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Weighted (LB)-spaces of Holomorphic Functions and the Dual
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Elke Wolf

Abstract. We consider weighted inductive limits of spaces of holomorphic functions which are de-
fined as countable unions of weighted Banach spaces of type H∞. We study the problem of projective
description and analyze when these spaces have the dual density conditions of Bierstedt and Bonet.

Espacios (LB) ponderados de funciones holomorfas

Resumen. Consideramos lı́mites inductivos ponderados de espacios de funciones holomorfas que
están definidos como la unión numerable de espacios ponderados de Banach de tipo H∞. Estudiamos el
problema de la descripción proyectiva y analizamos cuando estos espacios tienen la condición de densidad
dual de Bierstedt y Bonet.

1 Introduction
Countable locally convex inductive limits of spaces of holomorphic functions arise in linear partial differ-
ential equations, convolution equations, distribution theory and representation of distributions as boundary
values of holomorphic functions, complex analysis in one and several variables and spectral theory and the
holomorphic calculus. The problem of projective description for weighted (LB)-spaces of holomorphic
functions on G is to find out, under which conditions one of the following assertions holds

(1) V0H(G) = HV 0(G) algebraically and topologically resp.

(2) VH(G) = HV (G) algebraically and topologically.

A positive answer is important because in that case it is possible to describe the topology of the weighted
(LB)-space of holomorphic functions with help of the system (‖ · ‖v)v∈V of weighted sup-seminorms.

The main result of Bierstedt, Meise and Summers [11] yields that projective description holds alge-
braically and topologically if V = (vn)n∈N has condition

(S) ∀n ∈ N ∃m > n such that vm/vn vanishes at ∞ on G.

Positive results for weighted (LB)-spaces of holomorphic functions on D can also be found in [7]
and [23]. There condition (S) is not needed, but each weight has to be normal in the sense of Shields and
Williams, see [22].
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In general the answer to the problem of projective description is negative, see [13, 14, 15]. Taylor as
well as Bierstedt, Meise and Summers ([29] or [30] Proposition 2 resp. [11]) showed that HV (G) and
VH(G) coincide algebraically and have the same bounded subsets. VH(G) always is a regular inductive
limit.

In particular, inductive limits arise in connection with distributions and the Paley-Wiener-Schwartz
theorems. Some important examples are listed below:

(1) This example is taken from [11]. We consider the space W = E = E(RN ) of all infinitely often
differentiable functions on RN , endowed with its usual (F )-space topology. A suitable version of
the Paley-Wiener-Schwartz theorem yields that the Fourier transform is a topological isomorphism
from the space W ′ = E ′ of all distributions with compact support, endowed with the strong topology
β(E ′, E) onto Ŵ ′ = VH(CN ), where V = (vn)n∈N is defined by

vn(z) =
N∏

j=1

exp(−n|Im(zj)|
(1 + |zj |)n

, z = (z1, . . . , zN ) ∈ CN .

In this case we have VH(CN ) = V0H(CN ) = HV 0(CN ) = HV (CN ).

(2) Let V = (vn)n∈N be given by

vn(z) = (1− |z|2)n, z ∈ D, n ∈ N.

The inductive limit VH(G) is often denoted by A−∞ and is a space of Bergman type. We refer
to [18].

(3) The following example was studied in [25]. Given a bounded convex domain G ⊂ C as well as
dG(z) = inft∈∂G |z − t|, z ∈ G. Then we define V = (vn)n∈N by

vn(z) := (min(1, (dG(z))n)), z ∈ G, n ∈ N.

In [25] VH(G) is denoted by A−∞(G).

The dual density conditions were introduced by Bierstedt and Bonet in [4]. In case of weighted (LB)-
spaces of continuous functions they showed that projective description is equivalent to VC(X) having the
dual density condition. It remained open what happens in the case of holomorphic functions. In this article
we show that the result of Bierstedt and Bonet remains true in the framework of the class W of radial
weights on the unit disk which was introduced by Bierstedt and Bonet in [7].

This article is organized as follows. Section 2 gives the necessary notations and definitions. In Section 3
we study when the projective hulls satisfy the dual density condition(s) and when they have metrizable
bounded sets. Section 4 is devoted to the class W of radial weights on the unit disk. In this framework we
prove that projective description is equivalent to VH(D) having the dual density condition.

2 Definitions and Notations
Our notation on locally convex (l.c.) spaces is standard; see for example Jarchow [19], Köthe [20], Meise,
Vogt [24] and Pérez Carreras, Bonet [26]. For a locally convex space E, E∗ denotes the space of all linear
functionals on E while E′ is the topological dual and E′

b the strong dual. If E is a locally convex space,
U0(E) and B(E) stand for the families of all absolutely convex 0-neighborhoods and absolutely convex
bounded sets in E, respectively.

