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Abstract

We consider a dynamically symmetric satellite, whose center of mass moves in a

circular orbit. In the cases of the first and second order resonances we study orbital

stability of planar periodic motions of the satellite about its center of mass.

By using normal form method we carry out a nonlinear analysis of the Hamil-

tonian of the problem and apply the stability theorem developed for the resonant

cases. We represent the results in the form of stability diagrams.
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1 Introduction

We consider a satellite, whose center of mass moves in a circular orbit. We assume that the

satellite is a dynamically symmetric rigid body, i.e. its ellipsoid of inertia is an ellipsoid

of revolution. The equations of motion of the symmetric satellite about its center of mass

admit a family of particular solutions corresponding to the so-called planar motions, when

the symmetry axis of the inertia ellipsoid moves in the orbital plane. The planar motions of

the satellite are similar to the planar motions of a pendulum in the gravitational field, and

so the most of them are periodic. The planar periodic motions are unstable with respect

to planar perturbations of coordinates and velocities because their period depends on the

initial conditions. Markeev [3] was the first one to study the so-called orbital stability of

the planar periodic motions, i.e. the stability with respect to spatial perturbations and
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perturbations of the period. In particular, he studied the orbital stability of the planar

periodic motions for an oblate dynamically symmetric satellite. Unfortunately, diagrams

of stability obtained by Markeev contain some imperfections because of a low accuracy of

numerical calculations. This was pointed out by Akulenko et al. [1].

A more complete investigation of the orbital stability of the above motions has been

recently done by Markeev and Bardin [4]. They have studied the problem in rigorous

nonlinear formulation for the most of parameter values with the exception of some special

cases. In particular, they did not study the orbital stability of the planar periodic motions

on boundaries of instability domains.

2 Formulation of the Problem

To describe the motion of the satellite about its center of mass, we introduce two or-

thonormal frames: orbital frame (axes OX, OY , OZ directed along the radius vector of

the center of mass O, the transversal and normal of the orbit, respectively) and principal

axes frame Oxyz (axis Oz is directed along the symmetry axis of the inertia ellipsoid).

The equations of motion can be written in the canonical form. We use the Euler an-

gles ψ, θ, ϕ (Fig.1) and the corresponding dimensionless momenta pψ, pθ, pϕ as canonical

variables. The angle ϕ is a cyclic coordinate and, hence, pϕ = constant is an integral of

motion. In what follows we put pϕ = 0, when the planar motions are only possible. The

Hamiltonian of the problem reads (see [3] for details)

H =
1

2 sin2 θ
(pψ + 1)2 − pψ +

1

2
p2

θ +
3

2
(α − 1) sin2 ψ sin2 θ, (1)

where α = C/A (0 ≤ α ≤ 2) and A = B, C are the principal moments of inertia

corresponding to the axes Ox, Oy, Oz, respectively. We use the true anomaly ν as

the independent variable. For convenience, in (1), the momentum pψ is changed for

momentum pψ − 1 which corresponds to the relative motion in the orbital frame.

The planar motions (θ = π/2, pθ = 0) of the satellite are represented either by periodic

motions (oscillations or rotations of the satellite symmetry axis in the orbital plane) or

by a separatrix motion, which is a limiting motion for the oscillations and rotations. The

partial solution describing the planar periodic motions can be expressed in terms of elliptic

functions [4]. In the domains of the planar periodic motions the so-called action-angle

variables I, w can be introduced. The explicit form of the transformation ψ, pψ → w, I

is given in Appendix. In the phase space of the canonical variables w, I, θ, pθ the planar

periodic motions are represented by the following families of periodic orbits:

w = ω(I0)(ν − ν0) + w0, I = I0 = constant,

θ =
π

2
, pθ = 0,
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Figure 1: Frames of reference.

where ω(I0) is the frequency of planar oscillations (or the averaged angular velocity of

rotations). The value I0 is a parameter of the above family.

We regard the orbital stability of the planar periodic motions as a nonlinear stability

of the corresponding periodic orbit with respect to the spatial variables θ, pθ and the value

I − I0.

The stability problem of the planar periodic motion of symmetric satellite has been

considered by many authors from different points of view [1, 3, 4, 5], however, for some

special cases it has not been solved yet. The aim of this paper is to study one of such cases.

Namely, we study the problem of orbital stability for the parameter values corresponding

to the first and second order resonances.

