‖
≤ ‖(b, 0)‖ = ‖b‖.

ũ|S = ju: For each s ∈ S, we have

ũ(s) = π(s, 0) = (s, 0) + N

and
ju(s) = π(0, u(s)) = (0, u(s)) + N

(s, 0)− (0, u(s)) = (s,−u(s)) ∈ N

And so, as members of (B ⊕1 E)/N = E1,

ũ(s) = ju(s)

Now the fact that ũ|S = ju says that ũ takes S into j(E) and so ũ ‘lifts’ to a linear operator Ũ : B/S →
E1/j(E); the operator Ũ is given by

Ũ(b + S) = π(b, 0) + j(E) = ũ(b) + j(E).

From this it’s plain that Ũ takes the open unit ball of B/S into the closed unit ball of E1/j(E) and so
‖Ũ‖ ≤ 1.
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More is so. If we take a typical member x of E1/j(E), then x is of the form

x = π(b, e) + j(E)
= π((b, 0) + (0, e)) + j(E)
= π(b, 0) + π(0, e) + j(E)
= π(b, 0) + j(e) + j(E)
= π(b, 0) + j(E)
= Ũ(b + S),

so Ũ is surjective. Finally,

‖x‖E1/j(E) = inf
e∈E

{‖π(b, 0) + j(e)‖E1

}

= inf
e∈E

{‖π(b, 0) + π(0, e)‖E1

}

= inf
e∈E

{∥∥π(b, e)‖E1

}

= inf
e∈E,s∈S

{‖(b, e) + (s,−u(s)‖B⊕1E

}

= inf
e∈E,s∈S

{‖b + s‖+ ‖e− u(s)‖}

= inf
s∈S

{‖b + s‖} = ‖b + S‖B/S .

In other words Ũ , is an isometric isomorphism of B/S onto E1/j(E).
There’s much that’s magic in the above theorem of Kislyakov. Some is easily detected. For instance,

suppose S, B, E and u are as in the hypotheses of the theorem. Imagine that u is also supposed to be an
isomorphism with, say, ‖u(s)‖ ≥ δ‖s‖ for all s ∈ S, where 0 < δ < 1. Then for any b ∈ B,

‖ũ(b)‖E1 = ‖ũ(b)‖(B⊕1E)/N

= ‖π(b, 0)‖(B⊕1E)/N

= inf
s∈S

{‖(b, 0) + (s,−u(s))‖}

= inf
s∈S

{‖b + s‖+ ‖u(s)‖}

≥ inf
s∈S

{
δ‖b + s‖+ δ‖(s)‖}

= δ‖b‖.

It’s a stunning fact (that’s also useful) that Kislyakov’s construction of E1, j and ũ really has but one
possible outcome. To see why this is so we take a momentary detour to establish an abstract property
pertaining to the construction, namely, if F is a Banach space, w : B → F and υ : E → F are bounded
linear operators with vu = w|S , then there is a unique linear map ϕ : E1 → F such that v = ϕũ and
v = ϕj. Moreover, ‖ϕ‖ ≤ max

{‖v‖, ‖w‖}.
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Pictorially,

ϕ? Well, no matter how you cut it, at a typical (b, e) ∈ B ⊕1 E,ϕ(π(b, e) must be w(b) + v(e). After all

ϕ
(
j(e)

)
= v(e) & ϕ

(
ũ(b)

)
= w(b)

so

ϕ
(
π(b, e)

)
= ϕ

(
π(b, 0) + π(0, e)

)

= ϕ
(
ũ(b) + j(e)

)

= ϕ
(
ũ(b)) + ϕ(j(e)

)

= w(b) + v(e).

Regarding ϕ’s norm, if π(b, e) is a typical member of E1 with π(b, e) < 1, then there must be a b0 ∈ B
and an e0 ∈ E with ‖b0‖+ ‖e0‖(= ‖(b0, e0)‖B⊕1E) < 1 so that π(b, e) = π(b0, e0). It follows that

∥∥ϕ(π(b, e))
∥∥ =

∥∥ϕ(π(b0, e0))
∥∥

= ‖w(b0) + v(e0)‖
≤ ‖w(b0)‖+ ‖v(e0)‖
≤ ‖w‖ ‖(b0)‖+ ‖v‖ ‖e0‖
≤ max{‖w‖, ‖v‖} (‖b0‖+ ‖e0‖)
< max{‖v‖, ‖w‖}.

This fact allows us to establish the uniqueness of the triple (E1, j, B
ũ→ E1). Stated formally this goes

as follows:
Uniqueness of Kislyakov’s Construct: The triplet (E1, j, ũ) is unique in the following sense: if

(E′
1, j

′, ũ′) is another triplet such that the following diagram commutes

where E′
1 is a Banach space, j′ : E → E′

1 is an isometric embedding, ũ′ : B → E′
1 is a bounded linear

operator with ũ′|S = j′u and (E′
1, j

′, ũ′) satisfy the characteristic property established above [that is, given
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a Banach space F and bounded linear operator w : B → F, v : E → F such that vu = w|S , there is a
unique linear map ϕ′ : E′

1 → F such that w = ϕ′ũ′ and v = ϕ′j′], then there is an isometric isomorphism
T : E1 → E′

1 of E1 onto E′
1 such that Tj = j′.

Phew!
The proper formulation of uniqueness is almost longer that its proof.
As a matter of fact, if we start with (E1, j, ũ), let F = E′

1, w = ũ′ and v = j′, then we get a unique
linear operator J from E1 to E′

1 such that commutes. On the other hand, if we take F = E1, w = ũ

and v = j, then applying the characteristic mumbo-jumbo to the triple (E′
1, j

′, ũ′) we get a unique linear
operator T ′ : E′

1 → E such that commutes.
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Take a deep breath and realize that if we finally take the triple (E1, j, ũ) and for F we take E, for w
we take ũ and for ν we take j, then idE and T ′T both work as ϕ; the uniqueness of ϕ says T ′T = idE1 .
Turning things around, we see that T ′T = idE1 , with each of T, T ′ having norm ≤ 1. This is tantamount
to establishing our claims.

In keeping with the Bourgain-Pisier game plan, we say that the embedding j : E → E1

[
for which there

is an operator ũ : B → E1 such that ‖ũ‖ ≤ 1 and ũ|S = ju
]

is associated with (E, u, S, B); sometimes
we’ll say that (E1, j, ũ) is associated with (E, u, S,B).

Another simple observation.

Proposition 1 Suppose E, u, S and B are as in Kislyakov’s theorem and the isometric embedding j :
E → E1 is associated with (E, u, S, B). Let N be a closed linear subspace of E; suppose g : E ³ E/N
and g1 : E1 ³ E1/j(N) are the natural quotient maps.

Then the induced isometric embedding

j̃ : E/N → E1/j(N)

is associated with (E/N, gu, S, B).
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In fact, take a look at the picture:

where F is some Banach space, w : B → E and v : E/N → F are bounded linear operator and w|S = vgu.
By the characteristic property of (E1, j, ũ) we know there is a unique linear operator ϕ : E1 → F such that

ϕj = vg , ϕũ = w

and ‖ϕ‖ ≤ max{‖w‖, ‖vg‖}. It’s plain that ϕ vanishes on j(N) — if n ∈ N , then g(n) = 0 in E/N , so
v(g(n)) = 0; hence, there is an operator ϕ̃ : E1/j(N) → F such that ϕ = ϕ̃g1,

ϕ̃j̃ = v,

and
‖ϕ̃‖ = ‖ϕ‖ ≤ max

{‖w‖, ‖v‖}.

