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A survey on topological games and their applications in
analysis

Jiling Cao and Warren B. Moors

Abstract. In this survey article we shall summarise some of the recent progress that has occurred in the
study of topological games as well as their applications to abstract analysis. The topics given here do not
necessarily represent the most important problems from the area of topological games, but rather, they
represent a selection of problems that are of interest to the authors.

Una panorámica sobre juegos topológicos y su aplicación en análisis

Resumen. Es este artı́culo recopilatorio resumimos alguno de los avances recientes en el estudio
de los juegos topológicos, ası́ como sus aplicaciones al análisis abstracto. Los temas tratados aquı́ no
representan necesariamente los problemas más importantes del área de los juegos topológicos sino, más
bien, una selección de los que interesan a los autores.

1. Introduction

Although a combinatorial game, in a mathematical form, was described probably for the first time at the
beginning of the 17th century, the notion of a positional game with perfect information was introduced in
the famous monograph of von Neumann and Morgenstern [37]. In that monograph, the authors considered
finite positional games and proved that each such game can be reduced to a matrix game, and moreover, if
the (finite) positional game is one with perfect information, then the corresponding matrix game has a saddle
point. However, infinite positional games with perfect information were discovered a little earlier. In 1935,
Stanistaw Mazur proposed a game related to the Baire Category Theorem, which is described in Problem
No. 43 of the Scottish Book; its solution, given by Stefan Banach, is dated August 4, 1935. This game,
now known as the Banach-Mazur game, is the first infinite positional game with the perfect information.
Unfortunately, because of World War II, the problems in the Scottish Book were not widely known until
the mid fifties. So although, historically, the Banach-Mazur game was the first infinite positional game
with perfect knowledge we shall delay its description until Section 2.. Instead, we shall begin with the
description of the simpler Choquet game given in [10].

Let (X, τ) be a topological space. The Choquet game Ch(X), played on (X, τ) is played between two
players α and β who, alternately, select nonempty open subsets of X . Player β goes first (always!) and
chooses a nonempty open subset B1 of X . Player α must respond by selecting a nonempty open subset
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A1 ⊆ B1. Following this player β must select another nonempty open subset B2 ⊆ A1 ⊆ B1 and in
turn the player α must again respond by selecting a nonempty open subset A2 ⊆ B2 ⊆ A1 ⊆ B1. In
general, β selects any nonempty open subset Bn of the last move An−1 of α and the latter player answers
by choosing a nonempty open subset An of the set Bn, just chosen by β. Acting in this way, the players α
and β “produce” a sequence of nonempty open sets

B1 ⊇ A1 ⊇ B2 ⊇ A2 ⊇ · · ·Bn ⊇ An ⊇ · · ·

which is called a play and will be denoted by ((An, Bn))n∈N. We shall declare that the player α wins a
play ((An, Bn))n∈N of the Choquet game Ch(X) if

⋂
n∈NAn =

⋂
n∈NBn 6= ∅. Otherwise, the player β

is said to have won this play. A finite sequence ((Ak, Bk))n
k=1 of pairs of nonempty open sets consisting

of the first n moves of the Choquet game is called a partial play. It is clear that every partial play can be
extended to a play.

By a strategy for the player α we mean a rule that species each move of the player α in every possible
situation. More precisely, a strategy t = (tn : n ∈ N) for α is a sequence of τ -valued mappings such that

∅ 6= tn(B1, B2, . . . , Bn) ⊆ Bn for all n ∈ N.

The domains of the tn’s are families of finite sequences of nonempty open sets defined inductively as
follows:

Dom(t1) := {(B1) : B1 is a nonempty open subset of X};

Dom(tn+1) := {(B1, ..., Bn, Bn+1) : (B1, ..., Bn) ∈ Dom(tn),

and Bn+1 ⊆ tn(B1, ..., Bn)}.

