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Abstract

Any bivariate cdf is bounded by the Fréchet-Hoeffding lower and upper bounds. We illustrate the
importance of the upper bound in several ways. Any bivariate distribution can be written in terms of
this bound, which is implicit in logit analysis and the Lorenz curve, and can be used in goodness-of-fit
assesment. Any random variable can be expanded in terms of some functions related to this bound.
The Bayes approach in comparing two proportions can be presented as the problem of choosing
a parametric prior distribution which puts mass on the null hypothesis. Accepting this hypothesis is
equivalent to reaching the upper bound. We also present some parametric families making emphasis
on this bound.
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1 Introduction

Several concepts and equations play an important role in statistical science. We prove
that the bivariate upper Fréchet bound and the maximal Hoeffding correlation are two
related expressions which, directly or implicitly, are quite useful in probability and
statistics.
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56 The importance of being the upper bound in the bivariate family

Let X,Y be two random variables with continuous joint cumulative distribution
function (cdf) H(x, y) and marginal cdf’s F(x),G(y). Assuming finite variances,
Hoeffding (1940) proved that the covariance in terms of the cdf’s is given by

Cov(X,Y) =
∫

R2
(H(x, y) − F(x)G(y))dxdy. (1)

Then he proved that the correlation coefficient

ρH(X,Y) = Cov(X,Y)/
√

Var(X)Var(Y)

satisfies the inequality

ρ− ≤ ρH ≤ ρ+,

where ρ−, ρ+ are the correlation coefficients for the bivariate cdf’s

H−(x, y) = max{F(x) +G(y) − 1, 0} and H+(x, y) = min{F(x),G(y)},

respectively.
In another seminal paper Fréchet (1951) proved the inequality

H−(x, y) ≤ H(x, y) ≤ H+(x, y), (2)

where H− and H+ are the so-called lower and upper Fréchet-Hoeffding bounds. If H
reaches these bounds then the following functional relations hold between the random
variables:

F(X) = 1 −G(Y), (a.s.) if H = H−,
F(X) = G(Y), (a.s.) if H = H+.

The distributions H−, H+ and H = FG (stochastic independence) are examples of
cdf’s with marginals F,G. The construction of distributions when the marginals are
given is a topic of increasing interest – see, for example, the proceedings edited by
Cuadras, Fortiana and Rodriguez-Lallena (2002).

Note that H− and H+ are related by

H+(x, y) = F(x) − H−(x,G−1(1 −G(y)),

and that the p−dimensional generalization of (2) is

H−(x1, . . . , xp) ≤ H(x1, . . . , xp) ≤ H+(x1, . . . , xp),
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where H(x1, . . . , xp) is a cdf with univariate marginals F1, . . . , Fp and

H−(x1, . . . , xp) = max{F1(x1) + . . . + Fp(xp) − (p − 1), 0},
H+(x1, . . . , xp) = min{F1(x1), . . . , Fp(xp)}.

However, if p > 2, in general only H+ is a cdf, see Joe (1997). Thus we may focus our
study on the Fréchet-Hoeffding upper bound.

The aim of this paper is to present some relevant aspects of H+, which may generate
any bivariate cdf and is implicit in some statistical problems.

2 Distributions in terms of upper bounds

Hoeffding’s formula (1) was extended by Cuadras (2002a) as follows. Let us suppose
that the ranges of X,Y are the intervals [a, b], [c, d] ⊂ R, respectively. Thus F(a) =
G(c) = 0, F(b) = G(d) = 1. Let α(x), β(y) be two real functions of bounded variation
defined on [a, b], [c, d], respectively. If α(a)F(a) = β(c)G(c) = 0 and the covariance
between α(X), β(Y) exists, it can be obtained from

Cov(α(X), β(Y)) =
∫ b

a

∫ d

c
(H(x, y) − F(x)G(y))dα(x)dβ(y). (3)

Suppose that the measure dH(x, y) is absolutely continuous with respect to
dF(x)dG(y) and that

∫ b

a

∫ d

c
(dH(x, y))2/dF(x)dG(y) < ∞.

Then the following diagonal expansion

dH(x, y) − dF(x)dG(y) =
∑
k≥1

ρkak(x)bk(y)dF(x)dG(y) (4)

exists, where ρk, ak(X), bk(Y) are the canonical correlations and variables, respectively
(see Hutchinson and Lai, 1991).

Let us consider the upper bounds

F+(x, y) = min{F(x), F(y)}, G+(x, y) = min{G(x),G(y)},

and the symmetric kernels

K(s, t) = F+(s, t) − F(s)F(t), L(s, t) = G+(s, t) −G(s)G(t).
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Then using (3) and integrating (4), we can obtain the following expansion

H(x, y) = F(x)G(y) +
∑
k≥1

ρk

∫ b

a
K(x, s)dak(s)

∫ d

c
L(t, y)dbk(t),

which shows the generating power of the upper bounds (see Cuadras, 2002b, 2002c).
Thus we can consider the nested family

Hn(x, y) = F(x)G(y) +
n∑

k=1

ρk

∫ b

a
K(x, s)dak(s)

∫ d

c
L(t, y)dbk(t),

by taking generalized orthonormal sets of functions (ak) and (bk) with respect to F and
G. It is worth noting that it can exist a non-countable class of canonical correlations and
functions (Cuadras, 2005a).

3 Correspondence analysis on the upper bound

Correspondence analysis (CA) is a multivariate method to visualize categorical data,
typically presented as a two-way contingency table N. The distance used in the graphical
display of the rows (and columns) of N is the so-called chi-square distance between the
profiles of rows (and between the profiles of columns). This method is described in
Benzécri (1973) and Greenacre (1984), and it can be interpreted as the discrete version
of (4) – see also Cuadras et al. (2000).