ϕ’s uniqueness implies that of ϕ̃.
It follows now from the uniqueness of Kislyakov’s construct that j̃ is associated with (E/N, gu, S, B).

3. Bourgain and Pisier Get Serious

Let 0 < η ≤ 1.
We say that an isometric embedding j : E → E1 is η-admissible if there exists a Banach space B and

a bounded linear operator u from a closed linear subspace S of B to E with ‖u‖ ≤ η and a bounded linear
operator ũ:B → E1 so that (E1, j, ũ) is associated with (E, u, S, B).

Fact An isometric embedding j : E → E1 is η-admissible if and only if there exists a Banach space B and
a metric quotient π : B ⊕1 E ³ E1 such that the following is so:

(∗)
{

For each b ∈ B and e ∈ E, ‖π((b, e))‖ ≥ ‖e‖ − η‖b‖
and π((0, e)) = j(e).

After all, if j is η-admissible and (E1, j, ũ) is associated with (E, u, S, B), where ‖u‖ ≤ η, then the
metric quotient map π : B ⊕1 E → E1 with kernel N = {(s,−us) : s ∈ S} satisfies

∥∥π((b, e))
∥∥ = inf

s∈S

{‖b + s‖+ ‖e− us‖}

≥ inf
s∈S

{
η(‖s‖ − ‖b‖) + ‖e‖ − η‖s‖}

= ‖e‖ − η‖b‖.

On the other hand, if (∗) is in effect, then whenever (b, e) ∈ ker(π),

0 = ‖π(b, e)‖ ≥ ‖e‖ − η‖b‖,
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so that
η‖b‖ ≤ ‖e‖.

If we let S be the image of the projection of kerπ onto B, S = {b ∈ B : π((b, e)) = 0 for some
e ∈ E}, then whenever s ∈ S, there is an es ∈ E so that π((s, es)) = 0. Be careful here! For each s ∈ S
there is an es ∈ E so that π((s, es)) = 0 and this is a one-per-customer deal. If es and e′s both satisfy

π((s, es)) = 0 = π((s, e′s)),

then
π((0, es − e′s)) = π((s, es))− π(s, e′s)) = 0.

But then
0 = π((0, es − e′s)) = j(es − e′s)

which, by j’s isometric character, forces es = e′s. A natural map is borne: s → es from S to E, – call it
“−u”. It is plain and easy-to-see that (E1, j, ũ), where ũ(b) = π((b, 0)), is associated with (E, u, S,B).

It is noteworthy that if j0 : E0 → E1, j1 : E1 → E2, . . . , jn : En → En+1 are each η-admissible
embedding, then jn ◦ jn−1 ◦ . . . ◦ j0 : E0 → En+1 is an η-admissible embedding,too.

Indeed, if j0 : E0 → E1 is an η-admissible embedding, then it is because there’s a Banach space B0

and a metric quotient.

π0 : B0 ⊕1 E0 ³ E1

such that for each b0 ∈ B0 and e0 ∈ E0,
∥∥π0((b0, e0))

∥∥ ≥ ‖e0‖ − η‖b0‖
and

π0((0, e0)) = j0(e0).

Since j1 : E1 → E2 is also an η-admissible embedding, there must be a Banach space B1 and a metric
quotient

π1 : B1 ⊕1 E1 ³ E2

such that for each b1 ∈ b1 and e1 ∈ E1

∥∥π1((b1, e1))
∥∥ ≥ ‖e1‖ − η‖b1‖,

and
π1((0, e1)) = j1(e1).

Look at the metric quotient map

π : B1 ⊕1 B0 ⊕1 E0 ³ E2

given by
π((b1, b0, e0)) = π1((b1, π0(b0, e0))).

Check it out:
∥∥π((b1, b0, e0))

∥∥ =
∥∥∥π1((b1, π0((b0, e0))))

∥∥∥
≥ ‖π0((b0, e0))‖ − η‖b1‖
≥ ‖e0‖ − η‖b0‖ − η‖b1‖
= ‖e0‖ − η(‖b0‖+ ‖b1‖)
= ‖e0‖ − η‖(b1, b0)‖B1⊕1B0
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and

π((0, 0, e0)) = π1((0, π0((0, e0)))
= j2(π0((0, e0))) = j1j0(e0).

A clear path is indicated.
Where’s all this leading us?
Recall how the Banach space inductive limit of Banach paces is defined. Let (En)n≥0 be a sequence of

Banach spaces along with a sequence jn : En → En+1 of isometric embeddings. The inductive limit X
of the system (En, jn) is defined as follows: consider the linear subspace of ΠEn formed by all sequences
(xn) such that jnxn = xn+1 for all n sufficiently large; equip this space with the semi-norm

‖(xn)‖ = lim ‖xn‖

and let X be the normed linear space obtained after passing to the quotient by the kernel of this semi-norm.
The space X = ind − lim(En, jn) is the completion of the space X. It is easy-to-see that there is a

system Jn : En → X of isometric embeddings such that if Xn is Jn(En) then Xn ⊆ Xn+1 and ∪nXn is
dense in X .

Here’s a remarkable result due to Bourgain and Pisier.

Theorem 2 Let 0 < η ≤ 1. Suppose (En)n≥0 is a sequence of finite dimensional Banach spaces and
jk : Ek → Ek+1 (k ≥0) is a sequence of η-admissible isometric embeddings.

Then ind-lm (En, jn) has the Radon-Nikodym property.

We delay the proof of Theorem 2 until section 4. We present instead a crucial (at least, for these delib-
erations) result that follows from it.

Theorem 3 Let λ > 1 and E be any separable Banach space, then there is a separable L∞,λ space
denoted by Lλ[E], which contains E isometrically, such that, Lλ[E]/E has the Radon-Nikodym property.

PROOF. Let (Fn)n≥0 be an increasing sequence of finite dimensional subspaces of E such that ∪nFn

is dense in E. Fix η : 1
λ < η < 1. We will construct a sequence of η-admissible embeddings.

j0 : E → E1, . . . , jn : En → En+1, . . . ,

together with a sequence (Gn) of finite dimensional subspaces Gn ⊆ En such that G0 = {0} and, for
n ≥ 1,

(jn−1 ◦ . . . ◦ j0)(Fn−1) ∪ jn−1(Gn−1) ⊆ Gn

and, for n ≥ 1,
d(Gn, `∞dimGn

) ≤ λ

To start, fix ε > 0 such that 1 + ε = λη > 1.
Key to the construction is the fact that for any ε > 0 any finite dimensional space is (1 + ε)-isomorphic

to a subspace of `∞m , m sufficiently large.
Start with F0.
F0 is (1 + ε)-isomorphic to a subspace S of `∞m0

, m0 sufficiently large. So there is an isomorphism
u : S → E of S into E so ‖u‖ ≤ η and ‖n|−1

F0
‖ ≤ λ. Apply Kislyakov’s theorem to (E, u, S, l∞m0

) to find a
Banach space E1, an isometric embedding j0 : E → E1 and an operator ũ : `∞m0

→ E1 such that ũ|S = j0u
and ‖ũ‖ ≤ 1. As we noted immediately following Kislyakov’s theorem, ũ is, in fact, an isomorphism, too,
with ‖ũ−1|G1=ũ(`∞m0

)‖ ≤ λ.
So d(G1, `

∞
m0

) ≤ λ.
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Enlarge the scope for our construction.
Let H = span{jo(F1) ∪G1} ⊆ E1.
H is (1 + ε)-isomorphic to a subspace S of `∞m1

,m1 sufficiently large. So there is an isomorphism
u : S → E1 of S into E1 so ‖u‖ ≤ η and ‖u−1|H‖ ≤ λ. Apply Kislyakov’s theorem to (E1, u, S, l∞m1

) to
find a Banach space E2, an isometric embedding j1 : E1 → E2 and an operator ũ : `∞m1

→ E2 such that
ũ|S = j1u and ‖ũ‖ ≤ 1.