Each element of
⋃

n∈NDom(tn) is called a partial t-play and an infinite sequence (Bn)n∈N of nonempty
open subsets of X is called a t-play provided (B1 . . . , Bn) ∈ Dom(tn) for all n ∈ N. Of course, one can
consider the space of all t-plays P (t) endowed with the Baire metric d, that is, if p = (Bn : n ∈ N) and
p′ = (B′

n : n ∈ N) are two t-plays, then d(p, p′) = 0 if p = p′ and otherwise d(p, p′) = 1/n, where
n := min{k ∈ N : Bk 6= B′

k}. It is clear that (P (t), d) is a complete metric space. A strategy t is called a
winning strategy for the player α if α wins each t-play in Ch(X). Strategies and winning strategies for the
player β in Ch(X) can be defined similarly. A space X is called weakly α-favourable if α has a winning
strategy in Ch(X).

Given two strategies t and σ for the player α in Ch(X), we say that σ refines t, denoted by t ¹ σ, if
each σ-play is a t-play or, alternatively, if for each n ∈ N, Dom(σn) ⊆ Dom(tn) and σn(B1, . . . Bn) ⊆
tn(B1, . . . Bn) for each (B1, . . . Bn) ∈ Dom(σn). Note that if t is a winning strategy for the player α
and t ¹ σ then σ is also a winning strategy for the player α. We shall call a family P of nonempty open
subsets of a space X a pseudo-base (sometimes, π-base) for X if for every nonempty open set U ⊆ X ,
there is some P ∈ P with P ⊆ U . It is easy to see that if P is a pseudo-base for X , then for any
strategy t for the player α in Ch(X), there exists a strategy σ := (σn : n ∈ N) for α such that t ¹ σ
and σn(B1, . . . , Bn) ∈ P for all (B1, . . . , Bn) ∈ Dom(σn). Based on these observations we shall often
restrict the moves of players in the Choquet game to a pre-chosen pseudo-base (or base) of a space.

The motivation of Choquet [10] for introducing the Choquet game was to characterise metric spaces
with certain completeness properties and to study the set of extreme points of a compact convex set in a
locally convex linear space. In the literature, there are many generalisations and extensions of the Choquet
game. For instance, some of the results in [10] were extended to non-metrizable spaces in [7]. The readers
should refer to the excellent survey articles [46] or [42] for more information. In the next few sections,
we shall explore some modifications of the Choquet game and also some of their applications to abstract
analysis and topology.
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2. Applications of games to Baire spaces
In this section, we shall first present a characterisation of Baire spaces in terms of the Choquet game and
then give some of its applications. Also, we shall present the original setting of the Banach-Mazur game, as
well as, some of its applications. Recall that a space X is a Baire space if the intersection of any sequence
of dense open subsets of X is dense. Further, if every closed subspace of X is Baire, then X is called a
hereditarily Baire space. Of course, Baire spaces can be defined in terms of sets of the second category,
refer to [14]. Among the known examples of Baire spaces are complete metric spaces, (locally) compact
spaces and Čech complete spaces.

The following theorem, first discovered by Oxtoby [39], and later proved in [25] and [43] independently,
gives a characterisation of Baire spaces in terms of the Choquet game.

Theorem 1 ([25, 39, 43]) A space X is a Baire space if, and only if, the player β does not have a winning
strategy in Ch(X).

It is an immediate consequence of Theorem 1 that weakly α-favourable spaces are Baire spaces. We
begin our discussion of applications of Theorem 1 with the problem of whether the product of two (or
a family of) Baire spaces is still Baire. This question can be tracked to Sikorski [44]. First of all, by
Theorem 1 and remarks in Section 1., the product of a family of Baire spaces is Baire if, and only if,
all countable subproducts are Baire. It is known that the product of a (hereditarily) Baire space with any
complete metric space is (hereditarily) Baire. On the other hand, Oxtoby [40] showed that CH implies that
there is a metric Baire space whose square is not Baire. Furthermore, Aarts and Lutzer [1] constructed a
metric hereditarily Baire space whose square is not hereditarily Baire. Finally, in 1978, Fleissner and Kunen
[13] presented a metric Baire space whose square is not Baire without using any additional hypothesis. Due
to a mistake in [11] it was claimed that Example 1 of [13] gives two metric hereditarily Baire spaces whose
product is not Baire. Recently however, Chaber and Pol [9] have corrected this error by showing that the
product of any family of metric hereditarily Baire spaces is Baire, and further asked whether the product of
a metric Baire space and a metric hereditarily Baire space must be Baire. By applying Theorem 1, Moors
[33] provided an affirmative answer to this question.