Let N = (ni j) be an I× J contingency table and P = n−1N the correspondence matrix,
where n =

∑
i j ni j. Let r = P1, Dr =diag(r), c = PT1, Dc =diag(c), the vectors and

diagonal matrices with the marginal frequencies of P.
CA uses the singular value decomposition

D−1/2r (P − rcT)D−1/2c = UDσVT, (5)

where Dσ is the diagonal matrix of singular values in descending order, and U and
V have orthonormal columns. To represent the I rows of N we may take as principal
coordinates the rows of A = D−1/2r UDσ. Similarly, to represent the J columns of N we
may use the principal coordinates contained in the rows of B = D−1/2c VDσ. CA has the
advantage that we can perform a joint representation of rows and columns, called the
symmetric representation, as a consequence of the transition relations

A = D−1r PBD−1σ , B = D−1c PTAD−1σ . (6)
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Let us apply CA on the upper bound. Consider the I × I triangular matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 · · · 0
1 1 · · · 0
· · · · · · · · · · · ·
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and similarly the J × J matrix M. The cumulative joint distribution is H = LPMT and
the cumulative marginals are R = Lr and C =Mc. The I × J matrix H+= (h+i j) with
entries

h+i j = min{R(i),C( j)}, i = 1, · · · , I, j = 1, · · · , J,

contains the cumulative upper bound for table N. The correspondence matrix for this
bound is

P+ = L−1H+(MT)−1.

For instance, if I = J = 2 and r =(s, 1− s)T, c =(t, 1−t)T, then R = (s, 1)T,C = (t, 1)T

and

H+ =
[

min{s, t} s
t 1

]
, P+ =

[
min{s, t} s −min{s, t}

t −min{s, t} 1 − s − t +min{s, t}
]
.

For a geometric study of Fréchet-Hoeffding bounds in I × J probabilistic matrices,
see Nguyen and Sampson (1985). For a probabilistic study with discrete marginals
(binomial, Poisson), see Nelsen (1987).

Table 1: Survey combining staff-groups with smoking categories (left) and upper bound
correspondence matrix (right).

Original table
Smoking category

Staff (0) (1) (2) (3)

SM 4 2 3 2
JM 4 3 7 4
SE 25 10 12 4
JE 18 24 33 13
SC 10 6 7 2

Upper bound
Smoking category

(0) (1) (2) (3)

0.057 0 0 0
0.093 0 0 0
0.166 0.098 0 0

0 0.135 0.321 0
0 0 0 0.129

Example 1 Table 1, left, (Greenacre, 1984) reports a cross-tabulation of staff-groups
(SM=Senior Managers, JM=Junior Managers, SE=Senior Employers, JE=Junior
Employers, SC=Secretaries) by smoking category (none(0). light(1), medium(2),
heavy(3)) for 193 members of a company. CA on Table 1, right, which contains the
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relative frequency upper bound, provides Figure 1. This table is quasi-diagonal. Note
the proximity of the rows to the columns, specially along the first dimension.
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Figure 1: Symmetric correspondence analysis representation of the upper bound in Table 1, right.

3 2 4

1

0.5

0

-0.5

-1

-1.5

-2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

1

Figure 2: Symmetric correspondence analysis representation of the upper bound in Table 2, right. Rows
and columns are represented on coincident points.

Example 2 CA is now performed on Table 2, left, an artificial 4× 4 table whit the same
marginals. Figure 2 exhibits the representation of the relative frequency upper bound.
Now this table is diagonal. Note that rows and columns are placed on coincident points.
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Table 2: Artificial contingency table with the same margin frequencies (left) and upper
bound correspondence matrix (right).

Original table
(1) (2) (3) (4)

(1) 8 6 2 8
(2) 6 0 4 10
(3) 6 4 0 4
(4) 4 10 8 20

Upper bound
(1) (2) (3) (4)

0.24 0 0
0 0.20 0
0 0 0.14
0 0 0 0.42

4 Orthogonal expansions

Here we work only with a r. v. X with range [a, b], continuous cdf F, and the above
symmetric kernel K(s, t) = min{F(s), F(t)} − F(s)F(t). This kernel is the covariance of
the stochastic process X = {Xt, t ∈ [a, b]}, where Xt is the indicator of [X > t]. If the
trace

tr(K) =
∫ b

a
F(t)(1 − F(t))dt

is finite, K can be expanded as

K(s, t) =
∑
k≥1

λkψk(s)ψk(t),

where ψk, λk, k ≥ 1, are the eigenfunctions and eigenvalues related to the integral
operator defined by K. Let us consider the integrals

fk(x) =
∫ x

a
ψk(t)dt.

Direct application of (3) shows that ( fk(X)) is a sequence of mutually uncorrelated
random variables:

Cov( fi(X), f j(X)) =

{
0 if i � j,
λi if i = j.

These variables are principal components of X and f1(X) characterizes the distribution
of X (Cuadras 2005b).

Examples of principal components fn(X) and the corresponding variances λn are:

1. (
√

2/(nπ))(1 − cos nπX), λn = 1/(nπ)2, if X is [0, 1] uniform.

2.
[
2J0(ξn exp(−X/2)) − 2J0(ξn)

]
/ξnJ0(ξn), λn = 4/ξ2

n, if X is exponential with
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unit mean, where ξn is the n−th positive root of J1 and J0, J1 are the Bessel
functions of the first order.

3. (n(n+ 1))−1/2[Ln(F(X))+ (−1)n+1
√

2n + 1], λn = 1/(n(n+ 1)), if X is standard
logistic, where (Ln) are the Legendre polynomials on [0, 1].

4. cn[X sin(ξn/X)− sin(ξn)], λn = 3/ξ2
n, if X is Pareto with F(x) = 1− x−3, x > 1,

where cn = 2ξ−1/2n (2ξn − sin(2ξn))−1/2 and ξn = tan(ξn).

Assuming a finite, we can expand X as Xt = ψ1(t) f1(X) + ψ2(t) f2(X) + . . . and from

Xt = X2
t , integrating Xt on [a, b] we have X = a+

∫ b

a
Xtdt = a+

∫ b

a
X2

t dt, and the variable
X can be expanded in two ways

X = a +
∑
k≥1

fk(b) fk(X) = a +
∑
k≥1

fk(X)2,

where the convergence is in the mean-square sense. See Cuadras and Fortiana (1995),
Cuadras et al. (2006) for other expansions, and Cuadras and Cuadras (2002) for
applications in goodness-of-fit assessment. These expansions depend on a countable
set of functions, again related to the upper bound.

5 Logit and probit analysis

The upper bound is implicit in some transformations. Suppose that F, the cdf of X, is
unknown, whereas Y follows the logistic distribution G(α + βy), where

G(y) = 1/(1 + exp(−y)), −∞ < y < +∞.

We may take G as a “model” for F in the sense that H, the cdf of (X,Y), attains the
upper bound H+(x, y) = min{F(x),G(α+βy)}. In other words, we assume the functional
relation F(X) = G(α + βY), with F unknown and G standard logistic (Figure 3). This
gives rise to the logistic transformation

ln

(
F(x)

1 − F(x)

)
= α + βy. (7)

If the plot of ln[F(x)/(1 − F(x))] against y is almost linear, then the data fit the upper
bound. The probit transformation arises similarly by considering the N(0, 1) distribution.