3 Isoenergetic Reduction

Let us introduce the following local canonical variables

r1 = I − I0, q2 = θ −
π

2
, p2 = pθ.

and expand the Hamiltonian into a power series in r1, q2, p2

H = H2 + H3 + H4 + . . . . (2)

In (2) the constant term is dropped. We denote by Hn (n = 2, 3, 4, . . . ) the terms whose

order of smallness is equal to n. Taking into account that the variable r1 has the second
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order of smallness as compared with q2, p2, we have the following explicit form for Hn

(n = 2, 3, 4):

H2 = ω(I0)r1 +
1

2
[p2

2 + f2(I0, w)q2
2],

H3 = 0,

H4 =
1

2

∂ω

∂I0

r2
1 +

∂f2

∂I0

r1q
2
2 + f4(I0, w)q4

2. (3)

To avoid bulky formulae, we write down the expressions for f2, f4 with respect to variables

ψ, pψ

f2 = (pψ + 1)2 − 3(α − 1) sin2 ψ, f4 =
1

3
(pψ + 1)2 +

1

2
(α − 1) sin2 ψ. (4)

The explicit form of f2, f4 with respect to w, I can be obtained by substituting (22) (or

(23)) into (4).

Hamiltonian (2) depends on two parameters, α and I0. At fixed values of α and I0 the

equilibrium r1 = q2 = p2 = 0 of the canonical system with Hamiltonian (2) corresponds

to the planar periodic motion (oscillation or rotation) with I = I0. The planar periodic

motion is orbitally stable if and only if the equilibrium r1 = q2 = p2 = 0 is stable in the

sense of Liapunov .

The equations of motion possess integral of energy H = h, where h is a constant. We

perform the so-called isoenergetic reduction of our system by considering the motion on

the energy level H = 0. On the fixed energy level the evaluation of the variables q2, p2 can

be described by the following system of the canonical equations (Whittaker equations)[6]

dq2

dw
=

∂K

∂p2

,
dp2

dw
= −

∂K

∂q2

. (5)

We obtain the Hamiltonian K of system (5) by solving the equation H = 0 with

respect to r1

r1 = −K = −K2 − K4 + O6,

where

K2 =
1

2ω
(p2

2 + f2(I0, w)q2
2), (6)

K4 =
1

8ω3

(

∂ω

∂I0

f 2
2 (I0, w) − 2ω

∂f2

∂I0

f2(I0, w) + 8ω2f4(I0, w)

)

q4
2

+
1

4ω3

(

∂ω

∂I0

f2(I0, w) − ω
∂f2

∂I0

)

p2
2q

2
2 +

1

8ω3

∂ω

∂I0

p4
2. (7)

By O6 we denote the terms of order six and higher with respect to canonical variables

q2, p2. The functions f2(I0, w) and f4(I0, w) have period T with respect to w, where T is

equal to 2π in the case of oscillations and π in the case of rotations.
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The criterion for stability of the equilibrium q2 = p2 = 0 of system (5) and criterion

for stability of the equilibrium r1 = q2 = p2 = 0 of the canonical system with Hamiltonian

(2) are equivalent. Taking this fact into account in what follows we consider system (5),

which has one and a half degrees of freedom and is more convenient for the stability study

than the system with Hamiltonian (2).

4 Linear System

We start our study from the analysis of the linear system with Hamiltonian (6). The

characteristic equation of the linear system reads

ρ2 − 2κρ + 1 = 0, (8)

where 2κ = [q
(1)
2 (T ) + p

(2)
2 (T )]. The functions q

(i)
2 (w), p

(i)
2 (w) (i = 1, 2) are the solutions

of the linear system satisfying the following initial conditions:

q
(1)
2 (0) = p

(2)
2 (0) = 1, q

(2)
2 (0) = p

(1)
2 (0) = 0. (9)

If |κ| > 1, then the equilibrium q2 = p2 = 0 is unstable. In this case from the instability of

the equilibrium q2 = p2 = 0 of the linear system it follows that the corresponding planar

periodic orbit is also unstable. The instability zones for both the planar rotations and

oscillations have been constructed in [4].

In what follows we assume that values of the parameters α, I0 belong to the boundaries

of the instability zones. In this case |κ| = 1 and equation (8) has multiple root ρ = 1 or

ρ = −1. If ρ = 1, then characteristic exponents ±iλ satisfy the relation λ = N , where

N is an integer. It means that the so-called first order resonance takes place. If ρ = −1,

then the relation 2λ = 2N + 1 is fulfilled, i.e. the second order resonance takes place. At

|κ| = 1 the equilibrium of the linear system is generally unstable, but the equilibrium of

the corresponding nonlinear system can be both stable and unstable. This is the reason

why in the case of the first and second order resonances we have to take into account

nonlinear terms in the equations of motion to study the stability problem.

