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ABSTRACT 
 

In this work we introduce the Proper Orthogonal Decomposition (POD) 

approach to the valuation of contingent claims for one–dimensional price models. 

First, we present the POD in the context of an abstract Hilbert space and we give 

an application for the numerical pricing of Double Barrier Options.   In a finite 

dimension setting, we show the model reduction method for Finite Difference 

schemes of implicit type. In particular, we construct the reduced version of the 

Crank–Nicolson scheme and some numerical examples are given. 
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1 Introduction

The aim of this paper is to introduce the Proper Orthogonal Decomposition (POD)
for model reduction in the framework of Partial Differential Equations arising
in Option Pricing Models. The Proper Orthogonal Decomposition is a powerful
and elegant method for deriving low order models of dynamical systems. The
POD provides a basis for the modal decomposition of an ensamble of functions,
composed of theoretical, experimental o computer data. Its properties suggest
that it is the preferred basis to use in various applications.

It was successfully used in different fields including signal analysis and pattern
recognition (see for example [5]), fluid dynamics (see [3] and [8]) and more recently
in control theory (see [2]). The process is also known as Principal Component
Analysis (PCA) (see [5] ) or the Karhunen–Loève expansion the latter name comes
from two individual papers by Karhunen [6] and Loève [7].

The most striking feature of the POD is its optimality. It provides the most
efficient way of capturing the dominant components of an infinite–dimensional
process with only a finite number of ”modes” and often there are surprinsigly few.
The main idea is to find a set of ordered orthonormal basis vector in a subspace
associated to a set of data. This set of data can be composed of theoretical,
experimental, or computed data. The optimal ordering of the basis is such that
the first basis element best represents the data in the input collection, the second
basis element is the next best, and so forth. For the purposes of model reduction,
one type of input collection is a set of time snapshots, where each snapshot contains
spatial data obtained from a numerical simulation at a fixed time. These snapshots
are chosen so that the basis reflects the system dynamics.

In the present work we examine the feasibility and efficiency of the POD
method for pricing numerically an European type derivative. To this end we
introduce the reduced finite difference scheme of implicit type.

The paper is organized as follows. In Section 2 we introduce the POD in the
context of a general Hilbert space and we give an example of application to the
valuation of Double Barrier Options by using a set of data composed by data of
theoretical type. In Section 3, by using the POD in the context of a finite Hilbert
space, we introduce the reduced finite difference scheme of implicit type. We
applied it by using the reduced version of the Crank–Nicolson scheme to study,
at the numerical level, the valuation of the European Put in the Black–Scholes
model. Finally, in 4 we give some concluding remarks.
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2 Model Reduction with Proper Orthogonal

Decomposition

The tools of POD and Galerkin method provides a systematic way for producing
reduced–order models from data. In this section, we give an overview of these
methods, first we introduce the proper orthogonal decomposition in the context of
an abstract Hilbert space. The abstract setting is used due to the fact that, in this
paper we will consider different inner products, and keeping the exposition general
allows one to see precisely where the dependence on the inner products lies. Next,
we introduce the POD in the context of pricing Double Barrier Options

2.1 The Proper Orthogonal Decomposition

Let H be a real Hilbert space with inner product (·, ·)H and norm || · ||H. For

y1,y2, . . . ,yn ∈ H

we set
Vsnap = span{y1,y2, . . . ,yn}

and we refer to Vsnap as ensamble consisting of the snapshots, at least one of which
is assumed to be non–zero. Assume that dimVsnap = p and let {Ψ1,Ψ2, . . . ,Ψp}
denote an orthonormal basis of Vsnap. Then each member of the ensamble can be
expressed as

yj =

p
∑

k=1

(yj ,Ψk)HΨk (1)

for j = 1, 2, . . . , n. The proper orthogonal decomposition consists in choosing the
orthonormal basis such that for every l ∈ {1, 2, . . . , p} the mean square error
between the elements of Vsnap and the corresponding l–th partial sum of (1) is
minimized on averaged, that is,

min{Ψ1,Ψ2,...,Ψl}
1
n

∑n
j=1

∣

∣

∣

∣

∣

∣
yj −

∑l
k=1(yj ,Ψk)HΨk

∣

∣

∣

∣

∣

∣

H
subject to (Ψi,Ψj)H = δi,j

for 1 ≤ i ≤ l, 1 ≤ j ≤ i.