A locally convex space E is called (DF )-space if the following conditions are satisfied:

(1) E has a fundamental sequence of bounded subsets.
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(2) For every sequence (Un)n∈N of closed, absolutely convex 0-neighborhoods in E such that U :=
∩n∈NUn absorbs each bounded subset of E, U is a 0-neighborhood in E.

(DF )-spaces were introduced by Grothendieck in [17]. Main examples of (DF )-spaces are strong
duals of Fréchet spaces and (LB)-spaces. Conversely, the strong dual of a (DF )-space is always a Fréchet
space.

A locally convex space E is said to satisfy the countable neighborhood property (c.n.p.) if for every
sequence (Un)n∈N of 0-neighborhoods in E there are numbers an > 0 such that

U :=
⋂
n∈N

anUn

is a 0-neighborhood in E. The c.n.p. was given implicitly by Schwartz (see [28] on p. 95) and has got its
name by Floret in [16]. By [26] Corollary 8.3.3 and Proposition 8.3.5 each (DF )-space has the countable
neighborhood property.

The dual density conditions were introduced for locally convex spaces and thoroughly studied in the
case of (DF )-spaces by Bierstedt and Bonet in [4].

A locally convex space E is said to satisfy the dual density condition (DDC) (resp. the strong dual
density condition (SDDC)) if the following holds: for every function λ : B(E) → R+\{0} and for every
A ∈ B(E) there are a finite subset B of B(E) and U ∈ U(E) such that

A ∩ U ⊂ Γ

( ⋃
B∈B

λ(B)B

) (
resp. Γ

( ⋃
B∈B

λ(B)B

))
,

where Γ (resp. Γ) denotes the absolutely convex hull (resp. the closed absolutely convex hull).
In [4] Bierstedt and Bonet showed that the dual density conditions are equivalent in E if E is the strong

dual of a Fréchet space. Moreover, a (DF )-space E has the dual density condition if and only if the
bounded sets in E are metrizable (see [4] 2. Remarks and 5. Theorem). Finally a Fréchet space E satisfies
the density condition if and only if its strong dual has (DDC) (or equivalent (SDDC)).

In the sequel G denotes an open subset of CN , N ≥ 1. The space H(G) of all holomorphic functions
on G will usually be endowed with the topology co of uniform convergence on the compact subsets of G.
For a decreasing sequence V = (vn)n∈N of strictly positive continuous functions (weights) on G we define

Hvn(G) := {f ∈ H(G); ‖f‖n := sup
z∈G

vn(z)|f(z)| < ∞},

H(vn)0(G) := {f ∈ H(G); vn|f | vanishes at ∞ on G},

VH(G) := indnHvn(G) and V0H(G) := indnH(vn)0(G).

Bn (resp. Bn,0) denotes the closed unit ball of Hvn(G) (resp. H(vn)0(G)). By Bn and Bn,0 we denote
the co-closures of the corresponding sets. Note that Bn = Bn. The system V of weights was introduced
in [11] as

V := {v : G →]0,∞[; v continuous, ∀k ∃rk > 0 : v ≤ inf
k

rkvk on G}.

The corresponding weighted spaces for V are called projective hulls and are given by

HV (G) := {f ∈ H(G); ‖f‖v := sup
z∈G

v(z)|f(z)| < ∞ ∀v ∈ V },

HV 0(G) := {f ∈ H(G); v|f | vanishes at ∞ on G ∀v ∈ V }.

The system (Cv)v∈V (resp. (Cv,0)v∈V ) , where

Cv := {f ∈ HV (G); ‖f‖v ≤ 1} and Cv,0 := {f ∈ HV 0(G); ‖f‖v ≤ 1},
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gives a 0-neighborhood base of HV (G) (resp. HV 0(G)). We write Cv and Cv,0 to refer to the co-closure.
An important tool to handle weighted spaces of holomorphic functions are the so called associated

growth conditions mentioned by Andersen and Duncan in [1] and studied thoroughly by Bierstedt, Bonet
and Taskinen in [9]. Let v be a weight on G. Its associated growth condition is defined by

∼
v(z) := sup{|g(z)|; g ∈ H(G), |g| ≤ v}, z ∈ G.