Again, ũ is also an isomorphism and letting G2 = ũ(`∞m1
), ‖ũ−1|G2‖ ≤ λ, ensuring d(G2, `

∞
m1

) ≤ λ.
Continue in this way to complete the construction of the En’s, jn’s and Gn’s.
Let X be the inductive limit of the system (En, jn). We may as well consider (En) to be an increasing

sequence of subspaces of X .
Let Y be the closure of ∪nGn in X; Y is a L∞,λ -space and contains ∪nFn = E.
What of Y/E?
Plainly, Y/E is naturally embedded in X/E, the inductive limit of the spaces En/E; moreover, by

Proposition 1 and the opening discussion of this section the embedding of En/E into En+1/E is η-
admissible for each n ≥ 1. It follows that X/E has the Radon-Nikodym property and so, too, does
Y/E. Let us now recall the elegant result of Gerry Edgar [[13], pp. 210-211] that if X is a Banach space
and E is a closed linear subspace of X such that both E and X/E have the Radon-Nikodym property, then
X itself has the Radon-Nikodym property. Starting with E = `2 and applying the above theorem, we get
the following:

Corollary 1 There exist, for any λ > 1, a L∞,λ -space X containing `2 isometrically such that X has
the Radon-Nikodym property.

This X will occupy our attentions in the next sections. Before that, we need to provide a proof for
Theorem 2.

4. A Detailed Proof of Theorem 2
Again,

Theorem 4 Let 0 < η < 1. Suppose that E0, E1, . . . are finite dimensional Banach spaces and let
j0 : E0 → E1, j1 : E1 → E2, . . . be a sequence of η- admissible isometric embeddings.

Then the inductive limit of the sequence (En, jn) has the Radon-Nikodym property.

Fix δ > 0 and let E be any Banach space. A subspace N of E is δ-well placed in E whenever

(∗)





given a probability space (Ω,Σ, P ) and a Z ∈ L1
E(P )

such that
∫

ZdP ∈ N we have∫ ‖Z‖dP ≥ ‖ ∫
ZdP‖+ δ

∫ ‖gZ‖E/NdP,
where g : E → E/N is the quotient map.

The first thing we’ll do is see what happens in the above set-up if
∫

ZdP is not necessarily in N but
near to N . Here’s what’s so:

(∗∗)
∫
‖Z‖dP ≥

∥∥∥
∫

ZdP
∥∥∥ + δ

∫
‖gZ‖dP − (2 + δ)

∥∥∥g(
∫

ZdP )
∥∥∥,

the added ‘fudge-factor’ (2 + δ)
∥∥g(

∫
ZdP )

∥∥ effectively accounting for how far
∫

ZdP is from N .
Let’s see why (∗∗) is so. Regardless of how small ε > 0 is we can find y ∈ N so that

∥∥∥
∫

ZdP − y
∥∥∥ ≤

∥∥∥g(
∫

ZdP )
∥∥∥ + ε
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Now look at Z̃ = Z − ∫
ZdP + y. Of course,

∫
Z̃dP = y ∈ N

and so (∗) applies; the result

∫
‖Z̃‖dP ≥

∥∥∥
∫

Z̃dPBig‖+ δ

∫
‖gZ̃‖dP

= ‖y‖+ δ

∫
‖gZ − g(

∫
ZdP ) + g(y)‖dP

= ‖y‖+ δ

∫
‖gZ − g(

∫
ZdP )‖dP.

Turnabout is fair-play so Z = Z̃ +
∫

ZdP − y and

∫
‖Z‖dP ≥

∫
‖Z̃‖dP −

∥∥∥
∫

ZdP − y
∥∥∥.

Since ‖y‖ ≥ ‖ ∫
ZdP‖−‖ ∫

ZdP − y‖ and
∫ ‖gZ− g(

∫
ZdP )‖dP ≥ ∫ ‖gZ‖dP −‖g(

∫
ZdP )‖ we can

list some features worthy of special mention

∫
‖Z‖dP ≥

∫
‖Z̃‖dP −

∥∥∥
∫

ZdP − y
∥∥∥. (1)

∫
‖Z̃‖dP ≥ ‖y‖+ δ

∫ ∥∥∥gZ − g(
∫

ZdP )
∥∥∥dP. (2)

‖y‖ ≥
∥∥∥

∫
ZdP

∥∥∥−
∥∥∥

∫
ZdP − y

∥∥∥ (3)
∥∥∥

∫
ZdP − y

∥∥∥ ≤
∥∥∥g(

∫
ZdP )

∥∥∥ + ε (4)

and

∫ ∥∥∥gZ − g
( ∫

ZdP
)∥∥∥ ≥

∫
‖gZ‖dP −

∥∥∥g(
∫

ZdP )
∥∥∥. (5)
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Ready?
∫
‖Z‖dP ≥

∫
‖Z̃‖dP −

∥∥∥
∫

ZdP − y
∥∥∥ by (1)

≥ ‖y‖+ δ

∫ ∥∥∥gZ − g
( ∫

ZdP
)∥∥∥dP −

∥∥∥
∫

ZdP − y
∥∥∥ by (2)

≥ ‖y‖+ δ

∫ ∥∥∥gZ − g
( ∫

ZdP
)∥∥∥dP −

∥∥∥g
( ∫

ZdP
)∥∥∥− ε by (4)

≥
∥∥∥

∫
ZdP

∥∥∥−
∥∥∥

∫
ZdP − y

∥∥∥ + δ

∫ ∥∥∥gZ − g
( ∫

ZdP
)∥∥∥dP −

∥∥∥g(
∫

ZdP )
∥∥∥− ε by (3)

≥
∥∥∥

∫
ZdP

∥∥∥−
∥∥∥

∫
ZdP − y

∥∥∥ + δ
( ∫

‖gZ‖dP −
∥∥∥g

( ∫
ZdP )

∥∥∥
)
−

∥∥∥g(
∫

ZdP )
∥∥∥− ε by (5)

=
∥∥∥

∫
ZdP

∥∥∥ + δ

∫
‖gZ‖dP −

∥∥∥
∫

ZdP − y
∥∥∥−

(1 + δ)
∥∥∥g

(∫
ZdP

)∥∥∥− ε by golly

≥
∥∥∥

∫
ZdP

∥∥∥ + δ

∫
‖gZ‖dP −

(∥∥∥g
( ∫

ZdP
)∥∥∥ + ε

)
−

(1 + δ)
∥∥∥g

(∫
ZdP

)∥∥∥− ε by (3)

=
∥∥∥

∫
ZdP

∥∥∥ + δ

∫
‖gZ‖dP − (2 + δ)

∥∥∥g
(∫

ZdP
)∥∥∥− 2ε.

Letting ε ↘ 0 give us (∗∗). A variation on (∗∗) is also of use. It involves conditioning.
So suppose

∑
0 is a sub-σ-algebra of

∑
. Let Z ∈ L1

E . Then we have, by arguments totally analogous
to those that produced (∗∗), for almost sure,

E(‖Z‖ |
∑
0

) ≥ ‖E(Z|Σ0)‖+ δE(‖gZ‖ |Σ0)− (2 + δ)‖g(E(Z|Σ0))‖.

On integrating we get for any sub-σ-algebra
∑

0 of
∑

and any Z ∈ L1
E the following

(∗ ∗ ∗)
∫
‖Z‖dP ≥

∫
‖E(Z|Σ0)‖dP + δ

∫
‖gZ‖dP − (2 + δ)

∫
‖g(E(Z|Σ0))‖dP.

