
Families of symmetric periodic orbits in the three body problem

and the figure eight
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Abstract

In this paper we show a technique for the continuation of symmetric periodic or-

bits in systems with time-reversal symmetries. The geometric idea of this technique

allows us to generalize the “cylinder” theorem for this kind of systems. We state

the main theoretical result without proof (to be published elsewhere). We focus on

the application of this scheme to the three body problem (TBP), taking as starting

point the figure eight orbit [3] to find families of symmetric periodic orbits.
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1 Introduction

Our interest is about finding symmetric periodic solutions in the three body problem. In

a previous paper [7] we studied the continuation of periodic orbits in the TBP following

the scheme given in [13] for continuation in conservative systems. Unlike other methods,

this scheme does not make use of symplectic reduction before numeric calculation. Several

families of periodic orbits were shown in [7] and the numerical study of their linear stability

(characteristic multipliers). Another applications of this technique appeared in [6] where
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a lot of families of periodic orbits in the TBP and the restricted three body problem

were found. Some of these families are formed by symmetric periodic orbits with respect

to time-reversal symmetries. However, while the scheme given in [13] does not take

advantage of these symmetries, classical methods do [1, 4]. Our scope in this paper is to

adapt the scheme in [13], so that families of symmetric periodic orbits can be computed

in a more proper way than in [7, 6] where time-reversal symmetries were not used for the

computations.

Chenciner and Montgomery [3] proved recently the existence of a spectacular solution

in the TBP called the figure eight, since the three bodies follow the same curve (choreog-

raphy) with this shape. The initial conditions of the figure eight, which were computed

numerically by Simó, are shown in [3] too. This kind of solution had been predicted by

Moore [11] in 1993. A lot of work has been developed around this new solution for the

last two years. Simó also studied the region of stability near the figure eight and found

countless examples of choreographies [14, 15]. For other results on continuation, see [9, 2].

The figure eight is symmetric with respect to several time-reversal symmetries; there-

fore, we think that it is a good starting point to look for symmetric periodic solutions.

In this introduction we give a short revision about the main concepts related to sym-

metries in the TBP and we describe with respect to which time-reversal symmetries the

figure eight is symmetric (for more details, see [3, 9]).

In the second section we show geometrically when a first integral plays a role in the

continuation of symmetric periodic orbits. In the third section we are going to state the

main theoretical result in this paper about persistence (or continuation) of symmetric

periodic orbits. As we have said in the abstract, this result is a generalization of the

“cylinder” theorem. We adapt the ideas from reference [13] where continuation of periodic

orbits in conservative systems is based on a proper unfolding of these systems. For

symmetric periodic orbits continuation it is necessary to unfold systems with first integrals

which verify a certain property. In the last section we apply these ideas to the figure eight

in the TBP.

1.1 On symmetries in the TBP

Let n be the dimension of the configuration space, so if n = 2, the planar TBP is set and

if n = 3, it is the spatial TBP. For each smooth function F : R6n 7→ R the vector field

XF (x) = J∇F (x) is defined, where J is the matrix of size 6n × 6n

J =





03n −I3n

I3n 03n



 . (1)
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The TBP (for bodies of masses mj with j = 1, 2, 3) is a system ẋ = XH(x) whose

Hamiltonian H is given by

H(x) =
3

∑

j=1

1

2mj

‖pj‖
2 −

∑

1≤i<j≤3

mimj

‖qi − qj‖
, (2)

with x = (q1,q2,q3,p1,p2,p3) where qj and pj are the position vector and momentum

vector of the j-th body (with j = 1, 2, 3).

Besides the Hamiltonian, the TBP has other first integrals, as the components of the

total linear momentum and the total angular momentum. Moreover, every quadratic first

integral can be written as

Fa,A(x) = a∗





3
∑

j=1

pj



 +
3

∑

j=1

q∗
jApj, (3)

where a ∈ Rn and A is a skew symmetric matrix. Moreover, in this paper, the transpose

of a vector x ∈ Rn is denoted by x∗. The vectors of the canonical basis in R2 are denoted

as e1 and e2. In a similar way, for R3 are denoted as e1, e2 and e3.

The Noether’s symmetry theorem [10] states that the flux of ẋ = XFa,A
(x) is a sym-

plectic continuous group of symmetries, i.e. the system ẋ = XH(x) remains invariant

under the changes of variables induced from the flux of ẋ = XFa,A
(x).

