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Components
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Abstract. It is considered a multivariate balanced mixed linear model without interaction for which the
matrices of the quadratic forms required to estimate the covariance components are expressed by linear
operators on finite dimensional inner product spaces.

The purpose of this article is to prove that the quadratic forms obtained by a Gram - Schmidt or-
thogonalizing process of design matrices are linear combinations of the quadratic forms derived by the
generalized fitting constants method. Some sufficient conditions for the existence of non-negative best
quadratic unbiased estimators (BQUE) for linear functions of covariance components are derived in a
coordinate-free approach.

Un proceso de ortogonalización de Gram-Schmidt de diseño de matrices en
modelos lineales como procedimiento para estimar la covarianza de las

componentes

Resumen. Se considera un modelo lineal mixto multivariante equilibrado sin interacción para el que las
matrices de las formas cuadráticas necesarias para estimar la covarianza de las componentes se expresan
mdiante operadores lineales en espacios con producto interior de dimensión finita.

El propósito de este artı́culo es demostrar que las formas cuadráticas obtenidas por el proceso de
ortogonalización de Gram-Schmidt de las matrices de diseño son combinaciones lineales de las formas
cuadráticas derivadas del método generalizado de ajuste de constantes. Se deducen algunas condiciones
suficientes para la existencia de mejores estimadores cuadrticos no sesgados (BQUE) para funciones
lineales de componentes de covarianza utilizando un método libre-coordenadas.

1 Introduction
The estimating procedures of covariance matrices in linear models may encounter the problem of negative
definite quadratic estimators.

Rao and Kleffe [13] developed estimation methods to obtain minimum norm quadratic unbiased es-
timators (MINQUE), minimum variance quadratic unbiased estimators (MIVQUE), maximum likelihood
estimators (MLE), but these are not necessarely positive definite quadratic forms.

A necessary and sufficient condition for admissible estimators of variance components to be non-
negative was established by Klonecki and Zontek [11] in univariate unbalanced mixed models. Using mo-
dels with only two covariance components matrices, Amemiya [1] and Andesrson, Anderson and Olkin [2]
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derived conditions for non-negativity of MLE of covariance components. For any balanced mixed linear
model, Calvin and Dykstra [8] proposed an estimating procedure of covariance matrices subject to the
restriction that the difference between certain pairs of matrices are non-negative definite. Wu and Pourah-
madi [21] derived nonparametric positive definite estimators of covariance matrices using autoregressive
models of a suitable order and assuming the stationarity of processes. The MLE of covariance components
in a completely balanced multivariate multi-way random effect model without interaction were obtained by
Tsai [20] using a new parametrization for covariance matrices.

In this paper it is considered a multivariate mixed linear model without interaction. The unbiased
estimators of covariance matrices obtained by a generalization of Henderson method III are presented in
Section 2. There are also proved some results regarding the orthogonal projections used to express these
estimators.

Section 3 deals with determining the linear operators of the quadratic forms founded by Tan [19] by
an orthogonalizing process of the design matrices corresponding to the model. It is shown that the two
estimating procedures - the generalized fitting constants method and the orthogonalizing process - have
the same solution (when it exists). The sufficient conditions for the existence of the non-negative BQUE
of linear parametric functions are expressed in Section 4 using the orthogonal projections defined for the
generalized fitting constants method. The results are illustrated on a two-factor random effects model
without interaction - univariate and multivariate cases - and some concluding remarks are made in Section 5.

2 The generalized fitting constants method

Let

Y = Xβ0 +
k∑

h=1

Zhβh + e (1)

be a multivariate mixed linear model, where X and Zh are N×m and N×nh design matrices, respectively,
β0 is an m × p matrix of unknown parameters, βh an nh × p matrix of random variables for h = 1, . . . k
and e is an N × p matrix of erorrs. It is assumed that the rows of βh and e are independent and identically
normal distributed random vectors with zero means and corresponding non-singular covariance matrices
Σh, h = 1, . . . k and Σe = Σk+1, respectively. Then the random matrix Y has the expected value

E(Y ) = Xβ0 (2)

and the covariance matrix

cov(Y ) =
k+1∑
h=1

(ZhZ ′
h)⊗ Σh (3)

where it is considered that Zk+1Z
′
k+1 = I is the identity N × N matrix and “⊗” is the Kronecker matrix

product.
Concerning vector space notions which are utilized in the sequel, we mention a few at this point (Hal-

mos [9]).
Let Lp1,p2 be the finite dimensional linear space of all p2 × p1 real matrices which is endowed with the

inner product 〈A,B〉 = tr(AB′) for arbitrary A,B ∈ Lp1,p2 and let P be a linear operator from Lp1,p2

to Lq1,q2 . The adjoint operator of P is the linear operator P ∗ from Lq1,q2 to Lp1,p2 having the property
〈P ∗A,B〉1 = 〈A,PB〉2 for all A ∈ Lq1,q2 and B ∈ Lp1,p2 . The inner products 〈·, ·〉1 〈·, ·〉2 are defined
on Lp1,p2 and Lq1,q2 , respectively. In the sequel it will be used the same trace inner product for all linear
spaces. The range of the linear operator P is the linear subspace R(P ) of Lq1,q2 spanned by the columnes
of P and the rank of P is denoted by r(P ).