Now we’re set for the main technical lemma the Bourgain-Pisier presentation.

Lemma 1 Let 0 < η < 1 and δ = 1−η
1+η . If N is δ-well placed in E and j : E → E1 is η-admissible, then

j(N) is δ-well placed in E1

η-admissibility of j : E → E1 hints that there is a Banach space B, a subspace S of B, a bounded linear
operator u : B → E with ‖u‖ ≤ η and a ũ : B → E1 so that (E1, j, ũ) is associated with (E, u, S,B).

Recall that Kislyakov’s construct led us to

E1 = (B ⊕1 E)/{(s,−u(s)) : s ∈ S},
π : B ⊕1 E ³ E1 and j(e) = π(0, e) for e ∈ E. To test j(N) we let Z1 ∈ L1

E1
be such that

∫
Z1dP ∈

j(N).
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Let ε > 0
Find Z ′ ∈ L1

B and Z ′′ ∈ L1
E so that for any w ∈ Ω

Z1(w) = π(Z ′(w), Z ′′(w))

and
‖Z ′(w)‖+ ‖Z ′′(w)‖ ≤ (1 + ε)‖Z1(w)‖.

How to locate Z ′, Z ′′? Well, keep in mind that we’re dealing with the projective tensor norm so

L1(P )⊗̂(B ⊕1 E) = L1
B⊕1E(P )

and
L1(P )⊗̂E1 = L1

E1
(P ).

Also, π : B ⊕1 E ³ E1 is a quotient operator, an isometric quotient operator; it follows that π induces
such an operator from L1

B⊕1E(P ) onto L1
E1

(P ).
If Z were simple, then the nature of this induced quotient map makes it simple to see how Z ′ ∈ L1

B(P )
and Z ′′ ∈ L1

E(P ) are chosen. Indeed, if Z(w) is identically z for w ∈ A ∈ Σ, then z must be π(b, e) for
some b ∈ B and e ∈ E with ‖b‖ + ‖e‖ < (1 + ε)‖z‖; let Z ′ be constantly b on A and Z ′′ be constantly e
on A. For general Z ∈ L1

E1
(P ) we appeal to Pettis’s Measurability Theorem, a friend indeed, when there’s

a need.
Pettis’s Measurability Theorem tell us that Z can be represented in the form Z =

∑
n znχAn when the

series converges absolutely in E1, P -almost surely and
∑ ‖zn‖P (An) is as near to

∫ ‖Z‖dP as one would
like. Now backtracking through π to bn ∈ B, en ∈ E with π(bn, en) = zn and ‖bn‖+‖en‖ < (1+ ε)‖zn‖
is easy business indeed. The absolute convergence of

∑
n znχAn(w) for w ∈ Ω soon leads to that of both∑

n bnχAn(w) and
∑

n enχAn(w) and with it to the definitions of Z ′ ∈ L1
B(P ) and Z ′′ ∈ L1

E(P ) such
that Z = π(Z ′, Z ′′).

Okay, with Z1, Z
′, Z ′′ in hand, knowing that

∫
Z1dP ∈ j(N) there must be an n ∈ N so that j(n) =∫

Z1dP ∈ j(N). N is well placed in E so π(0, n) = j(n). But
∫

Z1dP = π(
∫

Z ′dP,
∫

Z ′′dP ) so
π(

∫
Z ′dP,

∫
Z ′′dP ) = π(0, n) = 0 in E1.

So there must be an s ∈ S so that∫
Z ′dP = s,

∫
Z ′′dP − n = −u(s);

ah ha: Z ′′ + us ∈ E satisfies∫
(Z ′′ + u(s))dP =

∫
Z ′′dP + u(s) = n ∈ N.

But N is δ -well placed in E so
∫
‖Z ′′ + us‖dP ≥

∥∥∥
∫

(Z ′′ + us)dP
∥∥∥ + δ

∥∥∥
∫

g(Z ′′ + us)
∥∥∥dP = ‖n‖+ δ

∫
‖g(Z ′′ + us)‖dP.

Since
‖s‖ =

∥∥∥
∫

Z ′dP
∥∥∥ ≤

∫
‖Z ′‖dP

we must have

∫
‖Z ′′‖dP ≥

∫
‖Z ′′ + us‖dP − ‖us‖

≥
∫
‖Z ′′ + us‖dP − η‖s‖

≥
∫
‖gZ ′′‖dP − η

∫
‖Z ′‖dP.
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To summarize,
∫
‖Z ′′‖dP ≥

∫
‖Z ′′ + us‖dP − η

∫
‖Z ′‖dP

≥ ‖n‖+ δ

∫
‖g(Z ′ + us)‖dP − η

∫
‖Z ′‖dP

≥ ‖n‖+ δ
( ∫

‖gZ ′′‖dP − η

∫
‖Z ′‖dP

)
− η

∫
‖Z ′‖dP

≥ ‖n‖+ δ

∫
‖g(Z ′′)‖dP − (η + δη)

∫
‖Z ′‖dP.

Our choices of Z ′ and Z ′′ leave us with

(1 + ε)−1

∫
‖Z1‖dP ≥

∫
‖Z ′′‖dP +

∫
‖Z ′‖dP

≥ ‖n‖+ δ

∫
‖gZ ′′‖dP − (η + δη)

∫
‖Z ′‖dP +

∫
‖Z ′‖dP

= ‖n‖+ δ

∫
‖gZ ′′‖dP + (1− η − δη)

∫
‖Z ′‖dP.

But δ = 1−η
1+η and ‖n‖ = ‖jn‖ = ‖ ∫

Z1dP‖ so

1
1 + ε

∫
‖Z1‖dP ≥

∥∥∥
∫

Z1dP
∥∥∥ + δ

(∫
‖Z ′‖dP +

∫
‖gZ ′′‖dP

)
.

If we notice though that g1 : E1 ³ E1/j(N) is the natural quotient, then

‖g1Z1‖ ≤ ‖Z ′‖+ ‖gZ ′′‖
So, in fact,

1
1 + ε

∫
‖Z1‖dP ≥

∥∥∥
∫

Z1dP
∥∥∥ + δ

∫
‖g1Z1‖dP.

If we now let ε ↘ 0, then
∫
‖Z1‖dP ≥

∥∥∥
∫

Z1dP
∥∥∥ + δ

∫
‖g1Z1‖dP

results and with it we have j(N) is δ-well placed in E1.
NOW we’re ready to prove Theorem 2.
We may as well assume the Em’s are ascending with ∪mEm dense in X . We’ll let (Mn)n≥0 be an

X-valued L1(P )-bounded martingale adapted to the ascending sequence (
∑

n)n≥0 of sub-σ-algebras of∑
and we’ll show that (Mn) is almost surely convergent. Each Em is δ-well placed in X .

Let gm : X ³ X/Em

be the natural quotient map. The key to this proof is to show that

lim
m→∞

lim
n→∞

∫
‖gm(Mn)‖X/Em

dP = 0.