5 Normalization and Stability Conditions

The stability conditions can be written by using the coefficients of the Hamiltonian normal

form. In this section we describe the normalization procedure and obtain the normal form

of the Hamiltonian up to fourth order terms.

First we introduce new canonical variables u, v so that the quadratic part K2 of the

Hamiltonian takes the following normal form

K2 = σ
1

2
v2. (10)
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The linear transformation q2, p2 → u, v reads

q2 = a11u + a12v, p2 = a21u + a22v. (11)

The coefficients aij are the elements of the matrix A. At the resonance of the first order

the matrix A is T -periodic with respect to variable w and it can be calculated by means

the following formula [2]

A = MPN, (12)

where

M =





q
(1)
2 (w) q

(2)
2 (w)

p
(1)
2 (w) p

(2)
2 (w)



 , N =





1 −σw

0 1



 . (13)

If q
(2)
2 (T ) 6= 0, then the matrix P and constant σ read

P =















√

|q
(2)
2 (T )|

T
0

σ
p

(2)
2 (T ) − 1

√

T |q
(2)
2 (T )|

√

T

|q
(2)
2 (T )|















, σ = sgn(q
(2)
2 (T )), (14)

and if p
(1)
2 (T ) 6= 0, then the matrix P and constant σ read

P =















σ
q
(2)
2 (T ) − 1

√

T |p
(1)
2 (T )|

√

T

|p
(1)
2 (T )|

−

√

|p
(1)
2 (T )|

T
0















, σ = −sgn(p
(1)
2 (T )). (15)

At the resonance of the second order the matrix A is 2T -periodic with respect to variable

w. It can be calculated by means of formulae (12)–(15), where the period T is replaced

by 2T .

In the variables u, v the form K4 reads

K4 = k40u
4 + k31u

3v + k22u
2v2 + k13uv3 + k04v

4,

where the coefficients kij are periodic in w with the period T . We write down the explicit

form only for the coefficient k40

k40 =
1

8ω3

[

8ω2a4
11f4(w, I0) − 2ωa2

11

∂f2

∂I0

(

a2
11f2(w, I0) + a2

21

)

+
∂ω

∂I0

(

a2
11f2(w, I0) + a2

21

)2
]

.

The explicit forms of other coefficients are not necessary for the stability analysis.

To bring the Hamiltonian into the normal form up to the fourth order terms, we

perform a periodic (with respect to w) smooth canonical transformation u, v → ξ, η,
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which differs from the identity only by terms that are small of third order. In the new

variables the Hamiltonian reads [2]

K =
1

2
ση2 + aξ4 + O6, (16)

where

a =

∫ T

0

k40dw.

According to the stability theorem for the case of the first and second order resonance [2],

the equilibrium u = v = 0 is stable if σa > 0 and unstable if σa < 0. At a = 0 we have

to consider terms of order higher than fourth in Hamiltonian (16) to solve the stability

problem.

6 Stability of the Planar Periodic Motions

In this section we apply the theorem mentioned for the stability study of the planar

periodic motions of the satellite, when the parameters values correspond to the boundaries

of instability zones. Let us start with the stability analysis of the planar oscillations. For
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Figure 2: Stability diagram for the planar oscillations (0 < α < 1).
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Figure 3: Stability diagram for the planar oscillations (1 < α < 2).

convenience, we use the amplitude of oscillations ψ0 instead of I0 to parameterize the

family of periodic orbits. The linear system with Hamiltonian (6) has been studied in [4]

in detail. The results of the above study are as follows:

• In the plane of parameters α, ψ0 there is an infinite set of instability zones (para-

metric resonance zones).

• The instability zones emanate from the following points of the axis α: α
(1)
n = 1 −

4/3(n2 +4n) for α < 1 and α
(2)
n = 1+4/3(n+1)2 for α > 1, n ∈ N. For n = 1, 2, 3, 4

the instability zones are the shaded regions in Fig. 2 and Fig. 3.

• The instability zones become narrower and are located closer to the straight lines

α = 1 and ψ0 = π/2 as n increases.