The orthogonal complement of a non-empty subset A with respect to a certain inner product is denoted
by A⊥.
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In order to estimate the covariance components Σ1, . . . , Σk+1 by applying the Henderson method
III (Henderson [10], Searle [15]) it will be used the generalized least squares estimation procedure for
every i submodel constructed from model (1) with the design matrix Ui = (X, Z1, . . . , Zi) and having
Θi = (β′0, β

′
1, . . . , β

′
i) an p × (m +

∑i
h=1 nh) matrix of unknown parameters, i = 1, . . . , k. Then the

random matrix Y in the i submodel (considered as a fixed linear model) has expectation

E(Y ) = Xβ0 +
i∑

h=1

Zhβh = UiΘi (4)

and covariance matrix
cov(Y ) = I ⊗ Σe (5)

for all i = 1, . . . , k. If we denote U0 = X and Θ0 = β0, then there are k + 1 submodels of model (1).
For the i submodel Θ̂i = (U ′

iUi)−U ′
iY is the ordinary least squares estimator of Θi, where (U ′

iUi)− is a g-
inverse of U ′

iUi if Ui is not of full column rank, i = 0, 1, . . . , k. Then the linear operator

Pi = Ui(U ′
iUi)−U ′

i (6)

from Lp,N to Lp,N is an orthogonal projection on R(Ui) for all i = 0, 1, . . . , k.

Lemma 1 If the linear operator Pi is given by the relation (6), then

Pi = Pi−1 + (I − Pi−1)ZiT
−
i Z ′

i(I − Pi−1) (7)

where
Ti = Z ′

i(I − Pi−1)Zi (8)

for all i = 1, . . . , k.

PROOF. The recurrence formula (7) is proved using the formula for obtaining a generalized inverse of
a partitioned symmetric matrix [14] and noticeing that Ui = (Ui−1, Zi) for i = 1, . . . , k. �

Corollary 1 If the linear operator Pi given by (6) is an orthogonal projection on R(Ui), then it is an
orthogonal projection on R(Uh) for h = 0, 1, . . . , i− 1 and i = 1, . . . , k.

PROOF. For i = 1 we have P1U1Θ1 = U1Θ1. Then P1Xβ0 = Xβ0 because P0 = X(X ′X)−X ′ is
an orthogonal projection on R(U0).

It will be easily proved that PiUhΘh = UhΘh for all h = 0, 1, . . . , i− 1 using the relation (7). �

Lemma 2 If the linear operator Pi is given by the relation (6), then Pi−Pi−1 is an orthogonal projection
on R(Ui−1)⊥ for all i = 1, . . . , k.

PROOF. It is used Corollary (1). �

Corollary 2 If the linear operator Pi is defined by (6), then Pi − Pi−1 is an orthogonal projection on

R(X)⊥
⋂ [

i−1⋂
h=1

R(Zh)⊥
]

for i = 1, . . . , k.

Corollary 3 If the linear operator Pi is defined by (6), then Pi − Pi−1 is an orthogonal projection on

R(XX∗)⊥
⋂ [

h = 1i−1R(ZhZ∗
h)⊥

]
for i = 1, . . . , k.
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Applying the fitting constants method of Henderson in some univariate mixed linear models, Seely [16,
17] and Seely and Zyskind [18] provided necessary and sufficient conditions for the existence of the
quadratic unbiased estimators of variance-covariance components. The results could be extended to the
multivariate case of the model (1) under the assumptions (2), (3) (Beganu [3, 4, 5, 6]). It was proved that
the quadratic unbiased estimators of covariance components obtained by the generalized fitting constant
method are the solutions of the system

k∑
h=i

tr[Z ′
h(Pk − Pi−1)Zh] · Σh + [r(Uk)− r(Ui)] · Σe = Y ′(Pk − Pi−1)Y, i = 1, . . . , k

[N − r(Uk)] · Σe = Y ′(I − Pk)Y

(9)

where it was used a result obtained by Neudecker [12].
Thus the system can be solved when it is consistent (under certain conditions [7]) but the solution has

not necessarely non-negative definite components [17].

3 Orthogonalizing process-an estimating procedure
The purpose of this section is to prove that the quadratic estimators of covariance matrices obtained by
Tan [19] and by Henderson method III coincide for model (1).