A weight v on a balanced domain G ⊂ CN , N ≥ 1, is said to be radial if v(z) = v(λz) holds for every
λ ∈ C such that |λ| = 1. On a balanced open subset G of CN , N ≥ 1, each f ∈ H(G) has a Taylor series
representation about zero,

f(z) =
∞∑

k=0

pk(z), z ∈ G,

where pk is a k-homogeneous polynomial (k = 0, 1, . . .). The series converges to f uniformly on each
compact subset of G. The Cesàro means of the partial sums of the Taylor series of f are denoted by Sn(f)
(n = 0, 1, . . .); that is,

[Sn(f)](z) =
1

n + 1

∞∑
l=0

(
l∑

k=0

pk(z)

)
, z ∈ G.

Each Sn(f) is a polynomial (of degree ≤ n) and Sn(f) → f uniformly on every compact subset of G
(f ∈ H(G) arbitrary).

3 The dual density conditions in projective hulls
In this section we study when HV (G) (resp. HV 0(G)) has the dual density conditions. Moreover we show
that HV (G) has (DDC) if and only if it satisfies (SDDC). Finally we analyze when these spaces have
metrizable bounded sets. First we need some auxiliary results.

Lemma 1 Let E be a l.c. space with the fundamental sequence (Bn)n∈N of bounded subsets. E has
(DDC) (resp. (SDDC)) if and only if for every sequence (λj)j∈N of strictly positive numbers and for
every n ∈ N there are m > n and U ∈ U(E) such that

Bn ∩ U ⊂
m∑

j=1

λjBj

resp. Bn ∩ U ⊂
m∑

j=1

λjBj

 (1)

PROOF. If E has (DDC), for every sequence (λj)j∈N of strictly positive numbers and for every n ∈ N
there are m > n and U ∈ U(E) such that Bn ∩ U ⊂ Γ

(
∪m

j=1λjBj

)
⊂
∑m

j=1 λjBj .
Conversely, we fix a sequence (µj)j∈N of strictly positive numbers and n ∈ N. Put λj := µj

2j for every
j ∈ N and apply (1). Then there are m > n and U ∈ U(E) with

Bn ∩ U ⊂
m∑

j=1

λjBj =
m∑

j=1

µj

2j
Bj ⊂ Γ

(
∪m

j=1µjBj

)
.

Hence, E has the dual density condition.
For the strong dual density condition the proof is analogous. �

152



Weighted (LB)-spaces of holomorphic functions

Lemma 2 HV (G) has (DDC) if and only if it satisfies (SDDC).

PROOF. The previous lemma and the fact that HV (G) and the regular inductive limit VH(G) have
the same bounded sets imply that HV (G) has the dual density condition if and only if for every sequence
(λj)j∈N of strictly positive numbers and for every n ∈ N we can find m > n and v ∈ V such that
Bn∩Cv ⊂

∑m
j=1 λjBj .

∑m
j=1 λjBj is co-compact, hence closed in HV (G). We conclude

∑m
j=1 λjBj =∑m

j=1 λjBj . An application of Lemma 1 yields the claim. �

Proposition 1 Let G be a balanced open subset of CN , N ≥ 1. Moreover we assume that V = (vn)n∈N
is a decreasing sequence of strictly positive continuous and radial functions on G such that H(v1)0(G)
contains the polynomials. If HV (G) (resp. HV 0(G)) has the dual density condition, then the following
condition holds:

(∗) for every sequence (λj)j∈N of strictly positive numbers and for every n ∈ N there are m > n
and v ∈ V such that (

min
(

1
vn

,
1
v

))∼
≤

m∑
j=1

λj

vj
on G.

PROOF. By definition, for every sequence (λj)j∈N of strictly positive numbers and every n ∈ N there
are m > n and v ∈ V such that

Bn ∩ Cv ⊂
m∑

j=1

λjBj

 resp. Bn,0 ∩ Cv,0 ⊂
m∑

j=1

λjBj,0

 . (2)

It is enough to show that (2) implies (∗). We fix f ∈ H(G) such that |f | ≤
(
min

(
1

vn
, 1

v

))∼
on G;

hence |f | ≤ 1
vn

and |f | ≤ 1
v on G. W.l.o.g. we can choose v ∈ V strictly positive, continuous and radial

(see [8]).
Now, we consider the sequence (Skf)k∈N of the Cesàro means (of the partial sums) of the Taylor series

about 0. We obtain |Skf | ≤ 1/vn and |Skf | ≤ 1/v on G (see [8, Proposition 1.2.(c)]). Moreover, each
polynomial Skf is an element of HV (G) (resp. HV 0(G)) and hence of Bn ∩ Cv (resp. Bn,0 ∩ Cv,0). (2)
yields Skf ∈

∑m
j=1 λjBj =

∑m
j=1 λjBj (resp. Skf ∈

∑m
j=1 λjBj,0 ⊂

∑m
j=1 λjBj) for every k ∈ N.