Theorem 2 ([33]) The product of a Baire space and a metric hereditarily Baire space is Baire.

Now, we turn our attention to McCoy’s problem on the Vietoris hyperspace of a Baire space. Given a
space X , let 2X denote the hyperspace of X consisting of all nonempty closed subsets of X endowed with
the Vietoris topology. Recall that a canonical base for this topology is given by all subsets of 2X \ {∅}
having the form

〈U 〉 := {F ∈ 2X : F ⊆
⋃

U , F ∩ V 6= ∅ for any V ∈ U },
where U runs over the finite families of nonempty open subsets of X [28]. The problem of when or whether
the hyperspace 2X of a Baire space must be Baire was first considered by McCoy [26]. He proved that if
X is a Baire space with a countable pseudo-base, then 2X is Baire, but left the general case as an open
question. Recently, Cao et al have considered this question and proved the following two results with the
help of Theorem 1.

Theorem 3 ([3]) Let X be a Hausdorff space. If 2X is Baire, then Xn is Baire for all n ∈ N.

Theorem 4 ([8]) Let X be a Hausdorff space. If Xω is Baire, then 2X is Baire.

The above two theorems establish a nice link between the Baireness of the hyperspace and that of the
product spaces. As we mentioned previously, there is a metric Baire space whose square is not Baire. As a
corollary of Theorem 3, there exists a metric Baire space X such that 2X is not Baire, that is, the general
answer to McCoy’s problem is negative. On the other hand, Theorem 4 together with Theorem 1.1 of [9]
implies that the hyperspace 2X of a metric hereditarily Baire space is Baire, which answers affirmatively an
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oral question of Moors. Further, two examples were provided in [8] to show that neither of the converses of
Theorem 3 and Theorem 4 hold.

Before we present some more problems and applications we need to introduce a variation of the Choquet
game, called the GS(D)-game. Let X be a topological space and let D ⊆ X be a dense subset of X . The
rules for playing the GS(D)-game are the same as for the Ch(X)-game. The only distinction between
them is in the definition of a win. We shall say that α wins a play ((An, Bn))n∈N of the GS(D)-game if⋂

n∈NAn 6= ∅, and each sequence (an)n∈N with an ∈ An ∩ D has a cluster point in X . Otherwise the
player β is said to have won this play. The space X is called a strongly Baire space if it is regular and there
is a dense subset D ⊆ X such that the player β does not possess a winning strategy in the GS(D)-game
played on X . The motivation to introducing the GS(D)-game and the class of strongly Baire spaces was
to study the problem when a semitopological group is a (paratopological) topological group. Recall that a
semitopological group (paratopological group) is a group endowed with a topology for which multiplication
is separately (jointly) continuous and a topological group is a paratopological group whose inversion is also
continuous. In [2], Bouziad improved results of both Montgomery [31] and Ellis [12], and also answered
a question of Pfister in [41] by showing that each Čech-complete semitopological group is a topological
group. Since the Sorgenfrey line is a Baire paratopological group which is not a topological group, there
is no hope to improve Bouziad’s result by replacing “Čech-complete” with “Baire”. However, by applying
the notion of strongly Baire space, Kenderov et al [18] improved Bouziad by proving the following result.

Theorem 5 ([18]) Let (G, ·, τ) be a semitopological group. If (G, τ) is a strongly Baire space, then (G, ·)
is a topological group.