We can easily check that ΨQ,b are symmetries of the TBP

ΨQ,b : R6n → Rn× Rn × Rn × Rn × Rn ×Rn

x 7→ (Qq1 + b , Qq2 + b , Qq3 + b , Qp1 , Qp2 , Qp3)
(4)

where Q is an orthogonal matrix of size n × n and b is any vector in Rn.

If two bodies have equal masses, then there is another symmetry which exchanges

positions and momenta for the bodies. For instance, with m2 = m3, the TBP has the

symmetry

C : (q1,q2,q3,p1,p2,p3) 7→ (q1,q3,q2,p1,p3,p2). (5)

We recall that the composition of symmetries is a symmetry.

A matrix R of size 6n×6n such that R2 = I6n is said to be a time-reversal symmetry of

the TBP iff XH(Rx) = −R XH(x). The fixed point subspace of a time-reversal symmetry

is Fix(R) = {x ∈ R6n : Rx = x}. In the TBP a time-reversal symmetry is

RN =





I3n 03n

03n −I3n



 . (6)

Any composition of a symmetry with RN is another time-reversal symmetry. Therefore,

the TBP is full of time-reversal symmetries. It is well known (see [8]) that an orbit with

two points in Fix(R) is a symmetric periodic orbit, i.e. the orbit is invariant with respect

to R.
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In the TBP there exists a rescale Φλ (with λ ∈ R \ {0}) of the positions and the

conjugate momenta which maps a solution into another solution with a new time scale.

This function is

Φλ : R6n → R6n

(q1,q2,q3,p1,p2,p3) 7→ (λ−2q1, λ
−2q2, λ

−2q3, λp1, λp2, λp3),
(7)

and its time–rescale is λ−3.

1.2 The figure eight as a symmetric periodic orbit

Chenciner and Montgomery [3] looked for a planar curve which is a minimum of the action

for the TBP with the bodies of unit mass,

∫ T

0
(
1

2

3
∑

j=1

‖pj(t)‖
2 +

∑

1≤i<j≤3

1

‖qi(t) − qj(t)‖
) dt, (8)

over the subspace of curves which verify that:

• Initial condition: The first body is in the middle of the other two bodies.

• Final condition: The second body (which was in an extremum in the initial condi-

tion) is now equidistant of the first and the third bodies.

They proved that the minimum is reached in a curve which points generate a solution

of the TBP where the three bodies follow the same curve (choreography) with a shape of

an eight, so this orbit was called the figure eight by them. In Figure 1, we see the curve

followed by the bodies and the initial and final conditions for the minimization problem.
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Figure 1: Figure eight with the initial and final conditions of the minimization problem.

The figure eight is symmetric with respect to six time-reversal symmetries in the planar

case and nine time-reversal symmetries in the spatial case. These time-reversal symmetries

are given by the composition of RN with an exchange of the bodies (for example, C is one

232



of the three possible exchanges) and with a symmetry ΨS,0. The matrix S can be chosen

from the following list for the planar case:

SM1
=





1 0

0 −1



 , SE1
=





−1 0

0 −1



 (9)

and for the spatial case:

SM13D =











1 0 0

0 −1 0

0 0 −1











, SΠ13D =











1 0 0

0 1 0

0 0 −1











and SE13D =











−1 0 0

0 −1 0

0 0 −1











. (10)

In order to simplify (and following [3]), the time-reversal symmetry RN ◦ C ◦ ΨSM1
,0

is called M1 and RN ◦ C ◦ ΨSE1
,0 is called E1 throughout this paper. The fixed points of

M1 have the first body in the axis e1 and this body forms an isosceles triangle with the

other two bodies whose symmetry axis is e1; the conjugate momentum of the position of

the first body, p1, is in the direction e2 and the conjugate momenta of the three bodies

(p1, p2 and p3) form an isosceles triangle with symmetry axis in e2. See Figure 2 for a

graphical interpretation.

e2

e1

p2

p2

p3

p3
p1

p1

Figure 2: Fixed points of M1.

The fixed points of E1 are given by the first body in the origin and in the middle

point of the other two bodies; the conjugate momenta of this two bodies are identical,

i.e., q1 = 0, q2 = −q3 and p2 = p3.

2 Geometric Interpretation of the Continuation with Time-Reversal Sym-

metries

There exists a “cylinder” theorem for systems with a time-reversal symmetry (see [8]). A

simple geometric reasoning states that periodic orbits generically arise as a one-parameter

family (we are assuming that the dimension of Fix(R) is half the whole dimension).
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However, the TBP is a non-generic system, since most of the orbits do not belong to one-

parameter families. We have studied why some first integrals avoid a generic behavior for

the TBP.