Indeed, Doob’s Maximal Inequality tells us that for any ε > 0,

lim
∫

[supn ‖Mn‖>ε]

(‖Mn‖ − ε)dP ≥ 0.
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Hence,

εP
[
sup

n
‖Mn‖ > ε

]
≤ sup

n

∫
‖Mn‖dP

ensuring that (Mn)n≥0 is almost surely bounded and

sup
n
‖gm(Mn)‖ ↘ 0

almost surely. It follows that for almost all w ∈ Ω the set {Mn(w) : n ≥ 0} is relatively norm compact
subject of X −− keep in mind, the En’s are finite dimensional. X is separable and so there is a countable
weak*-dense subset D ⊆ X∗. Because (x∗Mn)n≥0 is a martingale for each x∗ ∈ D, a simple comparison
of topologies soon reveals that (Mn)n≥0 is almost surely pointwise convergent in the norm topology of X .
So the issue of establishing that

lim
m→∞

lim
n→∞

∫
‖gm(Mn)‖X/Em

dP = 0

is paramount to our cause.
Now, the Em’s are getting bigger so the sequence

(‖gm(Mn)‖) is descending in m. Also, for each
m, (‖gm(Mn)‖)n≥0 is a submartingale and so

( ∫ ‖gm(Mn)‖dP
)
n

is ascending. It follows that each of the
hoped-for limits involved in

lim
m→∞

lim
n→∞

∫
‖gm(Mn)‖X/Em

dP

exists and is a monotone limit.
Notice that for any Z ∈ L1

X(P ) that

lim
m→∞

∫
‖gm(Z)‖X/Em

dP = 0.

Why is this so? Well, a moment’s reflection reveals that if x ∈ ∪mEm then x ∈ Em0 for some m0, and
so for any m ≥ m0, gm annihilates x. It follows that for any ∪mEm -valued simple random variable Z,
eventually ‖gm(Z(w))‖ = 0 for all w ∈ Ω. Since this is so,

lim
m

∫
‖gm(Z)‖X/Em

dP = 0.

Bootstrapping to X-valued, Σ-simple random variables Z is easy and, from there, to general Z ∈
L1

X(P ) is simple.
Okay, for k ≤ n, E

(
Mn|

∑
k

)
= Mk almost all the time; so using the observation (∗ ∗ ∗), regarding

conditioning, that follows our Main Lemma, we see that if k ≤ n, then for any m

∫
‖Mn‖dP ≥

∫
‖Mk‖dP + δ

∫
‖gm(Mn)‖dP − (2 + δ)

∫
‖gm(Mk)‖dP.

Let n →∞ and get

lim
n

∫
‖Mn‖dP ≥

∫
‖(Mk)‖dP + δ lim

m
‖gm(Mn)‖dP − (2 + δ)

∫
‖gm(Mk)‖dP.

Now let m →∞ and get

lim
n

∫
‖Mn‖dP ≥

∫
‖(Mk)‖dP + δ lim

m
lim
n

∫
‖gm(Mn)‖dP

−(2 + δ) lim
m

∫
‖gm(Mk)‖dP

=
∫
‖(Mk)‖dP + δ lim

m
lim
n

∫
‖gm(Mn)‖dP.
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Now let k →∞; the result is

lim
n

∫
‖Mn‖dP ≥ lim

k

∫
‖(Mk)‖dP + δ lim

m
lim
n

∫
‖gm(Mn)‖dP.

It follows that

0 ≥ δ lim
m

lim
n

∫
‖gm(Mn)‖dP,

and with this, Theorem 2 is proved.

5. The Bourgain-Pisier L∞-spaces
Theorem 5 For each λ > 1 there is a L∞,λ -space X with the Radon-Nikodym property such that X⊗̂X
contains an isomorphic copy of c0.

PROOF. Start with E = `2 and let X = Lλ[E]. Corollary 1 tells us that X has the Radon-Nikodym
property.

Of course, X also contains a copy of `2 and, this in mind, we let (en) be the unit coordinate vector basis
of `2, sitting, as it does, inside of X .

Since X is separable, there is a isometric embedding J of X into C[0, 1] ; J carries `2 into C[0, 1],
isometrically, as well. Take u ∈ `2 ⊗ `2 and view u as a finite rank bounded linear operator from `2 to `2.
JuJ∗ : C[0, 1]∗ → C[0, 1] corresponds to the member (J ⊗ J)(u) ∈ C[0, 1]⊗ C[0, 1].

C[0, 1]∗ is an L1-space and the weak*-weak continuous linear operator JuJ∗ plainly factors though `2,
so Grothendieck’s inequality assures us that JuJ∗ is absolutely summing with

π1(JuJ∗) ≤ KG‖JuJ∗‖ ≤ KG‖u‖.
As with any absolutely summing operator into C[0, 1], JuJ∗ is integral with

i(JuJ∗) = π1(JuJ∗).

A weak*-weak continuous finite rank operator like JuJ∗ is, defines a member-in-good-standing of
C[0, 1]⊗̂C[0, 1], with the projective norm of said member the same as the nuclear norm of the associated
operator JuJ∗ which, by all that’s approximable, is just the integral norm i(JuJ∗). So, if u =

∑
i≤n aiei⊗

ei, then

‖u‖C[0,1]⊗̂C[0,1] = i(JuJ∗) = π1(JuJ∗)
≤ KG‖u‖ = KGsupi≤n|ai|.

By the same token

‖u‖C[0,1]⊗̂C[0,1] ≥ ‖u‖C[0,1]⊗̌C[0,1]

= ‖u‖`2⊗̆`2

= supi≤n|ai|.

All’s well and (en ⊗ en) spans an isomorphic copy of c0 in C[0, 1]⊗̂C[0, 1]. But what of X⊗̂X? Well,
here X’s L∞ -nature saves the bacon.

It is one of the most elegant characteristics of L∞ -spaces (due to Lindenstrauss)that X is a L∞ -space
precisely when X∗∗ is injective. It follows from this that if X is a L∞ -space that’s a subspace of Y , then
X⊗̂Z is (isomorphic to) a subspace of Y ⊗̂Z.
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Schematically, this goes as follows:
X⊗̂Z is always a subspace of X∗∗⊗̂Z∗∗; if X∗∗ is injective, then X∗∗ is a complemented subspace of

Y ∗∗ and so X∗∗⊗̂Z∗∗ is a complemented subspace of Y ∗∗⊗̂Z∗∗. Checking carefully we see (supposing
that X∗∗ is Λ-injective) that if u ∈ X ⊗ Z, then

‖u‖Y ⊗̂Z ≤ ‖u‖X⊗̂Z = ‖u‖X∗∗⊗̂Z∗∗ ≤ Λ‖u‖Y ∗∗⊗̂Z∗∗ = Λ‖u‖Y ⊗̂Z ,

where the “Λ” factor comes about because X∗∗ is complemented in Y ∗∗ by a projection of norm ≤ Λ
making X∗∗⊗̂Z∗∗ a complemented subspace of Y ∗∗⊗̂Z∗∗ via a projection of norm no more than Λ.

This allows us to compute ‖∑
i≤n ei ⊗ ei‖X⊗̂X : for any n,

sup
i≤n

|ai| ≤
∥∥∥

∑

i≤n

aiei ⊗ ei

∥∥∥
C[0,1]⊗̂C[0,1]

≤
∥∥∥

∑

i≤n

aiei ⊗ ei

∥∥∥
X⊗̂X

≤ Λ2
∥∥∥

∑

i≤n

aiei ⊗ ei

∥∥∥
C[0,1]⊗̂C[0,1]

≤ Λ2KGsupi≤n|ai|,

and (en ⊗ en) still spans a c0. ¥

6. Q. Bu (And Friends) Look On The Sunny Side
The examples of Bourgain and Pisier plainly set boundaries on the possible implication “if X and Y are Ba-
nach spaces with the Radon-Nikodym property, then their projective tensor product X⊗̂Y has the property,
too”. Naturally, before their examples saw the light of day many examples existed where the implication
held.

The most general case seemed to be roughly that if X and Y were dual spaces with the Radon-Nikodym
property and one had the approximation property, then their projective tensor product also enjoyed the
Radon-Nikodym property.