(2)

A solution {Ψ1,Ψ2, . . . ,Ψl} to (2) is called a POD basis of rank l. The solution
of (2) is characterized by the first order necessary conditions of optimality, which
can be written as an eigenvalue problem. To see this let us define the bounded
linear operator Ln : R

n −→ H by

Ln

(

[u1 u2 · · · un]T
)

=

n
∑

i=1

uiyi.
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Then the adjoint L∗
n : H −→ R

n is given by

L∗
n(v) = [(v,y1)H · · · (v,yn)H]T .

Let us next define Rn = LnL
∗
n and Kn = L∗

nLn, given by

Rn(v) =

n
∑

i=1

(v,yi)Hyi

and
(Kn)i,j = (yj ,yi)H,

respectively. It is now easy to show that the solution to (2) is characterized by the
following first order necessary condition of optimality

RnΨ = λΨ,

where Rn is a linear self–adjoint compact operator. Therefore, by the Hilbert–
Schmidt theory, there exists a complete orthonormal basis {Ψi}∞i=1 so that

RnΨi = λiΨi,

and λ1 ≥ λ2 ≥ · · · and λi = 0 for i > k. Moreover, we have the following error
formula

n
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

yj −
p

∑

i=1

(yj ,Ψi)HΨi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

=
k

∑

i=p+1

λi.

In practical applications the POD basis of rank l may be computed as follows:

Step 1 Solve the eigenvalue problem

Knw = λw

where (Kn)i,j = (yj ,yi)X and the nonnegative eigenvalues satisfy λ1 ≥ λ2 ≥
· · · ≥ λk > 0.

Step 2 Find

Ψi =
1√
λi

n
∑

j=1

wj
i yj

where wj
i denotes the j–th component of the eigenfunction wi, for i =

1, 2, . . . , k.
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The optimality properties of POD state among all linear combinations the one
which correspond to POD is the best in the sense that it will capture the most
information possible in the average sense. Since the eigenvalues can be used to
find how close the low–dimensional subspace approximant is to the date set, one
can seek the number of modes l such that such that the fraction

l
∑

i=1

λi/

n
∑

i=1

λi

is close to one and yet l << n. The l–dimensional reduced basis subspace is defined
as

VPOD = span{Ψ1,Ψ2, . . . ,Ψl}.

2.2 A case study: the Double Barrier Option

Now we would to use the POD method to valuate an European style derivative.
Assume that the payoff of this derivative at expiration time T, is given by a function
f of a single state variable X, which follows a scalar diffusion process under the
risk neutral measure:

dXt = b(Xt)dt+ a(Xt)dWt, X0 = x. (3)

Suppose that the derivative contract has a double barrier provision given by 0 <
L < U <∞, such that if at any time between the contract inception and expiration
time either the lower barrier L or the upper one U is reached, the contract is
canceled. It is well–known that the value u of the derivative security, solves the
Partial Differential Equation (PDE):

−ut(x, t) + A(u(t, x)) = 0, (4)

where A is the negative of the infinitesimal generator of X given by

A(φ(x)) = −1

2
a2(x)φxx(x) − b(x)φx(x) + r(x)φ(x).

and with boundary conditions u(x, T ) = f(x) and u(L, t) = u(U, t) = 0. Our main
goal is to construct an approximation û(x, t) of the true solution u(x, t), by using
the Proper Orthogonal Decomposition.

Consider the speed density of the diffusion process X given by

M(x) =
2

a2(x)S(x)
(5)
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where

S(x) = exp

(

−
∫ x

·

2b(y)

a2(y)

)

, (6)

is the scale density of X. Let H = L2([L,U ],M) be the Hilbert space of square
integrable functions on (L,U) with the speed density M and endowed with the
inner product

(g(x), h(x))H =

∫ U

L
g(x)h(x)M(x)dx, (7)

(see Proposition 1 in [4]).
Let u(x, t) be a flow defined on [L,U ]× [0, T ]. For now, imagine a time average

over an ensamble with members {u(k)(x)} = {u(x, tk)}, obtained from successive
measurements during a single run for