In a recent paper, Cao et al [4] used the strong Baireness and Baireness of function spaces to characterise
metrizability of a manifold. By a manifold M it is meant a connected, Hausdorff, locally Euclidean space.
The function space we shall consider is Ck(M), the space of all continuous real-valued functions defined
on M endowed with the compact-open topology.

Theorem 6 ([4]) The following are equivalent for a manifold M :

(i) M is metrizable;

(ii) Ck(M) is a strongly Baire space;

(iii) Ck(M) is a Baire space.

In the last part of this section, we shall present the original setting of the Banach-Mazur game as well
as some of its applications. As mentioned in Section 1., the original version of the Banach-Mazur appeared
in the Scottish Book under problem No. 43, where two players alternately select nonempty intervals of the
real line. A more general setting for the Banach-Mazur game was given by Oxtoby in [39]. Let X be a
topological space and let A ⊆ X . In the Banach-Mazur game BM(A), two players α and β alternately
select nonempty open sets B1 ⊇ A1 ⊇ B2 ⊇ A2,⊇ · · · just as in the Choquet game Ch(X). We shall
declare that the player α wins a play ((An, Bn))n∈N if

⋂
n∈NAn ⊆ A. Otherwise, the player β is said

to have won the play. Strategies for both β and α in BM(A) are defined in a similar fashion to those in
Ch(X). In contrast to the Choquet game, the Banach-Mazur can be used to test whether a given subset A
is “big” in X , as shown in the next theorem.

Theorem 7 ([39, 17]) Let X be a topological space and let A ⊆ X . Then player α has a winning strategy
in BM(A) if, and only if, A is residual in X .

The Banach-Mazur game and Theorem 7 have been applied to obtain a topological closed graph theorem
in [32]. Recall that a mapping f : X → Y from a space X into a space Y is said to be nearly continuous
if f−1(U) ⊆ intf−1(U) for each open set U ⊆ Y . A sequence (Vn : n ∈ N) of covers of a space X is
said to be complete if each filter F on X that is Vn-small for each n ∈ N has

⋂
F∈F F 6= ∅. Moreover,
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a cover V of X is called exhaustive provided every nonempty set A of X has a nonempty relatively open
subset of the form A ∩ V with V ∈ V . Finally, a regular space X is called partition complete [30] if it has
a complete sequence of exhaustive covers.

Theorem 8 ([32]) Every nearly continuous mapping f : X → Y with a closed graph from a Baire space
X into a partition complete space Y is continuous.

3. Several modifications of the Choquet game

In this section we shall describe several variations of the Choquet game. These modifications will give new
characterisations of some known topological properties such as fragmentability, the Namioka property and
membership in the class of weakly Stegall spaces.

The first of these modifications is the “fragmenting game”. Let τ and τ ′ be topologies on a set X .
On X we shall consider the G(X, τ, τ ′)-game played between two players α and β. The player β goes
first (always!) and chooses a nonempty subset B1 of X . Player α must then respond by choosing a
nonempty τ -relatively open subset A1 of B1. Following this player β must select another nonempty subset
B2 ⊆ A1 ⊆ B1 and in turn α must again respond by selecting a nonempty τ -relatively open subset A2 of
B2. In general, β selects any nonempty subset Bn of the last move An−1 of α and the latter player answers
by choosing a nonempty τ -relatively open subset An of the set Bn, just chosen by β. Acting in this way,
the players α and β “produce” a sequence of nonempty sets

B1 ⊇ A1 ⊇ B2 ⊇ A2 ⊇ · · ·Bn ⊇ An ⊇ · · ·

which is called a play and will be denoted by ((An, Bn))n∈N. The winning rule is connected with the
topology τ ′. The player α is said to have won a play ((An, Bn))n∈N if the set

⋂
n∈NAn is either empty

or contains exactly one point x and for every τ ′-open neighbourhood U of x there exists an n ∈ N such
that An ⊆ U . Otherwise the player β is said to have won. All other concepts related to this game, such as
strategies, winning strategies, t-plays and partial t-plays etc. are defined in a similar fashion to those in the
Choquet game. In the special case when τ ′ is the trivial topology (consisting of the empty set and the whole
space X) we shall simply denote the G(X, τ, τ ′)-game by: G(X, τ).