In logit and probit analysis applied in bioassay, the user observes the proportion
of [X > x] for x fixed, i.e., observes F(x) rather than X. Then (7) is used, where the
parameters α, β should be estimated. Thus the outcomes arise from the above random
process X = {Xt, t ∈ [a, b]}. It is also worth noting that F(X) is the first principal
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Figure 3: The logistic curve illustrates the support of the upper bound when a distribution function is
considered logistic as a model.

component of X only if X is logistic, see Cuadras and Lahlou (2000). Thus logit is
better than probit and both transformations can be viewed as a consequence of using the
upper bound.

6 Given the regression curve

When Y is increasing in X, an ideal and quite natural relation between X and Y is
F(X) = G(Y). Therefore, to predict Y given X when H is unknown, a reasonable way is
to use the Fréchet-Hoeffding upper bound. This gives rise to the regression curve

y = G−1 ◦ F(x).

Of course, H+ puts all mass concentrated on this curve.
Let us construct a cdf Hθ with this (or any in general) regression curve. If the ranges

of X,Y are the intervals [a, b], [c, d], and ϕ : [a, b]→ [c, d] is an increasing function, the
following family

Hθ(x, y) = θF(min{x, ϕ−1(y)}) + (1 − θ)F(x)Jθ(y), 0 ≤ θ < θ+, (8)

where θ+ is given below, is a bivariate cdf with marginals F,G, provided that

Jθ(y) = [G(y) − θF(ϕ−1(y))]/(1 − θ)
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is a cdf. The regression curve is linear in ϕ and Hθ(x, y) has a singular part with mass on
the curve y = ϕ(x). It can be proved that P[Y = ϕ(X)] = θ (see Cuadras, 1992, 1996).

With ϕ = G−1 ◦ F equation (8) reduces to

Hθ(x, y) = θF(min{x, F−1 ◦G(y)}) + (1 − θ)F(x)G(y), 0 ≤ θ ≤ 1. (9)

and the upper bound is attained at θ = 1.
Next, let us find the covariance and prove an inequality. Let ψ = ϕ−1, suppose that

ψ′ exists and X,Y have densities f , g (Lebesgue measure). Differentiation of Jθ(y) gives
g(y) − θ f (ψ(y))ψ′(y) > 0, hence θ is bounded by

θ+ = inf
y∈[c,d]

{ g(y)
f (ψ(y))ψ′(y)

},

where we write “ess inf” if necessary. From (3) we have

CovHθ
(X,Y) =

∫ b

a

∫ d

c
θ(F(min{x, ψ(y)}) − F(x)F(ψ(y))d(x)dϕ(y)

= θCov(X, ϕ(X)).
(10)

Thus the following inequality holds:

inf
y∈[c,d]

{ g(y)
f (ψ(y))ψ′(y)

}ρ(X, ϕ(X)) ≤ ρ+.

In particular, if ϕ(x) = x and f , g have the same support [a, b], we obtain

max[ inf
x∈[a,b]

{ f (x)
g(x)
}, inf

x∈[a,b]
{g(x)
f (x)
}] ≤ ρ+.

7 Parent distribution of a data set

Let χ = {x1, x2, . . . , xN} be a sample of X with unknown cdf F, and let FN be the
empirical cdf. We are interested in ascertaining the parent distribution of χ. This problem
has been widely studied assuming that F belongs to a finite family of cdf’s {F1, . . . , Fn}
(see Marshall et al., 2001).

The maximum Hoeffding correlation is a good similarity measure between two cdf’s.
Assuming the variables standardized, it can be computed by

ρ+(Fi, F j) =
∫ 1

0
F−1i (u)F−1j (u)du.
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Thus, a distance between Fi and F j, which lies between 0 and
√

2, is given by

di j =

√
2(1 − ρ+(Fi, F j)).

We can also compute the correlation and distance between data and any theoretical cdf.
Then the (n + 1) × (n + 1) matrix D = (di j) is a Euclidean distance matrix and we can
perform a metric scaling in order to represent the set {F1, . . . , Fn, FN} using the two first
principal axes (see Mardia et al., 1979). The graphic display may give an indication of
the underlying distribution of the sample.

There are other distances between distributions, e.g., the Kolmogorov distance

d(Fi, F j) = sup
−∞<x<∞

|Fi(x) − F j(x)|,

(Marshall et al., 2001) and the Wasserstein distance (del Barrio et al., 2000)

Wi j =

∫ 1

0
[F−1i (u) − F−1j (u)]2du,

which can be used for the same purpose. However d(Fi, F j) and Wi j may not give
Euclidean distance matrices and are not invariant under affine transformation of the
variables. On the other hand,Wi j is directly related to the maximum correlation (see
Cuadras and Cuadras, 2002).

Fortiana and Grané (2002, 2003) refined this approach. They used some statistics
based on this maximum correlation and obtained asymptotic and exact tests for testing
the exponentiality and the uniformity of a sample, which compare with other goodness-
of-fit statistics.

Example 3 Suppose that χ is the N = 50 sample of X = “sepal length” of Iris setosa,
the well-known data set used by R. A. Fisher to illustrate discriminant analysis (see
Mardia et al., 1979). Suppose the following statistical models:

{U(uniform), E(exponential),N(normal),G(gamma), LN(log-normal)}.

The matrix of maximum correlations is reported in Table 3. Figure 4 is the metric scaling
representation of probability models and data. The closest model is N, so we may decide
that this data is drawn from a normal distribution.

The uniform distribution U, the second closest distribution to the data, may be
another candidate. To decide between normal and uniform we may proceed as follows.

First, we assume normality and perform the integral transformation y = Φ(x) on the
standardized sample, where Φ is the N(0, 1) cdf, and correlate the transformed sample
χ∗, say, with the principal components ( fn(X)), see Section 4. Let rk =Cor(χ∗, fk(U))
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Table 3: Maximum Hoeffding correlations among several distributions and data. U
(uniform), E (exponential), N (normal), G (gamma), LN (log-normal).