We focus on the time-reversal symmetry M1 for our explanation. An analogous situ-

ation appears for E1. A translation of a fixed point of M1 in the direction e1 produces

another fixed point generating a symmetric periodic orbit and the function Φλ maps fixed

points of M1 into fixed points of M1 too. This remark suggests that, under generic con-

ditions, fixed points of M1 generating symmetric periodic orbits form a two-dimensional

submanifold. By theoretical results and numerical computation, we are able to state that

the figure eight belongs to a 2-parameter family of symmetric periodic orbits with respect

to M1.

3 Result on the Continuation for Symmetric Orbits

The previous geometric idea still holds in a more general situation: a system with a

time-reversal symmetry R and a first integral F such that the flux of the vector field XF

maps fixed points of R into fixed points of R has the same non-generic behavior. If R

is anti-symplectic (i.e RT JR = −J), this condition is equivalent to the derivative of the

function F restricted to Fix(R) is zero. Therefore, a first integral constant on Fix(R)

implies that the symmetric periodic orbit does not belong to a one–parameter family any

more.

The symplectic framework is not necessary and it is possible to formulate a general

result for any kind of system with a time-reversal symmetry. So, we assume in this section

that X : R2m → R2m is a vector field with a time-reversal symmetry R and the dimension

of Fix(R) is m. These assumptions are not mandatory, but they simplify the theorem

and they hold in most physical applications. We define Rx0
as the set of derivatives of

first integrals which are constant on Fix(R), i.e.

Rx0
=







DF (x0) :
F is a first integral of ẋ = X(x) and

F is constant on Fix(R)







(11)

and let ϕt(x) be the flux of the system ẋ = X(x). We denote the subspace spanned by

the vector x ∈ R2m with Rx. We state the following theorem for the continuation of

symmetric periodic orbits

Theorem 3.1 Let be x0 ∈ Fix(R) and T > 0. If ϕT (x0) ∈ Fix(R) and

Im((I − R)DϕT (x0)(I + R)) + RX(ϕT (x0)) = R⊥
ϕT (x0) ∩ Im(I − R), (12)

then the symmetric periodic orbit generated by x0 belongs to a (dim(Rx0
) + 1)-parameter

family of symmetric periodic orbits with respect to R.
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A proof of this result can be found in [12] and will be published elsewhere. The

idea of this proof follows the one given in [13] where “artificial” parameters (or unfolding

parameters) are added in the vector field. If Fj (with 1 ≤ j ≤ k) are first integrals such

that {DFj(x0)}1≤j≤k is a basis for Rx0
, then we consider the flux ϕ̃t of the system

ẋ = X(x) +
k

∑

j=1

βj∇Fj(x) (13)

where βj are the “artificial” parameters and we apply the implicit function theorem to

the function

(x, t, β1, . . . , βk) ∈ Fix(R) × R × Rk 7→ (I − R)ϕ̃t(x, β1, . . . , βk), (14)

getting a submanifold of zeros for this function and, finally, checking that the artificial

parameters are zero along that manifold.

4 Numerical Results about the Figure Eight

The scheme for continuation has been applied to the figure eight as the mass of one of

the bodies is allowed to vary. When the masses are identical (m1 = m2 = m3 = 1),

a consequence of the former theorem is that the figure eight orbit belongs to a two-

parameter family given by the translation in the direction e1 and by mapping Φλ. So,

for these values of the masses there are no more symmetric periodic orbits with respect

to M1 “near” (with the period close to the original one) the figure eight. If the mass m1

is varied, the system still has the M1 time-reversal symmetry; therefore we will try to

continue taking m1 as a continuation parameter, looking for symmetric periodic orbits.

The only quadratic first integral constant on Fix(R) is the first component of the total

linear momentum F1(x) = e∗
1

(

∑3
j=1 pj

)

where x = (q1,q2,q3,p1,p2,p3). Therefore, we

set the following boundary value problem



























































Find x ∈ C1([0, 1];R12) such that

ẋ = T (J∇H(x) + β1∇F1(x)),

e∗
2q1(0) = 0 e∗

2q1(1) = 0,

q3(0) = SM1
q2(0) q3(1) = SM1

q2(1),

e∗
1p1(0) = 0 e∗

1p1(1) = 0,

p3(0) = −SM1
p2(0) p3(1) = −SM1

p2(1),

(15)

where the half-period T is fixed, SM1
is the matrix defined in (9) and β1 is the “artificial”

parameter needed for the continuation.