Let X be a topological space and let ρ be some metric defined on it (not necessarily generating the
topology on X). For any ε > 0 we will say that X is fragmented by ρ down to ε if for every nonempty
subset A of X there exists a nonempty relatively open subset B of A such that ρ−diam(B) < ε. Following
Jayne and Rogers [16], we say that a topological space X is fragmentable if there exists a metric ρ defined
on X such that for every ε > 0, X is fragmented by ρ down to ε. In such a case it is said that the
metric ρ fragments X . The next theorem, discovered by Kenderov and Moors in [21] justifies the name:
“fragmenting game”.

Theorem 9 ([21, 22]) A topological space (X, τ) is fragmentable if, and only if, the player α has a
winning strategy in the G(X, τ)-game.

A set-valued mapping ϕ : X → P(Y ) is said to be minimal if for every pair of open subsets U ⊆ X
and V ⊆ Y with ϕ(U) ∩ V 6= ∅ there exists a nonempty open subset W ⊆ U such that ϕ(W ) ⊆ V and
a topological space X is said to be a weakly Stegall space [34] if for every complete metric M and every
nonempty-valued minimal mapping ϕ : M → P(X), ϕ is single-valued at some point of M . The class of
weakly Stegall spaces can be characterised in terms of the G(X, τ)-game.

Theorem 10 ([19, 34]) A topological space (X, τ) is weakly Stegall if, and only if, the player β does not
have a winning strategy in the G(X, τ)-game.

43



J. Cao and W. B. Moors

The previous theorem enables us to establish the relationship between weakly Stegall and fragmentable
spaces. Specifically, the distinction between being fragmentable and being weakly Stegall is precisely the
distinction between the player α having a winning strategy in the G(X, τ)-game and the player β not having
a winning strategy in the G(X, τ)-game.

Theorem 10 can also be used to obtain many new facts concerning weakly Stegall spaces, see [19] and
[34].

The following theorem improves Theorem 9.

Theorem 11 ([20]) A topological space (X, τ) is fragmentable by a metric ρ whose topology is at least as
fine as a topology τ ′ if, and only if, there exists a winning strategy for the player α in the G(X, τ, τ ′)-game.

Recall that a (single-valued) mapping f : X → Y between two spaces X and Y is said to be quasicon-
tinuous if for every pair of open subsets U ⊆ X and V ⊆ Y with f(U) ∩ V 6= ∅ there exists a nonempty
open subset W ⊆ U such that f(W ) ⊆ V .

Theorem 12 ([20]) Let τ , τ ′ be T1 topologies on a set X . Suppose that for every τ ′-open set U and every
point x ∈ U there exists a τ ′-neighbourhood V of x such that V

τ ⊂ U . Then the following conditions are
equivalent:

(i) β does not possess a winning strategy in the G(X, τ, τ ′)-game;

(ii) every quasicontinuous mapping f : Z → (X, τ) from a complete metric space Z into (X, τ) has at
least one point of τ ′- continuity;

(iii) every quasicontinuous mapping f : Z → (X, τ) from an α-favourable space Z into (X, τ) is τ ′-
continuous at the points of a subset which is of second category in every nonempty open subset of
Z.

Similarly to before we see that the distinction between (X, τ) being fragmentable by a metric whose
topology is at least as fine as τ ′ and (X, τ) having the property that: “every quasicontinuous mapping
f : Z → (X, τ) from a complete metric space Z has at least one point of τ ′-continuity”, is the same as
the distinction between α having a winning strategy in the G(X, τ, τ ′)-game and β not having a winning
strategy in the G(X, τ, τ ′)-game.