0 = t1 < t2 < · · · < tn = T,

a grid in the trading interval [0, T ], represents the ”snapshots” or a sampled data
representation of the flow. Assume that we obtain as snapshots the following finite
sequence of functions

u(x, tk) = u(k)(x) =
k

∑

j=1

cje
−µj (T−tj)φj(x) (8)

for k = 1, 2, . . . , n, where {φj(x)}∞j=1 is a complete orthonormal basis of L2([L,U ],M),
of eigenvectors with associated eigenvalues 0 < µ1 < µ2 < · · · < µj < · · · obtained
as solution of the regular Sturm–Liouville boundary value problem

A(φ(x)) = µφ(x), φ(U) = φ(L) = 0, (9)

and
cj = (f(x), φj(x))H

for j = 1, 2, . . . , n. Then, it follows that

Kn = L
Kn
LT

Kn

where

L
Kn

=











c1e
−µ1(T−t1) 0 0 . . . 0

c1e
−µ1(T−t2) c2e

−µ2(T−t2) 0 . . . 0
...

...
...

. . .
...

c1e
−µ1(T−tn) c2e

−µ2(T−tn) c3e
−µ3(T−tn) · · · cne

−µn(T−tn)











.
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We denote by
wi = [w1

i , w
2
i , . . . , w

n
i ]T

the i–th eigenvector of Kn with associate eigenvalue equal to λi for i = 1, 2, . . . , l
and where l is choosed by means the condition

l
∑

i=1

λi/
n

∑

i=1

λi > 0.99.

Recall that
A(φi(x)) = µiφi(x)

for i = 1, 2, . . . . Thus the modal basis is given by

ψi(x) =
1√
µi

n
∑

j=1

wj
iu

(j)(x)(x),

for i = 1, 2, . . . , l.
The approximate solution û of (4) can be expanded in terms of these POD

basis functions as

û(x, t) =

l
∑

i=1

ai(t)ψi(x) (10)

and forms the Galerkin expansion. We derive the reduced order model by em-
ploying the Galerkin weighted residual discretization of the model (4). The model
residual can be expressed as

R(û(x, t)) = −ût(x, t) + A(û(x, t))

Applying the Galerkin projection which enforces the residual to be orthogonal to
each basis functions

(R(û(x, t)), ψi(x))H = 0 (11)

for i = 1, 2, . . . , l leads to the reduced order model of l ordinary differential equa-
tions for the amplitude coefficients

dai(t)

dt
=

l
∑

j=1

aj(t) (A(ψj(x)), ψi(x))H (12)

for i = 1, 2, . . . , l. Recall that (ψi(x), ψj(x))H = δi,j . Then it is easy to see that

(A(ψi(x)), ψj(x))H =
wT

i√
µi
Z

wj√
µj
,
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where Z is an n× n matrix satisfying that

Zi,j = (u(i)(x),A(u(j)(x)))H.

Then it follows that
Z = L√

µ
LT

√
µ
.

where

L√
µ

=











c1
√
µ1e

−µ1(T−t1) 0 . . . 0

c1
√
µ1e

−µ1(T−t2) c2
√
µ2e

−µ2(T−t2) . . . 0
...

...
. . .

...

c1
√
µ1e

−µ1(T−tn) c2
√
µ2e

−µ2(T−tn) · · · cn
√
µne

−µn(T−tn)











.

Moreover, if consider the residual at time T given by

R(û(x, T )) = f(x) −
l

∑

j=1

aj(T )ψj(x), (13)

and in a similar way we enforce the residual to be orthogonal to each basis functions

(R(û(x, T )), ψi(x))H = 0 (14)

for i = 1, 2, . . . , l. We obtain that

ai(T ) = (f(x), ψi(x))H (15)

for i = 1, 2, . . . , l.
Let the n× l matrix

Wµ =

[

w1√
µ1

w2√
µ2

· · · wl√
µl

]

and
a(t) =

[

a1(t) a2(t) · · · al(t)
]T
.

From (15), it follows that

a(T ) =
(

1TLcWµ

)T

. (16)

where

Lc =











c21e
−µ1(T−t1) 0 0 . . . 0

c21e
−µ2(T−t2) c22e

−µ2(T−t2) 0 . . . 0
...

...
...