In 2000, Qingying Bu [6] found a characterization of the sequences that lie in `p⊗̂X(if 1 < p < ∞)
and from this it followed that if 1 ≤ p < ∞ and X has the Radon-Nikodym property, then `p⊗̂X has the
property as well.

One advantage of knowing (quantitatively) which sequences were in `p⊗̂X was found in the fact that
using this information, Bu was able to show that the natural inclusion

`p⊗̂X ↪→ `p
X

is a semi-embedding, that, is an injective linear operator such that the image of the closed unit ball B`p⊗̂X

is closed in `p
X . Then a call to Bourgain and Rosenthal [2] was made and the stability in question easily

established using the elegant feature of the Radon-Nikodym property uncovered by them that if X is a
separable Banach space that admits of a semi-embedding into a Banach space with the Radon-Nikodym
property, then X has the property, too.

Soon Bu extended this result to Lp(µ)⊗̂X and with Paddy Dowling expanded the applicability of his
idea to U⊗̂X , where U has an unconditional basis; moreover, Bu and Dowling established a variety of
other important isomorphic invariants (including the non-containment of a copy of c0) that pass from U and
X to U⊗̂X −− where U is supposed to have an unconditional basis. The results of Bu and Dowling were
soon subsumed by using the notion of a Schauder decomposition.
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Let X be a Banach space and (Xn)n≥1 be a sequence of closed linear subspaces of X . We say (Xn)n≥1

is a Schauder decomposition of X if for any x ∈ X there is a unique sequence (xn) such that xn ∈ Xn

for each n and x =
∑

n xn = limn→∞
∑n

k=1 xk.
Should (Xn)n≥1 be a Schauder decomposition of X , then for each m ≥ 1, the map Pm : X → X

that takes x =
∑

xn (xn ∈ Xn) to the unique xm ∈ Xm that is Xm’s contribution to
∑

n xn = x is a
bounded linear projection with range Xm. If (Xn)n≥1 is a Schauder decomposition of X , then Rm : X →
X is the operator Rm(x) = x−∑m

n=1 Pnx.
If (Xn)n≥1 is a Schauder decomposition of X , then we say that (Xn) is boundedly complete if when-

ever (xn) is a sequence with xn ∈ Xn for each n and supn

∥∥∑n
n=1 xn

∥∥ < ∞, we have limn→∞
∑n

n=1 xn

exists; (Xn)n≥1 is shrinking provided that given x∗ ∈ X∗ we have

lim
n→∞

sup{|x∗(x)| : x = Rnx, ‖x‖ ≤ 1} = 0.

In a completely analogous manner to what happens with Schauder bases (1-dimensional Schauder de-
compositions, if you please) we have the following satisfying results.

Theorem 6 (B.L. Sanders) Let (Xn)n≥1 be a Schauder decomposition of X . (Xn)n≥1 is shrinking if
and only if (Pn(X)∗)n≥1 is a Schauder decomposition of X∗.

Working in considerably greater generality, N.J. Kalton [18] put the topping on Sanders’ Theorem with
the following.

Theorem 7 (Kalton) The Schauder decomposition (Xn)n≥1, of X is shrinking if and only if the decom-
position (Pn(X)∗)n≥1 = (X∗)n≥1 is a boundedly complete decomposition of X∗.

Naturally we will often ask more of the components Xn of a Schauder decomposition; so if each Xn

is finite dimensional then we call the decomposition a finite dimensional decomposition (or FDD, for
short). Here we see clear and present evidence of added hypotheses giving more information, structural
information, about the spaces under view. Suppose (Xn)n≥1 is a boundedly complete FDD for X . If H =
{x∗ ∈ X∗ : limn→∞ ‖x∗−

∑n
k=1 P ∗k λ∗k‖ = 0}, then X is isomorphic to H∗; what’s more (P ∗n(H))n≥1 is

shrinking FDD for H .
Here’s a reworking of an old favorite (of N. Dunford and A.P. Morse [14]) that bears repeating.

Theorem 8 Let X be a Banach space having a boundedly complete Schauder decomposition (Xn)n≥1.
Suppose each Xn has the Radon-Nikodym property. Then X has the Radon-Nikodym property, too.

PROOF. We follows the excellent lead of Dunford and Morse by renorming X , if necessary, to make
sure our ducks are lined up; we want to make sure that our decomposition is ‘monotone’, that is, that

∥∥∥
n∑

i=1

xi

∥∥∥ ≤
∥∥∥

n+1∑

i=1

xi

∥∥∥

whenever xi ∈ Xi, i ∈ N. Of course, this can be done by renorming X , if need be, replacing the original
norm by

|‖
∑

n

xn|‖ = sup
k
‖

k∑

i=1

xi‖

for xi ∈ Xi,
∑

n xn ∈ X . |‖ · |‖ is equivalent to ‖ · ‖ and has the desired monotonicity.
So we can, and do, assume our Schauder decomposition of X is boundedly complete and monotone.

Now the proof follows a natural course. Let (Ω, Σ, P ) be a probability space and F : Σ → X be a P
-continuous vector measure having finite variation |F |. For each n ∈ N, let Fn : Σ → Xn be PnF ; it’s
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plain that each Fn is a P-continuous Xn -valued vector measure of finite variation and so for each n we can
find an fn ∈ L1

Xn
(P ) such that for any E ∈ Σ

Fn(E) =
∫

E

fndP.

For each n ∈ N we can define f̃n ∈ L1
Xn

(P ) by

f̃n =
n∑

m=1

fm

Letting F̃n : Σ → X be defined by

F̃n(E) =
n∑

m=1

Fm(E)

we soon see that for any E ∈ Σ

‖F̃n(E)‖ =
∥∥∥

n∑
m=1

Fm(E)
∥∥∥ ≤

∥∥∥
∑

n

Fn(E)
∥∥∥ = ‖F (E)‖;

from this it follows that the variation |F̃n| of F̃n satisfies

|F̃n|(E) ≤ |F |(E)

regardless of E ∈ Σ. Naturally,

F̃n(E) =
∫

E

f̃ndP

and so ∫

E

∥∥∥
n∑

m=1

fm

∥∥∥dP =
∫

E

‖f̃n‖dP = |F̃n|(E) ≤ |F |(E) ≤ |F |(Ω) < ∞.

But regardless of w ∈ Ω and n ∈ N, we have

∥∥∥
n∑

m=1

fm(w)
∥∥∥ ≤

∥∥∥
n+1∑
m=1

fm(w)
∥∥∥

so the Monotone Convergence Theorem steps in to conclude that for each E ∈ Σ

∫

E

sup
n

∥∥∥
n∑

m=1

fm

∥∥∥dP =
∫

E

lim
n

∥∥∥
n∑

m=1

fm

∥∥∥dP = lim
n

∫

E

∥∥∥
n∑

m=1

fm

∥∥∥dP ≤ |F |(Ω) < ∞.

It follows that for P -almost all w ∈ Ω, supn

∥∥ ∑n
m=1 fm(w)

∥∥ < ∞ so by the boundedly complete
nature of the decomposition (Xn)n≥1, the series Σnfn(w) converges in X (at least P -almost everywhere).

The function f̃ : Ω → X defined by

f̃(w) =
{ ∑

n fn(w) , if supn

∥∥∑n
m=1 fm(w)

∥∥ < ∞
0 , otherwise

is P -measurable and ∫
‖f̃‖dP =

∫ ∥∥∥
∑

n

fn

∥∥∥dP ≤ |F |(Ω) < ∞,
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and so f̃ ∈ L1
X(P ). Further, it’s plain to see that

F (E) =
∫

E

f̃dP.