A space X (or its topology τ ) is said to be sigma-fragmented by a metric ρ if, for every ε > 0, there
exists a countable family (Xε

i )i≥1 of subsets of X such that:

(i) X =
⋃

i≥1 Xε
i ;

(ii) every Xε
i , i = 1, 2, 3, . . . , is fragmented by ρ down to ε.

Theorem 13 ([22]) For a subset X of a Banach space E the following properties are equivalent:

(i) X admits a metric ρ which fragments the weak topology and whose topology is at least as fine as the
norm topology (i.e., the player α has a winning strategy in the game G(X, weak, norm));

(ii) X admits a metric ρ which fragments the weak topology and whose topology is at least as fine as the
weak topology (i.e., the player α has a winning strategy in the game G(X, weak, weak));

(iii) X is sigma-fragmented by the norm.

In order to present some of the applications of this theorem we need another definition. We say that
a subset Y of a topological space (X, τ) has countable separation in X if there is a countable family
{On : n ∈ N} of open subsets of X such that for every pair {x, y} with y ∈ Y and x ∈ X \Y , {x, y}∩On

is a singleton for at least one n ∈ N. If we denote by XΣ the family of all subsets of X with countable
separation in X then XΣ is a σ-algebra that contains all then open subsets of X . Moreover, XΣ is closed
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under the Souslin operation. For a completely regular topological space (X, τ) we shall say that X has
countable separation if in some compactification bX , X has countable separation in bX . It is shown in
[22] that if X has countable separation in one compactification then X has countable separation in every
compactification and so we see that every Čech-analytic space has countable separation.

Theorem 14 ([22]) Let BE denote the closed unit ball of a Banach space E. If (E, weak) has countable
separation then E is sigma-fragmented by the norm.

Theorem 15 ([22]) If a regular Hausdorff space (X, τ) is sigma-fragmented by a metric ρ whose topol-
ogy is at least as fine as τ then (X, τ) is fragmented by some metric d whose topology is at least as fine as
τ .

Theorem 16 ([22]) Let (X, τ) be a topological space and let ρ be a metric which sigma-fragments X
by means of sets with countable separation in X (i.e., the sets (Xε

i )i≥1 involved in the definition is sigma-
fragmentability have countable separation in X). Then X is fragmentable.

Let T denote the class of all Banach spaces E for which every continuous mapping f : Z → (E, weak)
defined on a weakly α-favourable space Z is norm continuous at the points of a dense subset of Z.

Theorem 17 ([20]) A Banach space E is in T if, and only if, the player β does not have a winning
strategy in the G(X, weak, weak)-game.

Yet again we see that games can be used to distinguish between topological properties. In this case we
see that the distinction between a Banach space E being sigma-fragmented by the norm and being a member
of T is equivalent to the distinction between α having a winning strategy in the G(X, weak, weak)-game
and β not having a winning strategy in the G(X, weak, weak)-game.

Theorem 17 also has many other applications. For example it can be used to show that:

• T contains all the weakly Lindelöf Banach spaces;

• E = l∞ and E = l∞/c0 do not belong to T . In both cases there exists a weakly continuous mapping
h : Z → E defined on a completely regular weakly α-favourable space Z which is nowhere norm
continuous.

• T is stable under weak homeomorphisms (i.e., if T contains some Banach space E, then it contains
any other Banach space that is weakly homeomorphic to E);

• A Banach space E is a member of T if, and only if, every quasi-continuous mapping f : Z →
(E, weak) defined on a complete metric space Z is densely norm continuous;

• A Banach space E is a member of T if, and only if, every quasi-continuous mapping f : Z →
(E, weak) defined on a complete metric space Z is weakly continuous at some point of Z.

4. Other games in abstract analysis

In this section we shall consider two more topological games which are perhaps more esoteric than the
games considered previously.