. . .
...

c21e
−µ1(T−tn) c22e

−µ2(T−tn) c23e
−µ3(T−tn) · · · c2ne

−µn(T−tn)











8



and 1 = [1 1 · · · 1]T ∈ R
n. Then the reduced model can be written as

d
dta(t) = WT

µ ZWµa(t),

a(T ) =
(

1TLcWµ

)T
,

(17)

with solution
a(t) = exp

(

−WT

µ ZWµ(T − t)
) (

1TLcWµ

)T

. (18)

Thus, we can write

û(x, t) = a(t)T











ψ1(x)
ψ2(x)

...
ψl(x)











.

2.2.1 Numerical Results

We consider that X follows a Geometric Brownian Motion with b(x) = rx and
a(x) = σx. Assume that r(x) = r and let

ν =
1

σ

(

r − σ2

2

)

Then, from [4], we known that

φj(x) =
σ

√

ln(U/L)
x−2ν/σ sin

(

πj ln(x/L)

ln(U/L)

)

(19)

for j = 1, 2, . . . , and x ∈ [L,U ], form the complete orthonormal basis in H obtained
for the regular Sturm–Liouville boundary value problem (9) and where

µj = r +
ν2

2
+

σ2π2j2

2 ln2(U/L)
.

for j = 1, 2, . . . . We consider the payoff of an European Call f(x) = (x−K)+ on
[L,U ]. Then it follows from [4], that

cj =
Lν/σ

√

ln(U/L)
[Lγj(ν + σ) −Kγj(ν)] ,

where

γj(a) =
2

ω2
j + a2

[

eaκ(ωj cos(ωjk) − a sin(ωjk)) − (−1)jωje
aη

]

,
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with

η =
1

σ
ln(U/L), ωj =

jπ

u
, κ =

1

σ
ln(K/L).

for j = 1, 2, . . . .
Figure 1 plots call prices for L = 9, U = 12, r = 0.1, σ = 0.6, K = 10 T = 1/12

by using the representation of the call price by means 20 eigenfunctions against
the call price computed by û(x, t) with n = 4.

We remark that we need to known previously a basis function obtained by
solving a Sturm–Liouville problem, that allow to us to construct a solution of
the problem under consideration. Thus, in practical application when no closed
solution is available the above methodology doesn’t runs. The main problem in
real applications is that the price u(x, t) is known in a discrete form, that is, at the
nodes of a spatial grid or mesh and for some times. In this way, in the next section
we apply the model reduction to a numerical scheme by using the information of
either a previous simulation or a empirical data set.

3 Reduced Finite Difference Schemes of im-

plicit type in Option Pricing Models

In this section we would to introduce the Model Reduction in the context of Finite
Difference schemes of implicit type. To this end consider the boundary value
problem (4) where

u(x, t) = g(x, t), for (x, t) ∈ [0, T ] × {0, a},

and
u(x, T ) = f(x) for x ∈ [0, a].

Note that f(T ) = g(0, T ) and f(a) = g(a, T ). Here, f and g are given data. We
assume that the problem under consideration has a unique solution u with certain
smoothness that makes the following calculation meaningful.

To develop a finite difference method, we need to introduce grid points. Let
Nx and Nt be integers, hx = a/Nx, kt = T/Nt and define the partition points

xj = jhx, j = 0, 1, . . . ,Nx,

tm = T −mht m = 0, 1, . . . ,Nt.

A point of the form (xj , tm) is called grid point and we are interested in computing
approximate solutions values at the grid points. We use the notation Um

j for an
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approximation to um
j = u(xj , tm). We remark that

Um
0 = um

0 = g(0, tm), Um
Nx

= um
Nx

= g(a, tm), U0
j = u0(xj),

for m = 0, 1, . . . , Nt and j = 0, 1, . . . ,Nx are known values. In order to compute
the approximate values for the solution of (4) at the grid points we introduce the
following vectors. Let

um = [um
1 um

2 · · · um
Nx−1]

T ∈ R
Nx−1

and the corresponding the approximation vector

Um = [Um
1 Um

2 · · · Um
Nx−1]

T ∈ R
Nx−1,

for m = 0, 1, . . . , Nt.
Now, assume that by using a typical finite difference scheme of implicit type

for equation (4) we are to be able to construct the following two–level difference
equation

QUm+1 = f(Um) + gm,
U0 = u0.