U E N GA LN Data
U 1
E 0.8660 1
N 0.9772 0.9032 1
G 0.9472 0.9772 0.9730 1
LN 0.6877 0.8928 0.7628 0.8716 1

Data 0.9738 0.8925 0.9871 0.9660 0.7452 1

be the coefficient of correlation between χ∗, with empirical cdf F∗N , and fk(U), where
the correlation is taken with respect to the upper bound H+N(x, u) = min[F∗N(x), u]. The
theoretical correlations are:

ρk =

{
0 if k is odd,

4
√

6/(kπ2) if k is even.

GA

E

0.1 0.2 0.3

N

U

Data

0.20

0.15

0.10

0.05

LN

-0.05

-0.10

-0.15

-0.5 -0.4 -0.3 -0.2 -0.1

Figure 4: Metric scaling representation of a sample (Data) and the distributions uniform (U), exponential
(E), gamma (GA), normal (N) and log-normal (LN), using the maximum correlation between two
distributions (Cuadras and Fortiana, 1994).

It can be proved that ρ+(χ∗,U) =
∑

k≥1 ρkrk. Thus

ρ+(χ∗,U) = (4
√

6/π2)
∞∑

k=0

(r2k+1)/(2k + 1)2.
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This agreement coefficient ρ+(χ∗,U) between the transformed sample and the uniform
distribution has an expansion similar to the expansions of Cramér-von Mises and
Anderson-Darling statistics used in goodness-of-fit.

Second, we perform analogous computations for the original sample χ assuming that
it is drawn from an uniform distribution, the alternative model. This gives Table 4, where
ρ+(χ,U) = 0.9738, ρ+(χ∗,U) = 0.9915, ρ+(χ∗, f1(U)) = 0.9792, etc. These results give
support to the normality of the sample. See Cuadras and Fortiana (1994), Cuadras and
Lahlou (2000) and Cuadras and Cuadras (2002) for further aspects of this graphic test.

Table 4: Maximum correlations between normal and uniform and correlations among
principal directions and data.

Theoretical Normal Uniform
ρ+ 1 0.9915 0.9738
ρ1 0.9927 0.9792 0.9435
ρ2 0 0.0019 −0.0102
ρ3 0.1103 0.1713 0.2847
ρ4 0 −0.0277 −0.0324

8 Kendall’s tau and Spearman’s rho

Any proposal of coefficient of stochastic dependence between X and Y should evaluate
the difference between the joint cdf H and the independence FG. Thus

A(X,Y) = c
∫

R2
(H(x, y) − F(x)G(y))dμ,

where c is a normalizing constant and μ is a suitable measure. The maximum value for
A(X,Y), where H has margins F,G, is attained at the upper bound:

max A(X,Y) = c
∫

R2

(
H+(x, y) − F(x)G(y

)
)dμ.

However, as proposed by Hoeffding (1940), it is quite convenient to have a coefficient
“scale invariant”, that is, it should remain unchanged by monotonic transformations of X
and Y . The integral transformation u = F(x) and v = G(y) is a monotonic transformation
that provides the copula CH, i.e., a bivariate cdf with uniform marginals on I = [0, 1],
such that

H(x, y) = CH(F(x),G(y)).

This copula exists (Sklar’s theorem) and is unique if F,G are continuous. Thus we can
construct bivariate distributions H = C(F,G) with given univariate marginals F,G by
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using copulas C. (“Copula” as a function which links marginals was coined by Sklar
(1959). The same concept was called “uniform representation” by G. Kimeldorf and
A. Sampson in 1975, and “dependence function” by P. Deheuvels and J. Galambos in
1978).

Kendall’s τ and Spearman’s ρs are coefficients of dependence computed from the
copula CH by using dμ = dCH and dμ = dudv, respectively. They are defined by

τ = 4
∫

I2
(CH(u, v) − uv) dCH(u, v)

= 4
∫

I2
CH(u, v) dCH(u, v) − 1,

and

ρs = 12
∫

I2
(CH(u, v) − uv) dudv

= 12
∫

I2
CH(u, v)dudv − 3.

Then τ = ρs = 1 when H = H+, that is, when F(X) = G(Y) (a.s.).
Spearman’s ρs is Pearson’s correlation between F(X) and G(Y) and can be 0 even if

there is stochastic dependence. For example, ρs = 0 for the copula C = uv + θ(2u3 −
3u2 + u)(2v3 − 3v2 + v), |θ| ≤ 1. On the other hand, F(X) is the first principal dimension
for the logistic distribution (Section 4). Then we may extend ρs by obtaining Pearson’s
correlation Cor( f1(X), g1(Y)) between the principal dimensions f1(X) and g1(Y). This
may improve the measure of stochastic dependence between X and Y, with applications
to testing independence (Cuadras, 2002b, 2002c).

Table 5: Some parametric families, their properties and the upper bound.

Family Spearman Kendall Constant Archimedian Upper bound

FGM yes yes yes no no

Normal yes yes yes no yes

Plackett yes no yes no yes

Cuadras-Augé yes yes yes no yes

Regression (Fréchet) yes yes yes no yes

Clayton-Oakes yes yes yes yes yes
AMH yes yes yes yes no

Frank yes yes no yes yes

Raftery yes yes no no yes

Gumbel-Barnett no no no yes no

Gumbel-Hougaard no yes yes yes yes
Joe no no no yes yes
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9 Some bivariate families

In this section we present some parametric families of bivariate distributions, in terms of
F,G rather than copulas, as some aspects such as constant quantity and regression are not
well manifested with uniform marginals. To get the corresponding copula simply replace
F,G by u, v. For instance, for the FGM family the copula is Cα = uv[1+α(1−u)(1− v)].
References for these families can be found in Cuadras (1992, 1996, 2002, 2005), Druet-
Mari and Kotz (2001), Hutchinson and Lai (1991), Joe (1997), Kotz et al. (2000), Mardia
(1970) and Nelsen (1999). Table 5 summarizes some aspects, e.g., whether or not ρs and
τ can be given in closed form and the family contains the upper bound.

9.1 FGM

The Farlie-Gumbel-Morgenstern family provides a simple and widely used example of
distribution H with marginals F,G. This family does not reach H+ and can be seen as
the first term in the diagonal expansion (4).

1. Cdf : Hα = FG[1 + α(1 − F)(1 −G)], −1 ≤ α ≤ +1.
2. Constant quantity : α = (H − FG)/[FG(1 − F)(1 −G)].

3. Spearman: ρs = α/3.

4. Kendall: τ = 2α/9.

5. Maximal correlation : ρ1 = |α| /3.
6. Fréchet-Hoeffding bounds : H− < H−1 < H0 = FG < H+1 < H+.

9.2 Normal

Let Nρ and nρ be the cdf and pdf, respectively, of the standard bivariate normal with
correlation coefficient ρ. The distribution Hρ is obtained by the “translation method”, as
described by Mardia (1970).