Now suppose X has a boundedly complete finite dimensional decomposition and let Pn : X → X be the
bounded linear projection of X onto Xn. Then Pn ⊗ idY : X⊗̂Y → X⊗̂Y is a bounded linear projection
with ‖Pn⊗idY ‖ = ‖Pn‖; it is an easy computation to deduce that ((Pn⊗idY )(X⊗̂Y ))n forms a Schauder
decomposition of X⊗̂Y More is so and pertinent to this discussion. In fact, we have the following. ¥

Theorem 9 (Eve Oja) ((Pn⊗idY )(X⊗̂Y ))n is a boundedly complete Schauder decomposition of X⊗̂Y
whenever (Pn(X))n is a boundedly complete finite dimensional decomposition of X .

If one will keep faith with the discussion earlier (about stability of the Radon-Nikodym property when
one space has an unconditional basis), then the following is a consequence of that and Oja’s Theorem.

Corollary 2 If X is a Banach space with a boundedly complete finite dimensional decomposition and Y
has the Radon-Nikodym property, then X⊗̂Y has the Radon-Nikodym property, too.

We rush to take note (as done in [9])that many spaces arising in non-commutative analysis have bound-
edly complete finite dimensional decompositions without even being subspaces of spaces with uncondi-
tional bases.

The last topic we discuss here differs from the earlier ones in that there is no approximation assumptions
inherent to the subject matter. The objective is to discuss what happens when X is a Banach lattice and Y
is a Banach space, each enjoying the Radon-Nikodym property. The end product: X⊗̂Y has the Radon-
Nikodym property, too. The analysis is (for the most part) the work of Qingying Bu and Pei-Kee Lin[BL]
and so we give a sketch of their main steps with added details when we vary the treatment.

To start we recall some basic features of the Banach space theory of Banach lattices.
Banach lattices enjoying the Radon-Nikodym property are very special animals indeed. Though we

do not use the results we feel obligated to mention that Bourgain and Talagrand showed [3] that a Banach
lattices with the Krein-Milman property have the Radon-Nikodym property and, in a truly amazing piece
of mathematics, Talagrand [27] showed that separable Banach lattices with the Radon-Nikodym property
are duals (of Banach lattices even)!

Generally, a Banach lattice with the Radon-Nikodym property contains no isomorph of c0 and so, with
due thanks to Meyer-Nieberg, must be Dedekind σ-complete. An appeal to another old gem (this due
to Lozanovskii and Mekler) reveals that such Banach lattices have σ-order continuous norms. In sum, a
Banach lattice with the Radon-Nikodym property is Dedekind complete and has an order continuous norm.
Such lattices are weakly sequentially complete, can be decomposed into unconditional (direct) sums of
closed ‘bands’ with weak order units (that’re positive elements in the lattice) and, so, the analysis of these
Banach lattice can often be reduced to the study of these ‘bands’ — themselves order continuous Banach
lattices with weak order units that enjoy the fruits of the Monotone Convergence Theorem and are norm
one complemented in their second dual. All this is given careful exposition in [24] and in [M-N BL], as is
what we say next.

Once it’s known that a Banach lattice has an order continuous norm and weak order unit, Kakutani’s fa-
mous representation theory of Banach lattices is available. The result: there is a probability space(Ω, Σ, P )
such that the given Banach lattice X can be viewed as a Banach function space (aka, a Köthe function
space) of measurable real-valued functions defined on Ω with

L∞(µ) ⊆ X ⊆ L1(µ);

moreover, each inclusion is continuous and the duality of X with its dual X∗ is given by integration. To
put things in lattice-theoretic context, we denote by X ′ the Köthe dual of X , that is,

X ′ =
{

g ∈ L0(µ) :
∫
|fg|dµ < ∞ for each f ∈ X

}
,
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where L0(µ) denotes the linear space of measurable functions.
Under our working hypotheses (that X be a Banach lattice with the Radon-Nikodym property and with

a weak order unit), it is well-know that X ′ = X∗. Keep in mind that X ′′ also makes sense but X ′′ need not
be X∗∗!

For a given Banach space Y we denote by X(Y ) the linear space of all strongly µ -measurable Y -valued
functions on Ω such that ‖f(·)‖Y ∈ X; equip X(Y ) with the norm.

‖f‖X(Y ) =
∥∥‖f(·)‖Y

∥∥
X

;

with the usual provisos and conventions in place, X(Y ) is a Banach space.
Also important to our cause is the space

X∗
weak∗(Y

∗)

of all strongly µ -measurable g : Ω → Y ∗ such that g(·)(y) ∈ X∗ for each y ∈ Y ; we norm X∗
weak∗(Y

∗)
by

‖g‖X∗
weak∗ (Y ∗) = sup

y∈BY

‖g(·)(y)‖X∗

One last definition. X〈Y 〉 a strongly µ-measurable function f : Ω → Y belongs to X〈Y 〉 if for each
g ∈ X∗

weak∗(Y
∗), g(·)(f(·)) ∈ L1(µ) and equip X〈Y 〉 with the norm:

‖f‖X〈Y 〉 = sup
{∥∥g(·)(f())L1(µ)

∥∥ : g ∈ BX∗
weak∗ (Y ∗)

}

X〈Y 〉, with this norm, is a Banach space.
A few words about the work of Bu and Lin. Here’s a fact of general interest.

Lemma 2 (Bu/Lin) Let f : Ω → Y be strongly µ-measurable and ε > 0
Then there is a strongly µ-measurable gε : Ω → Y ∗ such that gε(w) ∈ BY ∗ for µ-almost all w ∈ Ω

and satisfies
‖f(w)‖ ≤ |gε(w)(f(w))|+ ε

for µ almost all w ∈ Ω.

The proof is a nifty application of Pettis’s Measurability Theorem.
Next, X〈Y 〉 and X ′′(Y ) are related.

Lemma 3 (Bu/Lin) X〈Y 〉 ⊆ X ′′(Y ) with ‖f‖X′′(Y ) ≤ ‖f‖X〈Y 〉 whenever f ∈ X〈Y 〉. What’s more, if
fn ∈ BX〈Y 〉 and f ∈ X ′′(Y ) with limn ‖f − fn‖X′′(Y ) = 0, then f ∈ BX〈Y 〉.

Again, Pettis’s Measurability Theorem plays a key role in the proof. One particularity relevant inter-
pretation is worthy of mention: Lemma 3 says that the inclusion of X〈Y 〉 into X(Y )(⊆ X ′′(Y )) is a
semi-embedding, surely music to the ears of ‘RNP fans’.

Key to the Bu/Lin paper is their representation of X⊗̂Y , when X is a Banach lattice having the Radon-
Nikodym property and a weak order unit and Y is separable Banach space. Of course, we follow their lead
and view X as a Köthe space with X∗ = X ′, X ′′ = X and X norm one complemented in X∗∗. All this in
hand, Bu and Lin show X⊗̂Y is isometrically isomorphic to X〈Y 〉.

This result is a bit more general than that contained in Bu and Lin [10] and we’ll provide a proof that
follows their lead with small detours taken to use Y ’s separability fully.

Define ψ : X⊗̂Y → X〈Y 〉 by ψ(z) =
∑

n xn(·)yn whenever z =
∑

n xn ⊗ yn ∈ X⊗̂Y ; ψ is
well-defined and ‖ψ(z)‖X〈Y 〉 ≤ ‖z‖X⊗̂Y .