(20)

for m = 0, 1, . . . , Nt − 1 (see for example [9] and Chapter 3 of [1]). The vector
gm is usually constructed from values {um

j : j = 0,Nx, m = 0, 1, . . . ,Nt} and

f : R
Nx−1 −→ R

Nx−1. Here the matrix Q may depend on kt and hx. Thus, by
solving this difference equation we obtain the matrix

U = [U1 U2 · · ·UNt ]

which represents the approximate solution to the matrix

u = [u1 u2 · · ·uNt ].

3.1 An example: The Crank–Nicolson Scheme

Now, we apply the Crank–Nicolson scheme to the PDE (4), for (x, t) ∈ (0, a) ×
(0, T ) and where

u (x, T ) = f(x),
u (x, t) = g(t, x), t ∈ [0, T ], x ∈ {0, a}. (21)

In this case we introduce the following parameters

ν1 =
kt

h2
x

, ν2 =
kt

hx
.
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Then, by using the boundary conditions we have

U0
j = f(xj) for 0 ≤ j ≤ Nx;

Um
0 = g(0, tm), and Um

Nx
= g(a, tm), for 0 ≤ m ≤ Nt.

Now, set

bj = b(xj),

aj = a(xj) and

rj = −r(xj)

for 0 ≤ j ≤ Nx. From the Crank–Nicolson scheme we obtain that

(

1

kt

[

Um
j − Um+1

j

]

)

+
b2j
4

(

1

h2
x

[

Um+1
j+1 − 2Um+1

j + Um+1
j−1

]

)

+
b2j
4

(

1

h2
x

[

Um
j+1 − 2Um

j + Um
j−1

]

)

+
aj

2

(

1

2hx

[

Um+1
j+1 − Um+1

j−1

]

)

+
aj

2

(

1

2hx

[

Um
j+1 − Um

j−1

]

)

+
rj
2
Um+1

j +
rj
2
Um

j = 0,

for 1 ≤ j ≤ Nx − 1 and 0 ≤ m ≤ Nt − 1. This can be written as

−AjU
m+1
j−1 + (1 −Bj)U

m+1
j − CjU

m+1
j+1 = AjU

m
j−1 + (1 +Bj)U

m
j + CjU

m
j+1

where
Aj = 1

4ν1b
2
j + 1

4ν2aj ,

Bj = −1
2ν1b

2
j + 1

2krj ,

Cj = 1
4ν1b

2
j − 1

4ν2aj.
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Written in matrix form the above expressions we have the difference equation













−A1 1 −B1 −C1 0 · · ·
0 −A2 1 −B2 · · · ·
· · · · · 0 ·
· · · · 1 −BNx−2 −CNx−2 0
· · · 0 −ANx−1 1 −BNx−1 −CNx−1







































Um+1
0

Um+1
1

·
·
·
·

Um+1
Nx−1

Um+1
Nx



























=













A1 1 +B1 C1 0 · · ·
0 A2 1 +B2 · · · ·
· · · · · 0 ·
· · · · 1 +BNx−2 CNx−2 0
· · · 0 ANx−1 1 +BNx−1 CNx−1





































Um
0

Um
1

·
·
·
·

Um
Nx−1

Um
Nx

























.

Since the values Um
0 and Um

Nx
for 0 ≤ m ≤ Nt are known, then the above system

is equivalent to (20) where

Um =







Um
1
...

Um
Nx−1






, Q =













1 −B1 −C1 0 · ·
−A2 1 −B2 · · ·
· · · · 0
· · · 1 −BNx−2 −CNx−2

· · 0 −ANx−1 1 −BNx−1













,

gm =















A0U
m
0 +A0U

m+1
0

0
...
0

CNxU
m
Nx

+ CNxU
m+1
Nx















and

f(Um) =















(1 +B1)U
m
1 + C1U

m
2

A2U
m
1 + (1 +B2)U

m
2 + C2U

m
3

...
ANx−2U

m
Nx−3 + (1 +BNx−2)U

m
Nx−2 + CNx−2U

m
Nx−1

ANx−1U
m
Nx−2 + (1 +BNx−1)U

m
Nx−1















.
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We need to solve Nt linear systems with a (Nx−1)×(Nx−1) coefficient matrix.
We would to reduce the dimension of the associated linear system. To this end we
construct an orthogonal basis of dimension l in order to restrict the map Q onto
this subspace.