1. Cdf : Hρ = Nρ(Φ−1F,Φ−1G), −1 ≤ ρ ≤ +1.
2. Constant quantity : ρ

1−ρ2 =
∂2 log nρ
∂x∂y

(normal marginals).

3. Spearman: ρs =
6
π
arcsin(ρ/2).

4. Kendall: τ = 2
π
arcsin(ρ).

5. Maximal correlation : ρ1 = ρ.

6. Fréchet-Hoeffding bounds : H−1 = H− < H0 = FG < H1 = H+.
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9.3 Plackett

The Plackett family arises in the problem of correlating two dichotomized variables
X,Y, when the ranges are divided into four regions and the correlation is computed as a
function of the association parameter ψ. Then H is defined such that

ψ =
H(1 − F −G + H)
(F − H)(G − H)

,

is constant. ψ ≥ 0 is the cross product ratio in 2 × 2 contingency tables.

1. Cdf: Hψ =

[
S −

{
S 2 − 4ψ(ψ − 1)FG

}1/2]
/ {2(ψ − 1)} , ψ ≥ 0,

where S = 1 + (F +G)(ψ − 1).

2. Constant quantity: ψ = H (1 − F −G + H) /[(F − H)(G − H)].

3. Spearman: ρs =
ψ + 1
ψ − 1

− 2ψ
(ψ − 1)2

lnψ.

4. Kendall: τ not in closed form.

5. Fréchet-Hoeffding bounds: H0 = H− < H1 = FG < H∞ = H+.

9.4 Cuadras-Augé

The Cuadras-Augé family is obtained by considering a weighted geometric mean of the
independence distribution and the upper Fréchet-Hoeffding bound. The corresponding
copula is Cθ = (min{u, v}) θ (uv)1−θ . Although obtained independently by Cuadras and
Augé (1981), Cθ is the survival copula of the Marshall and Olkin (1967) bivariate
distribution when the variables are exchangeable. (The survival copula for H is CH such
that H = CH(F,G), where F = 1 − F, G = 1 −G, H = 1 − F −G + H). The canonical
correlations for this family constitutes a continuous set. Kimeldorf and Sampson (1975)
proposed a copula Cλ also related to Marshall-Olkin. Cλ is given in Block and Sampson
(1988) in the form Cλ = u+ v−1+ (1−u)λ(1− v)λ min{(1−u)λ, (1− v)λ}, 0 ≤ λ ≤ 1. See
Muliere and Scarsini (1987) for an unified treatment of Cθ,Cλ and other related copulas.
A generalization of Cθ, proposed by Nelsen (1991), is Cα,β = min{uα, vβ}u1−αv1−β for
α, β ∈ [0, 1].

1. Cdf : H θ = (min {F,G}) θ (FG)1−θ , 0 ≤ θ ≤ 1.

2. Constant quantity: θ = ln(H/FG)/ ln(H+/FG).

3. Spearman: ρs = 3θ/(4 − θ).
4. Kendall: τ = θ/(2 − θ).



C. M. Cuadras 71

5. Maximal correlation: ρ1 = θ.

6. Fréchet-Hoeffding bounds: H0 = FG < H1 = H+.

9.5 Regression (Fréchet)

A family with a given correlation coefficient 0 ≤ r ≤ 1 can be constructed taking (X, X)
with probability r and (X,Y), where X,Y are independents, with probability (1− r). The
cdf is then

H∗(x, y) = rF(min{x, y}) + (1 − r)F(x)G(y).

A generalization is the regression family Hr defined below (Cuadras, 1992). Family
(9) is a particular case. This family extends the weighted mean of the upper bound and
independence, Hθ = θH++(1−θ)FG, proposed by Fréchet (1951) and studied by Nelsen
(1987) and Tiit (1986). Note that Hθ � Hr have the same copula. See also Section 6.

1. Cdf : Hr(x, y) = rF (min {x, y}) + (1 − r) F(x)J(y), 0 ≤ r < 1,
where J(y) =

[
G(y) − rF(y)

]
/ (1 − r) is a univariate cdf.

2. Spearman: ρs = r.

3. Kendall: τ = r(r + 2)/3.

4. Constant quantity : r = [H(x, y) − F(x)G(y)]/[F (min {x, y}) − F(x)F(y)].

5. Fréchet-Hoeffding bounds : H0 = FG < H1 ≤ H+, with H1 = H+ if F = G.

9.6 Clayton-Oakes

The Clayton-Oakes distribution is a bivariate model in survival analysis, which satisfies
for all failure times s and t, the equation

h(s, t)H̄(s, t) =
1
c

∫ ∞

s
h(u, v)du

∫ ∞

t
h(u, v)dv

where H̄ = 1 − F −G + H and h is the density.

1. Cdf: Hc = max{(F−c +G−c − 1)−1/c, 0}, −1 ≤ c < ∞.
2. Spearman: ρs = 12

∫ 1

0

∫ 1

0
(u−c + v−c)−1/cdudv −3 (see Hutchinson and Lai,

1991, p. 240).
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3. Kendall: τ = c/(c + 2).

4. Constant quantity : c−1 = hH̄/( ∂
∂x H̄

∂
∂y H̄).

5. Fréchet-Hoeffding bounds : H−1 = H− < H 0 = FG < H∞ = H+.

This family is also known as: 1) Kimeldorf and Sampson, 2) Cook and Johnson, 3)
Pareto.

9.7 Frank

Frank’s copula C = −θ−1 ln(1 + (e−θu−1)(e−θv−1)
e−θ−1 ) arises in the context of associative

functions. It is characterized by the property that C(u, v) and Cˆ(u, v) = u+v−C(u, v) are
associative, that is, C(C(u, v),w) = C(u,C(v,w)) and similarly for Cˆ. Statistical aspects
of Frank’s family were given by Nelsen (1986) and Genest (1987).

1. Cdf: Hθ = −θ−1 ln(1 +
(e−θF − 1)(e−θG − 1)

e−θ − 1
), −∞ ≤ θ ≤ ∞.

2. Spearman: ρs = 1 − (12/θ)[D1(θ) − D2(θ)].

3. Kendall: τ = 1 − (4/θ)[1 − D1(θ)], where Dk(x) = k
xk

∫ x

0
tk

et−1dt.