Let X be a space, F a proper filter (or filterbase) in X . We shall consider the following G(F )-game
played in X between players α and β: Player β goes first (always!) and chooses a point x1 ∈ X . Player α
responds by choosing a member F1 ∈ F . Following this, player β must select another (possibly the same)
point x2 ∈ F1 and in turn player α must again respond to this by choosing a member F2 ∈ F . Repeating
this procedure infinitely, the players α and β produce a sequence p := ((xn, Fn) : n ∈ N) with xn+1 ∈ Fn
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for all n ∈ N, called a play of the G(F )-game. We shall say that α wins a play of the G(F )-game if the
sequence (xn : n ∈ N) has a cluster point in X . Otherwise, the player β is said to have won this play.

We shall call a pair (F , σ) a σ-filter (σ-filterbase) if F is a proper filter (filterbase) in X and σ is
a winning strategy for player α in the G(F )-game. Finally, we say that a space X has property (∗∗) if⋂{F : F ∈ F} 6= ∅ for each σ-filterbase (F , σ) in X . The class of spaces having property (∗∗) includes
all metric spaces [6], all Dieudoné-complete spaces, all function spaces Cp(X) for compact Hausdorff
spaces X , and all Banach spaces in their weak topologies [6]. Recall that a space X is a q-space if for every
point x ∈ X , there is a sequence (Un : n ∈ N) of neighbourhoods of x such that if xn ∈ Un for all n ∈ N,
the sequence (xn : n ∈ N) has a cluster point in X (which is not necessarily x itself). All first countable
spaces and all Čech complete spaces are q-spaces.

The G(F )-game can be used to deduce some selection theorems.

Theorem 18 ([5]) Let f : X → Y be a closed mapping from a regular T1-space X with property (∗∗)
onto a regular q-space Y . If f−1(y) is closed for every y ∈ Y , then there exists a quasicontinuous mapping
ϕ : Y → X such that (f ◦ ϕ)(y) = y for all y ∈ Y .

The last game we shall consider is the “Cantor-game” which was used in [35] to show that there exist
Gâteaux differentiability spaces that are not weak Asplund.

Recall that a Banach space X is a called a weak Asplund space (Gâteaux differentiability space) if each
continuous convex function defined on it is Gâteaux differentiable at the points of a dense Gδ subset (dense
subset) of its domain.

We will say that a σ-ideal A of subsets on a topological space (X, τ) is topologically stable if h(A) ∈
A for each homeomorphism h : (X, τ) → (X, τ) and A ∈ A . In the reminder of this paper, A will
always denote a topologically stable σ-ideal on ({0, 1}N, τp), where τp denotes the topology of pointwise
convergence on N. With this understanding, we can introduce the following notation.

Given a topological space (X, τ) that is homeomorphic to ({0, 1}N, τp) and a topologically stable σ-
ideal A on ({0, 1}N, τp), we shall denote by A(X,τ), the induced σ-ideal on X defined by, A(X,τ) :=
{h−1(A) : A ∈ A } for some homeomorphism h : (X, τ) → ({0, 1}N, τp). (Note: Since A is topo-
logically stable, the definition of A(X,τ) is independent of the particular choice of homeomorphism h :
(X, τ) → ({0, 1}N, τp)). When there is no ambiguity, we shall simply denote A(X,τ) by AX . In terms of
this notation we can introduce a stronger notion of topological stability. A σ-ideal A on ({0, 1}N, τp) is
said to be strongly topologically stable if (i) A is topologically stable and (ii) for each clopen subset Y of
{0, 1}N that is homeomorphic to ({0, 1}N, τp), we have that AY ⊆ A .

Let (M,d) be a complete metric space without isolated points, R be a subset of M and A be a strongly
topologically stable proper σ-ideal on ({0, 1}N, τp). On M we consider the Cantor-game CA (R)-game
played between two players α and β. Player β goes first (always!) and chooses a family B0 := {Bt

0 :
t = ∅} consisting of a nonempty open set B∅0 with d-diam(B∅0 ) < 1/20. Player α must respond to this
by choosing a family A0 := {At

0 : t = ∅} consisting of a nonempty open set A∅0 of B∅0 . Following
this player β must select another family B1 := {Bt

1 : t ∈ {0, 1}1} of nonempty open subsets such that;
(i) ∅ = B0

1 ∩B1
1 ⊆ B0

1 ∪B1
1 ⊆ A∅0 and (ii) d-diam(Bt

1) < 1/21 for all t ∈ {0, 1}1. In turn, player α
must again respond by selecting a family A1 := {At

1 : t ∈ {0, 1}1} of nonempty open subsets such that
At

1 ⊆ Bt
1 for all t ∈ {0, 1}1.