3.2 Proper Orthogonal Decomposition

Now, we introduce the POD method to be used to reduce the finite–difference
scheme of implicit type (20). Let consider a grid in [0, a] × [0, T ] of points

{(x̂j , t̂m) : j = 1, 2, . . . ,Nx − 1, m = 0, 1, . . . , N̂t},

here N̂t is the snapshots number. We assume that in this case we can obtain the
snapshots

u(m)
s = [u(x̂1, t̂m) u(x̂2, t̂m) · · · u(x̂Nx−1, t̂m)]T ∈ R

Nx−1.

for m = 0, 1, . . . , N̂t, either by experimental data or by previous computer simu-
lation of a similar problem. In this situation we consider the Hilbert space R

Nx−1

with the usual inner product. It easy to see that the map Rn is given by

Rn(v) =

N̂t
∑

i=1

(v,u(i)
s )RNx−1u(i)

s = usu
T

s v

where
us =

[

u(1)
s u(k)

s · · · u(N̂t)
s

]

∈ R
(Nx−1)×N̂t .

Thus, the l–modal basis, that we denote by {Ψ1, . . . ,Ψl}, can be computed solving
the eigenvalue problem

usu
T

s v = λv. (22)

This is called the direct method.
The normalized eigenvectors in (22) are the left singular vectors in the Singular

Value Decomposition (SVD) of us, that is, the eigenvectors Ψj , for j = 1, 2, . . . , k
are the columns of Ψ where

us = ΨΣV T. (23)

Here Ψ and V have orthonormal columns and Σ is a square diagonal matrix. The
diagonal elements of Σ are the non–zero singular values, that is,

√
λ. The matrix

representation Ψ for the POD basis vectors can also be computed by finding the
right singular vectors of us as described below. The eigenvalues and eigenvectors
for

uT

s usv = λv (24)

14



correspond to the right singular vectors and singular values of (22), because

uT

s = V ΣΨT.

Since, ΣV TV Σ−1 = I, then, from (23), we obtain

Ψ = usV Σ−1. (25)

The latter method is called the snapshot method or the sample method. We note

that if the data u
(i)
s are linearly independent and if N̂t < Nx−1 then it is convenient

to use this methodology.

3.3 A reduced finite–difference scheme of implicit type

Now we construct a reduced finite–difference scheme by using the representative
modes computed either by the direct method or by the snapshot method. To this
end we consider the matrix of representative modes

Ψ∗ = [Ψ1 Ψ2 · · · Ψl]

where l << Nx − 1 is choosed by means the condition

l
∑

i=1

λi/

Nx−1
∑

i=1

λi > 0.99.

Then, we would to search an approximate solution Ûm+1 of the difference equation
(20) satisfying that

Ûm+1 = Ψ∗am+1 =

l
∑

j=1

am+1
j Ψj , (26)

where am+1 = [am+1
1 am+1

2 · · · am+1
l ]T, for m = 0, 1, . . . ,Nt−1. Observe that (26)

is equivalent to the Galerkin expansion (10). Moreover,

Q|
ColΨ∗ = (Ψ∗)TQΨ∗,

where Col Ψ∗ = span{Ψ1,Ψ2, . . . ,Ψl}. Thus, am+1 is the solution of the reduced
model given by the difference equation

Q|
ColΨ∗a

m+1 = (Ψ∗)T
(

f(Ûm) + gm
)

,

Û0 = u0.
(27)

for m = 0, 1, . . . , Nt − 1. Solving (27) we obtain the matrix

a = [a1 a2 · · · aNt ]

15



and finally we have that
Û = Ψ∗a.

Note that in the reduced version we solve Nt linear systems with a l× l coefficient
matrix.

3.4 Numerical Results

We consider a vanilla European put with strike K = 8 and maturity T = 1/3 and
we assume that the volatility and interest rates are constant σ = 0.30 and r = 0.05.
Moreover, we consider Nx = 200 and Nt = 400. Plotting the pointwise error for
the Crank–Nicolson scheme Figure 2 shows that the error is concentrated around
the singularity, that is t = 0 and x = K. Thus if we would to improve the accuracy
the grid should be highly refined near t = 0 and x = K. However, finite difference
methods of implicit type presented so far rely on uniform grids in the x–variable.
Therefore, at this point, we keep in mind to use a reduced Crank–Nicolson scheme.