4. Fréchet-Hoeffding bounds: H−∞ = H− < H 0 = FG < H∞ = H+.

9.8 AMH

The Ali-Mikhail-Haq distribution is obtained by considering the odds in favour of failure
against survival. Thus (1 − F)/F = K must be non-increasing and F = 1/(1 + K).
The bivariate extension is H = 1/(1 + L), where L is the corresponding bivariate odds
function. Some conditions to H gives the model below.

1. Cdf: Hα = FG/[1 − α(1 − F)(1 −G)], −1 ≤ α ≤ +1.
2. Constant quantity: α = (H − FG)/[H(1 − F)(1 −G)].

3. Spearman: ρs = − 12(1+α)
α2 diln(1 − α) − 24(1−α)

α2 ln(1 − α) − 3(α+12)
α

, where
diln(1 − α) =

∫ α

0
x−1 ln(1 − x)dx is the dilogarithmic function.

4. Kendall: τ = 3α−2
3α − 2(1−α)2

3α2 ln(1 − α).

5. Fréchet-Hoeffding bounds: H− < H−1 < H0 = FG < H1 < H+.
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9.9 Raftery

The Raftery distribution is generated by considering

X = (1 − θ)Z1 + JZ3, Y = (1 − θ)Z2 + JZ3,

where Z1,Z2 and Z3 are independent and identically distributed exponential with λ > 0,
and J is Bernoulli of parameter θ, independent of Z’s. This distribution, via Sklar’s
theorem, generates a family.

1. Cdf: Hθ = H+ +
1 − θ
1 + θ

(FG)1/(1−θ){1 − [max{F,G}]−(1+θ)/(1−θ)}, 0 ≤ θ ≤ 1.

2. Spearman: ρs =
θ(4 − 3θ)
(2 − θ)2 .

3. Kendall: τ =
2θ

3 − θ .

4. Fréchet-Hoeffding bounds: H0 = FG < H1 = H+.

9.10 Archimedian copulas

For the independence copula C = uv we have − lnC = − ln u − ln v. A fruitful generali-
zation of this additivity, related to ϕ(t) = − ln t, is the key idea for defining the so-called
Archimedian copulas (Genest and MacKay, 1987). The cdf is described by a function
ϕ : I→ [0,∞) such that

ϕ(1) = 0, ϕ′(t) < 0, ϕ′′(t) > 0,

for all 0 < t < 1, conditions which guarantee that ϕ has inverse. These copulas are
defined as

C(u, v) = ϕ−1[ϕ(u) + ϕ(v)] if ϕ(u) + ϕ(v) ≤ ϕ(0),
= 0 otherwise.

For example, the AMH copula C = uv/[1 − α(1 − u)(1 − v)] satisfies

1 + (1 − α)
1 −C

C
=

[
1 + (1 − α)

1 − u
u

] [
1 + (1 − α)

1 − v)
v

]

i.e., the above relation for ϕ(t) = ln[1 + (1 − α)(1 − t)/t] = ln[{1 − α(1 − t)}/t].
Archimedian copulas play an important role because they have interesting properties.

For instance:
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1. Probability density: c(u, v) = −ϕ′′ (C(u, v))ϕ′(u)ϕ′(v)/
[
ϕ′ (C(u, v))

]3 .
2. Kendall’s tau: τ = 4

∫ 1

0
[ϕ(t)/ϕ′(t)]dt + 1.

3. C has a singular component if and only if ϕ(0)/ϕ′(0) � 0. In this case

P[ϕ(U) + ϕ(V) = ϕ(0)] = − ϕ(0)
ϕ′(0)

.

Table 6: Basic copulas and some Archimedian families. Kendall’s tau can not be given
in closed form for Gumbel-Barnett and Joe.

Copula cdf ϕ(t)

Lower bound C− = max{u + v − 1, 0} (1 − t)

Independence C0 = uv − ln t

Upper bound C+ = min{u, v} Not archimedian

Family cdf ϕ(t) Bounds

Gumbel- FG exp(−θ ln F lnG) ln(1 − θ ln t) C0 = C0

Barnett 0 < θ ≤ 1 C1 < C+

Gumbel- exp(−[(− ln F)θ + (− lnG)θ]1/θ) (− ln t)θ C1 = C0

Hougaard 1 ≤ θ < ∞, τ = 1 − 1/θ C∞ = C+

Joe 1 − [F
θ
+G

θ − F
θ
G
θ
]1/θ − ln[1 − (1 − t)θ] C1 = C0

1 ≤ θ < ∞, F = 1 − F C∞ = C+

Table 6 summarizes the Archimedian property for the three basic copulas and three
Archimedian families. The Gumbel-Hougaard family can be obtained by compounding.
The copula CH is the only extreme-value distribution (i.e., Cn

H is also a cdf) which is
Archimedian. The constant quantity is ln H(x, x)/ ln F(x) if F = G.

9.11 Shuffles of Min

Can complete dependence be very close to independence? Apparently not, as the
opposite of stochastic independence between X and Y is the relation Y = ϕ(X) (a.s.),
where ϕ is a one-to-one function. When ϕ is monotonic non-decreasing, the distribution
of (X,Y) is the upper bound H+ = min{F,G}, so ρs = τ = 1.

Let us consider the related copula C+ = min{u, v}. A family of copulas, called
shuffles of Min, has interesting properties and can be constructed from C+. The support
of this copula can be described informally by placing the mass of C+ on I2, which is cut
vertically into a finite number of strips. The strips are then shuffled with some of them
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flipped around the vertical axes of symmetry and then reassembled to form the square
again. A formal definition is given in Mikusinski et al. (1992).

If the copula of (X,Y) is a shuffle of Min, then it can be arbitrarily close to the
independence copula C0 = uv. It can be proved that, for any ε > 0, there exists a
shuffle of Min Cε such that supu,v∈I |Cε(u, v) − uv| < ε. Statistically speaking, we may
have a bivariate sample, where (x, y) are completely dependent, but being impossible to
distinguish from independence. This family is even dense, that is, we may approximate
any copula by a shuffle of Min.

10 Additional aspects

Here we consider more statistical and probabilistic concepts where the bivariate upper
bound is also present.

10.1 Multivariate generation

Any bivariate cdf H can be generated by a copula C, i.e., H = C(F,G), where F,G are
univariate cdf’s.