Continuing this procedure indefinitely the players α and β produce a sequence {(An, Bn) : n ∈ ω}
of ordered pairs of indexed families of nonempty open subsets with An := {At

n : t ∈ {0, 1}n} and
Bn := {Bt

n : t ∈ {0, 1}n} that satisfy the following conditions; (i) ∅ = Bt0
n+1 ∩Bt1

n+1 ⊆ Bt0
n+1 ∪Bt1

n+1 ⊆
At

n ⊆ Bt
n for all t ∈ {0, 1}n and (ii) d-diam(Bt

n) < 1/2n for all t ∈ {0, 1}n. Such a sequence will
be called a play of the CA (R)-game. We shall declare that α wins a play {(An, Bn) : n ∈ ω} of the
CA (R)-game if the set K\R ∈ AK , where K :=

⋂∞
n=0 Kn and Kn :=

⋃{Bt
n : t ∈ {0, 1}n}. Otherwise

the player β is said to have won this play. By a strategy σ for the player α, we mean a ‘rule’ that specifies
each move of the player α in every possible situation. More precisely a strategy σ := (σn : n ∈ ω) for
α is a sequence of functions such that (i) σn(B0, B1, . . . Bn) := {σt

n(B0, B1, . . . Bn) : t ∈ {0, 1}n}; (ii)
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∅ 6= σt
n(B0, B1, . . . Bn) ⊆ Bt

n for all t ∈ {0, 1}n and (iii) σt
n(B0, B1, . . . Bn) is open for all t ∈ {0, 1}n.

The domain of each function σn is precisely the set of all finite sequences (B0, B1, . . . Bn) of indexed
families Bj := {Bt

j : t ∈ {0, 1}j} of nonempty open subsets that satisfy the following conditions; (i)
∅ = Bt0

j+1 ∩ Bt1
j+1 ⊆ Bt0

j+1 ∪ Bt1
j+1 ⊆ σt

j(B0, B1, . . . Bj) for all t ∈ {0, 1}j and 0 ≤ j < n and (ii)
d-diam(Bt

j) < 1/2j for all t ∈ {0, 1}j and 0 ≤ j ≤ n. Such a finite sequence (B0, B1, . . . Bn) (infinite
sequence (Bn : n ∈ ω)) is called a partial σ-play (σ-play). A strategy σ := (σn : n ∈ ω) for the player α
is called a winning strategy if each σ-play is won by α.

This Cantor-game is used to prove the following theorem.

Theorem 19 ([35]) There exists a Banach space (X, ‖ · ‖) such that (X∗, weak∗) is weakly Stegall but
(X, ‖ · ‖) is not weak Asplund. In particular, (X, ‖ · ‖) is a Gâteaux differentiability space that is not weak
Asplund.

There are many other games and applications that are not mentioned here. For example, games have
been successfully used in Optimisation and in the theory of selections. For an excellent account of this
area the reader is referred to the article [42] by J. Revalski. Topological games (which are variations on the
Choquet game) have also been used extensively in the study of separate and joint continuity, see [27] for
further information in this direction.

Finally, let us also mention here that a game very similar to the G(X, τ) was considered by E. Michael
in [29, 30] to characterise the class of partition complete spaces. The only difference between these games is
the definition of a win. In [29] E.Michael says that the player α wins if the sequence (An)n∈N is complete.
Then he obtains the result that a regular space X is partition complete if, and only if, the player α has a
winning strategy.
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