First, we generate the snapshots by using the closed form solution for the
European Put in a grid where xj = x̂j for j = 1, 2, . . . ,Nx − 1 and N̂t = 10. We
obtained, in the numerical experiments implemented for different values of r and
σ and N̂t ≥ 10, only one basis function, that is, l = 1. In Figures 3 and 4 we plot
the pointwise errors produced at t = 0 from the reduced Crank–Nicolson scheme
using the direct method or the snapshot method respectively, against the Crank–
Nicolson scheme. As we can see in all cases the Reduced scheme has more accuracy
near x = K. A similar result is obtained when we consider the snapshots generated
by a previous Crank–Nicolson taking t̂m = 40m for m = 1, 2, . . . , 10; (see Figures
5 and 6). Note, that due to the fact that the modal basis is composed by only
one vector, we solve on each iteration, in the case of the Reduced Crank–Nicolson
scheme, a one–dimensional linear equation.

Now, we compute by means a Crank–Nicolson with parameter values rPOD =
0.10 and σPOD = 0.3 a modal basis by using the snapshot method. Then we
use this modal basis to run a Reduced Crank–Nicolson with parameter values
r = 0.05 and σ = 0.4. In Figures 7 and 8 we show as the accuracy near x = K
is, in both cases, unexpected good. In Figure 9 we plot ||uNt − UNt ||RNx against
||uNt − ÛNt ||RNx as functions of (r, σ), where ÛNx was computed by using the
Reduced Crank–Nicolson scheme by means the modal basis with parameter values
rPOD and σPOD. From this we can conclude that it is possible to use a modal
basis obtained from a previous computer simulation in order to valuate, by using
the reduced finite difference scheme, options with a different parameter values.
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4 Concluding Remarks

We have presented an effective method for the numerical solution of a Pricing
Partial Differential Differential Equation of European type, due to the use of POD–
based reduced order models applied to a Finite Difference scheme of implicit type.
Moreover we observe from the numerical experiments that the efficiency of the
reduced scheme, constructed from a previously computed basis, remains for a
wide set of parameters values.
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Figure 1: The maps u(x, 0) =
∑20

j=1 cje
−µjT φj(x) and û(x, 0) with n = 4.
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Figure 2: The pointwise error produced by the Crank–Nicolson scheme for
an European Put in [0, 16] × [0, 1/3], K = 8, σ = 0.30, and r = 0.05.
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Figure 3: The pointwise error at t = 0 produced by the Crank–Nicolson and
Reduced Crank–Nicolson (direct method) schemes for an European Put in
[0, 16] × [0, 1/3], K = 8, σ = 0.30, and r = 0.05.
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Figure 4: The pointwise error at t = 0 produced by the Crank–Nicolson and
Reduced Crank–Nicolson (snapshot method) schemes for an European Put
in [0, 16] × [0, 1/3], K = 8, σ = 0.30, and r = 0.05.
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Figure 5: The pointwise error at t = 0 produced by the Crank–Nicolson and
Reduced Crank–Nicolson (direct method) schemes for an European Put in
[0, 16] × [0, 1/3], K = 8, σ = 0.30, and r = 0.05.
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Figure 6: The pointwise error at t = 0 produced by the Crank–Nicolson and
Reduced Crank–Nicolson (snapshot method) schemes for an European Put
in [0, 16] × [0, 1/3], K = 8, σ = 0.30, and r = 0.05.
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Figure 7: The pointwise error at t = 0 produced by the Crank–Nicolson and
Reduced Crank–Nicolson (snapshot method) schemes for an European Put
in [0, 16] × [0, 1/3], K = 8.
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Figure 8: The pointwise error at t = 0 produced by the Crank–Nicolson and
Reduced Crank–Nicolson (snapshot method) schemes for an European Put
in [0, 16] × [0, 1/3], K = 8.
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Figure 9: The Crank–Nicolson Error function ||uNt − UNt||RNx against the
Reduced Crank–Nicolson Error function ||uNt−ÛNt||RNx and the cross section
at r = 0.03.
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