One is tempted to use multivariate marginals F,G of dimensions p and q and a
bivariate copula C to construct H = C(F,G). But, is H a cdf? As proved by Genest et
al. (1995), the answer is no, except for the independence copula C0 = uv. In particular,
the upper bound is not useful for this purpose. For instance, if F1, F2,G are univariate
cdf’s for (X1, X2,Y) with F = F1F2, and we consider H = min{F,G}, then min{Fi,G} is
the distribution of (Xi,Y), i = 1, 2. Therefore, F1(X1) = G(Y) and F2(X2) = G(Y), which
contradicts the independence of X1 and X2.

10.2 Distances between distributions

If X and Y have univariate cdf’s F and G and joint cdf H, we can define a distance
between X and Y (and between F and G) by using

dα(X,Y) = EH |X − Y |α,

assuming that E(Xα) and E(Yα) exist. For α > 1 it can be proved (see Dall’Aglio,
1972) that the minimum of dα(X,Y) when H has marginals F,G is obtained when
H+ = min{F,G}. The case α = 2 corresponds to the maximum correlation ρ+ and was
proved by Hoeffding (1940).

Several authors (J. Bass, S. Cambanis, R. L. Dobrushin, G. H. Hardy, C. L. Mallows,
A. H. Tchen, S. S. Vallender, W. Whitt and others) have considered the extreme bounds
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1

0 1

Figure 5: A simple example of the support of a Shuffle of Min.

for EHXY, EH |X − Y |α, EH f (|X − Y |) with f ′′ > 0,
∫
ϕ(x, y)dH(x, y) where ϕ is

superadditive (i.e., ϕ(x, y) + ϕ(x′, y′) > ϕ(x′, y) + ϕ(x, y′) for all x′ > x and y′ > y)
and EHk(X,Y) when k(x, y) is a quasi-monotone function (property quite similar to
superadditivity). Thus, the supremum of EHXY,

∫
ϕdH and EHk(X,Y) are achieved by

the upper bound H+. For instance, the supremum of EHk(X,Y) is

EH+k(X,Y) =
∫ 1

0
k(F−1(u),G−1(u))du.

See Tchen (1980).

10.3 Convergence in probability

The upper bound can also be applied to study the convergence in distribution and
probability. Suppose that (Xn) is a sequence of r.v.’s with cdf’s (Fn), which converges in
probability to X with cdf F. Then it can be proved that this occurs if and only if

Hn(x, y)→ min{F(x), F(y)},

where Hn is the joint cdf of (Xn, X). See Dall’Aglio (1972).

10.4 Lorenz curve and Gini coefficient

The Lorenz curve is a graphical representation of the distribution of a positive r. v. X. It
is used to study the distribution of income. If X with cdf F ranges in (a, b), this curve is
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defined by

L(y) =

∫ y

a
xdF(x)∫ b

a
xdF(x)

,

and can be given in terms of F

L(F) =

∫ u

0
F−1(v)dv∫ 1

0
F−1(v)dv

.

The Lorenz curve is a convex curve in I2 under the diagonal from (0, 0) to (1, 1).
Deviation from this diagonal indicates social inequality, see Figure 6. A global measure
of inequality is the Gini coefficient G, defined as twice the area between the curve and
the diagonal:

G = 1 − 2
∫ 1

0
L(F)dF.

For example, if X is Pareto with cdf F(x) = 1 − (x/a)c if x > a then

L(F) = 1 − (1 − F)1−1/c and G =1/(2c − 1).

The optimum social equality corresponds to c = ∞ and the maximum inequality to
c = 1. However, for c = 1 the mean does not exist.

Assuming that X has finite variance σ2(X), Gini’s coefficient can also be expressed
as

G =

∫ b

a

∫ b

a
|x − y|dF(x)dF(y)

= 2
∫ b

a
F(t)(1 − F(t))dt

= 4Cov(X, F(X)

=
2√
3
σ(X)Cor(X, F(X)).

But Cor(X, F(X)) is the maximum Hoeffding correlation between X and U, where U is
uniformly distributed. Thus, if σ2(X) exists, the maximum social inequality is G =1/3
and is attained when X is uniform, that is, when poor, middle and rich classes have the
same proportions. Note that Pareto with c = 2 also gives G =1/3, but in this case σ2(X)
does not exist.
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Figure 6: Lorenz curve. Diagonal (solid line), Pareto with c = 3 (dash line) and uniform (dots line). The
dots curve indicates maximum inequality (assuming finite variance) and this curve is related to the upper
bound.

10.5 Triangular norms and quasi-copulas

The theory of triangular norms (T-norms) is used in the study of associative functions,
probabilistic metric spaces and fuzzy sets. See Schweizer and Sklar (1983), Alsina et al.
(2006).

A T-norm T is a mapping from I2 into I such that T (u, 1) = u, T (u, v) = T (v, u),
T (u1,v1) ≤ T (u2,v2) whenever u1 ≤ u2, v1 ≤ v2, and T (T (u, v),w) = T (u,T (v,w)).

Examples of T-norms are C− = max{u + v − 1, 0}, C+ = min{u, v}, C0 = uv and Z
defined by Z(a, 1) = Z(1, a) = a and Z(a, b) = 0 otherwise. Note that Z is not a copula.
It is readily proved that

Z < C− < C0 < C+.

Thus the bivariate upper bound is the supremum of the partial ordered set of the T-norms.
A quasi-copula Q(u, v) is a function Q : I2 → I satisfying Q(0, v) = Q(u, 0) = 0,

Q(u, 1) = Q(1, u) = u, Q is non-decreasing in each of its arguments, and Q satisfies the
Lipschiptz’s condition

|Q(u′, v′) − Q(u, v)| ≤ |u′ − v′| + |u − v|.
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The quasi-copulas were introduced by Alsina et al. (1993) to study operations
on univariate distributions not derivable from corresponding operations on random
variables on the same probability space. For example, if X and Y are independent with
cdf’s F and G, the convolution F ∗ G(x) =

∫
F(x − y)dG(y) provides the cdf of X + Y.

However, the geometric mean
√

FG can not be the cdf of the random variable K(X,Y),
for a Borel-measurable function K (see Nelsen, 1999). Any copula is a quasi-copula
and again the bivariate upper bound is the supremum of the partial ordered set of the
quasi-copulas.

11 Bayes tests in contingency tables

We show here that the upper bound is also related to the test of comparing two
proportions from a Bayesian perspective.