The initial conditions for this problem form a two-dimensional submanifold where

every translation in the direction e1 of its points is also included in the submanifold. This
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situation is avoided with an additional integral condition

∫ T

0
DF1(x0(s))J(x(s) − x0(s)) ds = 0, (16)

where x0(t) is the previous computed solution. The system (15) together with this integral

condition can be numerically continued with a package as AUTO [5]. We get a curve of

initial conditions on Fix(M1) which generates symmetric periodic orbits. Downwards

solutions in the family are shown in Figure 3 and upwards in Figure 4, for this last case

there exists a fold in the family for m1 = 1.00004.
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Figure 3: We show the family downwards to which the figure eight belongs where the

initial conditions in the fixed point subspace of M1 are marked.
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Figure 4: Family upwards to which the figure eight belongs.

We do not detect any point where the condition (12) is not fulfilled along this family,

but if T is taken as five times the half period and as starting solution five half windings

of the figure eight, then subharmonic bifurcations are detected when the condition (12)

is not fulfilled. Using AUTO we get a branch of periodic orbits which start from a 5-

subharmonic bifurcation located at m1 = 0.9618044. In Figure 5 some of these solutions

are shown.

Using the time–reversal symmetry E1 the first family can be also continued as sym-

metric periodic orbits with respect to E1, but in this case the first integral constant on
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Figure 5: We plot some orbits got from a family which starts from a 5-subharmonic

bifurcation.

Fix(E1) is the angular momentum

G1(x) =
3

∑

i=1

q∗
i





0 1

−1 0



 pi.

The former theory drives to formulate the following boundary value problem










































Find x ∈ C1([0, 1];R12) such that

ẋ = T (J∇H(x) + β1∇G1(x)),

q1(0) = 0 q1(1) = 0,

q2(0) = −q3(0) q2(1) = −q3(1),

p2(0) = p3(0) p2(1) = p3(1),

(17)

and to add the integral condition
∫ T
0 DG1(x0(s))J(x(s)−x0(s)) ds = 0. Here β1 is, again,

an “artificial” parameter to allow the continuation. Along the family which was plotted

in Figure 3 and 4 an orbit where condition (12) is not fulfilled is detected for the value

m1 = 0.699779 and so a new family of symmetric periodic orbits appears from the solution

with this value of m1. Some orbits in this family are shown in Figure 6.
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Figure 6: We show symmetric periodic orbits with respect to E1 (initial conditions in

the fixed subspace are marked) which belong to a family appearing from a point where

condition (12) is not fulfilled for E1.

Finally, we want to remark that the same scheme is also useful in the spatial case. For

the time-reversal symmetry given by the composition RN ◦ C ◦ SM13D there are two first
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integrals in a basis of Rx, for instance,

F1(x) = e∗
1

3
∑

i=1

pi and F2(x) =
3

∑

i=1

q∗
i











1 0 0

0 0 1

0 −1 0











pi. (18)

In this case the boundary value problem would be







































































Find x ∈ C1([0, 1];R18) such that

ẋ = T (J∇H(x) + β1∇F1(x) + β2∇F2(x)),

e∗
2q1(0) = 0 e∗

2q1(1) = 0,

e∗
3q1(0) = 0 e∗

3q1(1) = 0,

q3(0) = SM13Dq2(0) q3(1) = SM13Dq2(1),

e∗
1p1(0) = 0 e∗

1p1(1) = 0,

p3(0) = −SM13Dp2(0) p3(1) = −SM13Dp2(1),

(19)

where β1 and β2 are “artificial” parameters and SM13D is the matrix defined in (10) . We

add the integral conditions

∫ T

0
DF1(x0(s))J(x(s) − x0(s)) ds = 0 and

∫ T

0
DF2(x0(s))J(x(s) − x0(s)) ds = 0. (20)

Its continuation gives the same planar family which was plotted in Figures 4 and 3, but

for m1 = 0.83883608 the condition (12) is not true and a branch of non–planar symmetric

periodic orbits bifurcates from it (see Figure 7).

−1

0

1

−1
−0.5

0
0.5

1

−0.2

−0.1

0

0.1

0.2

−0.5

0

0.5

−1
−0.5

0
0.5

1

−0.5

0

0.5

−0.5

0

0.5

−1
−0.5

0
0.5

1

−0.5

0

0.5

m1 = 0.8 m1 = 0.4 m1 = 0.1

Figure 7: Branch which appears from a point where condition (12) is not fulfilled for the

time-reversal symmetry M13D.
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