On the boundaries of the instability zones the resonances of the first and second order

take place. In this case we solve the stability problem by calculating the coefficients σ,

a and verifying the stability condition σa > 0. The formulas for the coefficients σ and a

contain the function q
(i)
2 (w) and p

(i)
2 (w) (i = 1, 2). In general case, they can be calculated

only numerically by integrating the canonical system with Hamiltonian (6). The right-

hand sides of the above system have singularities at α = 1 (the ellipsoid of inertia is a
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sphere) and at ψ0 = π/2 (the separatrix motion). To avoid difficulties of the numerical

integration, we omit the stability study on the boundaries of the instability zones located

close to the straight lines α = 1 and ψ0 = π/2.

The results of the calculations are represented in Fig. 2 and Fig. 3. By solid and

dashed curves are denoted the boundaries, where the planar oscillations are stable and

unstable, respectively. In points P1(1.2680,1.26206), P2(1.1487,0.1186), P3(1.1861,1.2014)

the coefficient a of normal form (16) is equal to zero. These points separate stable parts

of the corresponding boundaries from unstable ones. The point P2 belongs to the right

boundary of the instability domain.
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Figure 4: Stability diagram for the planar rotations (ω > 0).

Following the paper [4] we use the average angular velocity ω to parameterize the

family of the planar rotations. It is more natural and convenient than I0. The linear

study of stability of the planar rotations shows [4]:

• In the plane of parameters α, ω there is a countable set of instability zones (para-

metric resonance zones)

• The instability zones emanate from the points (1,1/n), n ∈ Z\{0}. For n =

±1,±2,±3 the instability zones are the shaded regions in Fig. 4 and Fig. 5.
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Figure 5: Stability diagram for the planar rotations (ω < 0).

• The instability zones become narrower and are located closer to the axis α as n

increases.

By analogy with the case of oscillations, we studied the stability problem at the bound-

aries of the instability zones where resonances of the first and second order take place.

The results of this study are shown in Fig. 4 and Fig. 5. As above, solid curves denote

stable boundaries and dashed curves denote unstable boundaries.

Appendix

If 2h0 < 3|α − 1|, then the planar motions of the satellite involve oscillations of the

symmetry axis of the inertia ellipsoid, which are described by the following formulas:

ψ = arcsin{k1sn[
√

3|α − 1|(ν − ν0) + K(k1); k1]} +
π

4
(sgn(α − 1) − 1),

pψ = k1

√

3|α − 1|cn[
√

3|α − 1|(ν − ν0) + K(k1); k1], (17)

where K(k1) is the complete elliptic integral of the first kind, whose modulus k1 is calcu-

lated by the following formula

k2
1 =

2h0

3|α − 1|
. (18)
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Let us note that k1 = sin ψ(ν0). Without loss of generality we can assume that ψ(ν0) = ψ0,

where ψ0 is the amplitude of oscillations.

If 2h0 > 3|α − 1|, then the planar motions of the satellite involve oscillations of the

symmetry axis of the inertia ellipsoid, which are described by the following formulas:

ψ = am

[

√

3|α − 1|

k2

(ν − ν0) + F (ψ0, |k2|); |k2|

]

,

pψ =

√

3|α − 1|

k2

dn

[

√

3|α − 1|(ν − ν0)

k2

+ F (ψ0, |k2|); |k2|

]

, (19)

where F (k2, ψ0) is the elliptic integral of the first kind. Its modulus k2 satisfies the

following relation:

k2
2 =

3|α − 1|

2h0

. (20)

If the rotation of the satellite with respect to orbital frame and the motion of its center of

mass have the same direction, then k2 is positive; otherwise k2 is negative. The frequency

of oscillations and the averaged angular velocity of rotations read, respectively

ω1 =
π
√

3|α − 1|

2K(k1)
, ω2 =

π
√

3|α − 1|

2k2K(|k2|)
. (21)

In the case of the planar oscillations, the action-angle variables w, I are introduced by

the following formulas:

ψ = arcsin

{

k1sn

[

2K(k1)

π
w; k1

]}

, pψ = k1

√

3|α − 1|cn

[

2K(k1)

π
w; k1

]

. (22)

In the case of the planar rotations, the above transformation reads

ψ = am

[

2K(|k2|)

π
w; |k2|

]

, pψ =

√

3|α − 1|

k2

dn

[

2K(|k2|)

π
w; |k2|

]

, (23)

where ki(i = 1, 2) and the action I are connected by the following relations:

I =
2

π

√

3|α − 1|[E(k1) − (1 − k2
1)K(k1)], I =

2
√

3|α − 1|

πk2

E(|k2|). (24)
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