The problem of choosing intrinsic priors to perform an objective analysis is discussed
in Casella and Moreno (2004). We choose a prior distribution which puts positive mass
on the null hypothesis. This distribution depends on a positive parameter measuring
dependence, which can be estimated via Pearson’s contingency coefficient. Thus this
test can be approached by the chi-square test and improved by obtaining the Bayes
factor. Once again, the upper bound appears in this context.

Suppose that k1, k2 are binomial independent B(n1, p1), B(n2, p2), respectively. We
consider the test of hypothesis

H0 : p1 = p2 vs. H1 : p1 � p2. (11)

Writing k′i = ni − ki, i = 1, 2, the classic (asymptotic) approach is based on the
chi-square statistic

χ2
1 = nφ2, (12)

where n = n1 + n2 and

φ2 = (k1k
′
2 − k′1k2)

2/[(k1 + k2)(k
′
1 + k′2)(k1 + k′1)(k2 + k′2)]

is the squared phi-coefficient.
Let us suppose that (p1, p2) is an observation of a random vector (P1, P2), with

support I2, following one of the following copulas:

C1(p1, p2) = θ1 min{p1, p2} + (1 − θ1)(p1p2), 0 ≤ θ1 ≤ 1,

C2(p1, p2) = min{p1, p2}θ2 (p1p2)1−θ2 , 0 ≤ θ2 ≤ 1, (p1, p2) ∈ I2.

C1 is the copula related to the regression family, see (8), and was implicit in Fréchet
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(1951). Copula C2, proposed by Cuadras and Augé (1981), is the survival copula of the
Marshall-Olkin distribution. These copulas satisfy (see also Sections 9.4 and 9.5):

1. There is independence for θi = 0 and functional dependence for θi = 1, that is,

P1 = P2 (a.s.) if θi = 1.

2. The pdf’s with respect to the measure ν = μ2 + μ1 are

c1(p1, p2) = (1 − θ1) + θ1I{p1=p2},

c2(p1, p2) = (1 − θ2) max{p1, p2}−θ2 + θ2p(1−θ2)
1 I{p1=p2},

where I{p1=p2} is the indicator function, μ2 and μ1 are the Lebesgue measures
on I2 and the line p1 = p2, respectively. Thus:∫ p1

0

∫ p2

0
ci(u1, u2)dν = Ci(p1, p2), i = 1, 2.

3. These distributions have a singular part:

PC1 [P1 = P2] = θ1, PC2 [P1 = P2] =
θ2

2 − θ2 .

4. The parameter θ measures stochastic dependence. Actually θ is the correlation
coefficient for C1 (see (10) for ϕ(x) = x) and the maximum correlation for C2

(Cuadras, 2002a):

θ1 = CorC1
(P1, P2), θ2 = max

ψ1,ψ2

CorC2 (ψ1(P1), ψ2(P2)).

With these prior distributions (11) can be expressed as

H0 : θ = 1 vs. H1 : 0 ≤ θ < 1, (13)

where θ is either θ1 or θ2. Note that to accept H0 is equivalent to say that the copula
reaches the upper Fréchet-Hoeffding bound.

As it has been presented in Section 9, there are other parametric copulas reaching the
upper bound min{p1, p2}, i.e., the hypothesis H0. However in most of these copulas the
probability of having p1 = p2 is zero and the estimation of the dependence parameter is
not available from the contingency table.

Inference on the parameter θ2 is discussed in Ruiz-Rivas and Cuadras (1988)
and Ocaña and Ruiz-Rivas (1990). However, if only the sufficient statistic (k1, k2) is
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available, in view of the above property, we may take the sample correlation between
indicators of the events in a 2 × 2 contingency table. The square of this correlation is
just the squared phi-coefficient φ2. Accordingly, we may estimate θ by φ and the classic
approach for testing (13) is again by means of (12).

Testing (11) or (13) may be improved using the Bayesian perspective. The likelihood
function is

L(k1, k2; p1, p2) = pk1
1 (1 − p1)

k′1 pk2
2 (1 − p2)

k′2 .

Under H0 : p1 = p2 = p this function reduces to

L(k1, k2; p1, p2) = pk1+k2(1 − p)k
′
1+k

′
2 .

The Bayes factor in testing (11), expressed as (p1, p2) ∈ ω vs. (p1, p2) ∈ Ω−ω, where θ
is interpreted as another unknown parameter, is

Bi =

∫
ω

L(k1, k2; p1, p2)dCi(p1, p2)∫
Ω−ω L(k1, k2; p1, p2)dCi(p1, p2)

, i = 1, 2.

Thus we obtain for copulas C1 and C2

B1 =

∫ 1

0
pk1+k2 (1 − p)k

′
1+k

′
2dp∫ 1

0

∫ 1

0
(1 − θ1)pk1

1 (1 − p1)k
′
1 pk2

2 (1 − p2)k
′
2dp1dp2dθ1

,

B2 =

∫ 1

0
pk1+k2 (1 − p)k

′
1+k

′
2dp∫ 1

0

∫ 1

0

∫ 1

0
(1 − θ2)pk1

1 (1 − p1)k
′
1 pk2

2 (1 − p2)k
′
2 max{p1, p2}−θ2dp1dp2dθ2

.

High and low values of B1 and B2 give evidence for H0 and H1, respectively.
Finally, we can approach the more general hypothesis

H0 : p2 = φ(p1) vs. H1 : p2 � φ(p1),

where φ is a monotonic function, by using the family (8) as prior distribution, which
also puts positive mass to the null hypothesis.

Example 4 Table 7 is a 2 × 2 contingency table summarizing the results of comparing
surgery with radiation therapy in treating cancer, and was used by Casella and Moreno
(2004). For this table we obtain

θ̂ = 0.1208, χ2
1 = 0.599, B1 = 5.982, B2 = 5.754.
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The Bayes factors B1, B2, as well as χ2
1, give support to the null hypothesis (the

proportions are equal).

Table 7: Contingency table combining treatment and cancer.

Cancer Cancer not

controlled controlled

Surgery 21 2 23

Radiation therapy 15 3 18

36 5 41
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Cuadras, C. M. and Augé, J. (1981). A continuous general multivariate distribution and its properties.
Communications in Statistics-Theory and Methods, A10, 339-353.

Cuadras, C. M. and Cuadras, D. (2002). Orthogonal expansions and distinction between logistic and
normal. In Goodness-of-fit Tests and Model Validity, (Eds. C. Huber-Carol, N. Balakrishnan, M.
S. Nikulin and M. Mesbah), pp. 327-339, Birkhaüser, Boston.
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