Now let f ∈ X〈Y 〉.
Let K = β((BX∗∗ , weak∗)×BY ), when βS denotes the Čech-Stone compactification of S.
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Define
J : X∗

weak∗(Y
∗) → Cb((BX∗∗ , weak∗)×BY )

[
here the “b” denotes bounded

]
by

Jg = x∗∗(g(·)(y))

J is well-defined and ‖Jg‖Cb
= ‖g‖X∗

weak∗ (Y ∗). Keep in mind that Cb((BX∗∗ , weak∗)×BY ) = C(K).
Now define Ff on J’s range by

Ff (Jg) =
∫

g(t)(f(t))dµ(t)

and realize that Ff ∈ J(X∗
weak∗(Y

∗))∗ with ‖Ff‖ = ‖f‖X〈Y 〉.
Extend Ff using the Hahn-Banach theorem to an F̃f ∈ C(K)∗; by the Riesz theorem, F̃f corresponds

to a regular Borel measure v on K via

F̃f (ϕ) =
∫

ϕdv, ϕ ∈ C(K)

with ‖F̃f‖ = |v|(K).
Define h1 : K → X∗∗, h1(x∗∗, u) = x∗∗ to any (x∗∗, u) ∈ K; h1 is weak∗-continuous and so is

Gelfand integrable with respect to v.
Define h2 : (BX∗∗ , weak∗) × BY → BY by h2(x∗∗, y) = y; h2 is continuous. Let jY : Y → Y ∗∗ be

the canonical inclusion. Then

jY h2 : (BX∗∗ , weak∗)×BY → (BY ∗∗ , weak∗)

is also continuous and so extends uniquely to a continuous function H2 : β((BX∗∗ , weak∗) × BY ) →
(BY ∗∗ , weak∗). But it’s easy to see that

β((BX∗∗), weak∗)×BY ) = ((BX∗∗), weak∗)× βBY = K

and so H2 takes K in a continuous fashion to ((BY ∗∗), weak∗).
Now BY is Polish so (BX∗∗ , weak∗)×BY is v-measurable and

G2 = H2 · χ(BX∗∗ ,weak∗)×BY

is scalarly measurable and has a separable range. Pettis’s Measurability Theorem informs us that G2 is
strongly measurable and even Bochner integrable.

Write G2 in the form
G2 =

∑
n

χBnyn,

where (Bn) is a sequence of Borel’s sets in K, (yn) ⊆ Y and (if ε > 0 is provided)

∑
‖yn‖ |v|(Bn) ≤

∫
‖G2‖d|v|+ ε ≤ |v|(K) + ε.

Now for any g ∈ X∗
weak∗(Y

∗) we have

Ff (Jg) =
∫

K

Jg(∗∗, u)dv(x∗∗, u)

=
∫

Ω

g(t)(f(t))dµ(t).
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Take x∗ ∈ X∗ and y∗ ∈ Y ∗ and let g = x∗y∗; then
∫

x∗(y∗f(t)dµ(t) =
∫

K

h1(x∗∗, u)(x∗)y∗(G2(x∗∗, u))dv(x∗, u)

=
∫

k

h1(x∗∗, u)(x∗)
∑

n

y∗(yn)χBn(x∗∗, u)dv(x∗∗, u)

=
∑

n

∫

Bn

y∗(yn)h1(x∗∗, u)(x∗)dv(x∗∗, u)

=
∑

n

y∗(yn)x∗∗n (x∗),

where
x∗∗n = Gelfand−

∫

Bn

h1dv.

Notice that for each x∗ ∈ X∗ and n ≥ 1

|x∗∗n (x∗)| =
∣∣∣
∫

Bn

h1(x∗∗, u)(x∗)dv(x∗∗, u)
∣∣∣

≤
∫

Bn

‖h1(x∗∗, u)‖ ‖x∗‖d|v|(x∗∗, u)

≤ ‖x∗‖ |v|(Bn)

so ‖x∗∗n ‖X∗∗ ≤ |v|(Bn). Now we have
∑

n

‖y∗(yn)x∗∗n ‖X∗∗ ≤
∑

n

‖y∗‖yn‖ ‖x∗∗n ‖

≤ ‖y∗‖
∑

n

‖gn‖|v|(Bn)

≤ ‖y∗‖(|v|(K) + ε
)
,

so
∑

n y∗(yn)x∗∗n converges absolutely in X∗∗. Since the norm of X is order continuous, X ′ = X∗ and
we know from Bu/Lin Lemma 2 that f ∈ X〈Y 〉 ⊆ X(Y ) so for each y∗ ∈ Y ∗, y∗f ∈ X and

y∗(x∗f) = x∗(y∗f) =
∑

n

y∗(yn)x∗∗n (x∗);

it follows that
y∗f =

∑
n

y∗(yn)x∗∗n .

If we denote by P the norm-one projection P : X∗∗ → X and let xn = Px∗∗n , then z =
∑

n xn⊗ yn ∈
X⊗̂Y with

‖z‖X⊗̂Y ≤
∑

‖xn‖ ‖yn‖
=

∑
‖Px∗∗n ‖ ‖yn‖

≤ ‖P‖
∑

n

‖yn‖ ‖x∗∗n ‖

≤ ‖P‖
∑

n

‖yn‖ |v|(Bn)

≤ ‖P‖
(
|v|(K) + ε

)

= ‖P‖
(
‖f‖X〈Y 〉 + ε

)
.
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Let ε tend to zero and
‖z‖X⊗̂Y ≤ ‖P‖ ‖f‖X〈Y 〉 = ‖f‖X〈Y 〉

remains. Of course, y∗f ∈ X and

y∗f = P (y∗f) =
∑

n

y∗(yn)P (x∗∗n ) =
∑

n

y∗(yn)xn.

As before,
∥∥∥

∑
xn(·)yn

∥∥∥
X(Y )

≤
∑

n

‖xn(·)‖X‖yn‖

≤ ‖P‖(‖f‖X〈Y 〉 + ε
)

and so
∑

n xn(·)yn ∈ X(Y ) and, since f ∈ X(Y ), f(·) =
∑

n xn(·)yn, µ-almost everywhere, f = ψ(z)
and ψ is onto with

‖ψ(z)‖X〈Y 〉 ≤ ‖z‖X⊗̂Y ≤ ‖P‖ ‖ψ(z)‖X〈Y 〉.

All done.
What remains? Well, we need to call on a result of Bukhvalov [11] which says that if X is a Köthe func-

tion space with the Radon-Nikodym property and Y is a Banach space with the Radon-Nikodym property,
then X(Y ) has the Radon-Nikodym property, as well.

Naturally a precursor to this is the classical result of Turett and Uhl [28] which assures us that LP
X has

the Radon-Nikodym property whenever X does and 1 < p < ∞.

7. Concluding Remarks
We are dealing with the projective tensor product and so there is little access to subspace structure. This
was the main point of several questions of Bill Johnson, asked of Paddy Dowling at the annual meeting of
the AMS in Baltimore several years ago.

What can be said about the projective tensor product of a subspace X of Lp(0, 1), p bigger than 1, with
a space Y having the Radon-Nikodym property? Does it have the property?

More generally, what can be said about the projective tensor product of a subspace of a Banach lattice
with Radon-Nikodym property and a general Banach space with the property? Does it also have the Radon-
Nikodym property?

Again, does the projective tensor product of a superreflexive Banach space with a space with the Radon-
Nikodym property have the property?

Again, in much the same mode as the work of Bu and Dowling [8], many of the results that appear
herein for spaces with the Radon-Nikodym have been generalized in the paper of Bu and Diestel [7].

One upshot of this progression of understanding of the stability of the Radon-Nikodym-like properties
was the realization that it’s entirely possible that for large classes of Banach spaces, having cotype is stable
for the projective tensor product.
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