It can be shown that the symmetric matrices founded by a Gram-Schmidt iterative method to orthogo-
nalize the design matrices of model (1) verify the relations

Wi =
i−1∏
h=1

(I −Wh)(I − P0)Zi[Z ′
i(I − P0)

i−2∏
h=1

(I −Wh)(I −Wi−1)·

i−2∏
h=1

(I −Wh)(I − P0)Zi]− · Z ′
i(I − P0)

i−1∏
h=1

(I −Wh)

(10)

and hence it can be written

Pi = P0 +
i∑

h=1

Wh (11)

where Pi is given by (6) for all i = 1, . . . , k.

Theorem 1 If Pi is the orthogonal projection (6) on R(Ui) and Wi is the linear operator from Lp,N to
Lp,N verifying the relation (10), then

Wi = (I − Pi−1)ZiT
−
i Z ′

i(I − Pi−1) = Pi − Pi−1 (12)

where Ti is given by (8) for i = 1, . . . , k.

PROOF. It is easy to prove that

i−1∏
h=1

(I −Wh)(I − P0) = I − Pi−1

if the results of Corollary 1 and relation (11) are used for i = 1, . . . , k. Then

Z ′
i(I − P0)

i−1∏
h=1

(I −Wh)
i−2∏
h=1

(I −Wh)(I − P0)Zi

= Z ′
i(I − Pi−1)(I − Pi−2)Zi = Z ′

i(I − Pi−1)Zi = Ti
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for all i = 1, . . . , k. Hence the first equality from (12) is true and the second equality results from (11).
The generalized quadratic forms corresponding to the symmetric matrices Wi given by (12) will have

the expected values

E(Y ′WiY ) =
k∑

h=i

tr(Z ′
hWiZh) · Σh + [r(Ui)− r(Ui−1] · Σe

for i = 1, · · · k and
E[Y ′(I −Wk)Y ] = [N − r(Uk)] · Σe.

These expressions could be obtained from the assumptions (2) and (3) and the results of Corollaries 2
and 3. Then the estimating equations founded by Gram-Schmidt method to orthogonalize the design matri-
ces of model (1) become

k∑
h=i

tr(Z ′
hWiZh) · Σh + [r(Ui)− r(Ui−1)] · Σe = Y ′WiY i = 1, . . . , k

[N − r(Uk)] · Σe = Y ′(I −Wk)Y

(13)

It is easy to see using the relation (12) that the estimating equations (9) and (13) yield the same unbiased
quadratic estimators of Σ1, . . . ,Σk,Σe.

4 Non-negative BQUE of covariance components
The existence of non-negative BQUE of covariance components is not generally considered for Henderson
method III estimating procedure. For particular model (1) Tan [19] proved in Theorem 3.1 some sufficient
conditions to exist non-negative BQUE for linear combinations of covariance components. These conditions
can be enounced in the framework of coordinate-free approach as follows:

Theorem 2 Let Wi be the linear operator (10) for i = 1, . . . , k. If:

(i) WiD is an orthogonal projection on
k+1⋂
h=i

R(ZhZ∗
h)⊥, i = 1, . . . , k, for any linear operator D which

is an orthogonal projection on

R(XX∗)⊥
⋂ [

k+1⋂
h=1

R(ZhZ∗
h)⊥

]
,

(ii) the matrices Wi and Z ′
hWiZh have equal diagonal elements for all h = i, . . . , k,

then Y ′WiY is a non-negative BQUE of E(Y ′WiY ) for i = 1, . . . , k.

Corollary 4 If the conditions (i) and (ii) hold, then Y ′(Pk − Pi−1)Y is a non-negative BQUE for the
linear function of Σi, . . . ,Σk, and Σe expressed by the left-side of the relations (9) for all i = 1, . . . , k.

Corollary 5 If Pk has equal diagonal elements then Y ′(I−Pk)Y is a non-negative BQUE of [N−r(Uk)]·
Σe.

These results can be extended for linear parametric functions
∑k+1

i=1 λiΣi, where λ = (λ1, . . . , λk+1)′ ∈
Rk+1 and denoting the symmetric matrices of the quadratic forms from (9) by Qi = Pk − Pi−1 for i =
1, . . . , k and Qk+1 = I − Pk.
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Theorem 3 If the linear operator Wi verifies conditions (i) and (ii) and if there exists ρ ∈ Rk+1 such that
the equations 

i∑
h=1

tr(Z ′
iQhZi) · ρh = λi, i = 1, . . . , k

k∑
h=1

[r(Uk)− r(Uh−1)] · ρh + [N − r(Uk)] · ρk+1 = λk+1

(14)

are satisfied for every λ ∈ Rk+1, then the linear function
∑k+1

i=1 ρiY
′QiY is a non-negative BQUE of∑k+1

i=1 λiΣi.

PROOF. The results of Theorem (2) in [17] and of Corollary (2) in [7] are used in order to obtain that a
linear parametric function

∑k+1
i=1 λiΣi is estimable if the equations (14) are consistent for every λ ∈ Rk+1.

�
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