Thus, each Skf can be written as Skf =
∑m

j=1 λjgj where gj ∈ Bj for every j ∈ {1, . . . ,m}. We get

|Skf | ≤
m∑

j=1

λj

vj
on G for every k ∈ N.

Since Skf → f pointwise, we obtain that |f | ≤
∑m

j=1 λj/vj on G. Taking the supremum over all f
we get (∗). �

There are sequences V = (vn)n∈N of strictly positive continuous functions on an open subset G of CN ,
N ≥ 1, with condition (∗) such that VH(G) and HV (G) do not coincide topologically:

In [14] Bonet and Taskinen constructed a sequence V = (vn)n∈N of strictly positive continuous func-
tions on an open set G ⊂ C2 with condition

(M) ∀n ∈ N ∀Y not relatively compact in X ∃m = m(n, Y ) > n such that: infy∈Y
vm(y)
vn(y) = 0 such

that HV (G) and VH(G) do not coincide. We know that (M) implies
(V2) for every sequence (λj)j∈N of strictly positive numbers and for every n ∈ N there are m > n

and v ∈ V with

min
(

1
vn

,
1
v

)
≤

m∑
j=1

λj

vj
on G
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(see [10] and [2, Proposition I.2.4]). (∗) obviously follows from (V2). Note that (∗) differs from (V2) by
using associated growth conditions.

By [4, Theorem 1.5] a (DF )-space has the dual density condition if and only if it has metrizable
bounded sets. The last property can be characterized for HV (G). We need some preparations.

Proposition 2 Let E be a l.c. space with the c.n.p. and a fundamental sequence (Bn)n∈N of bounded
sets. Then E has metrizable bounded sets if and only if there is U ∈ U(E) such that for every n ∈ N and
every V ∈ U(E) there is a > 0 with

Bn ∩ aU ⊂ V. (3)

PROOF. First we assume that condition (3) is satisfied. Since
(

1
mU

)
m∈N is a 0-neighborhood base in

Bn, n ∈ N arbitrary, with respect to the topology induced by E, this yields the claim.
Conversely, we assume that E has metrizable bounded sets. We fix n ∈ N and choose a decreasing

sequence (Vn,k)k∈N of absolutely convex 0-neighborhoods in E such that for every V ∈ U(E) there is
k ∈ N with Bn∩Vn,k ⊂ V . We apply the c.n.p. to find numbers an,k > 0 such that U :=

⋂
n,k∈N an,kVn,k

is a 0-neighborhood with all the desired properties. �

Lemma 3 HV (G) has the c.n.p.

PROOF. By [12, Theorem 1.6], CV (G) is a (DF )-space, hence satisfies the c.n.p. (see [26, Proposi-
tion 8.3.5]). Since HV (G) is a topological subspace of CV (G), HV (G) also has the c.n.p. �

Proposition 3 Consider the following assertions.

(a) HV (G) (resp. HV 0(G)) has metrizable bounded sets.

(b) V = (vn)n∈N satisfies the following condition: there is v ∈ V such that for every w ∈ V there is
a > 0 with (

min
(

1
vn

,
a

v

))∼
≤ 1

w
on G. (4)

Then (a) implies (b). If we assume in addition that G ⊂ CN , N ≥ 1, is balanced and V = (vn)n∈N
is a decreasing sequence of strictly positive continuous and radial functions on G such that H(v1)0(G)
contains the polynomials, then (a) follows from (b).

PROOF. By Proposition 2, HV (G) (resp. HV 0(G)) has metrizable bounded sets if and only if there
is v ∈ V such that for every n ∈ N and every w ∈ V there is a > 0 with

Bn ∩ aCv ⊂ Cw (resp. Bn,0 ∩ aCv,0 ⊂ Cw,0) . (5)

To finish the proof we have to show the equivalence of (4) and (5).

(4) =⇒ (5): We fix f ∈ Bn ∩aCv (resp. Bn,0 ∩aCv,0). Hence f is an element of HV (G) (resp. HV 0(G))

with |f | ≤
(
min

(
1

vn
, a

v

))∼
≤ 1

w on G. Thus, f belongs to Cw (resp. Cw,0).

(5) =⇒ (4): Under the additional assumptions we fix f ∈ H(G) such that |f | ≤
(
min

(
1

vn
, a

v

))∼
on G.

This implies |f | ≤ 1
vn

and |f | ≤ a
v on G.

W.l.o.g. we can find v ∈ V strictly positive, continuous and radial. From this point on the proof works
analogously to the proof of Proposition 1. �
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4 The dual density conditions for inductive limits
This section is devoted to the class W of radial weights on the unit disk. We study when the weighted
inductive limits of holomorphic functions have the dual density conditions and analyze the connection
between the dual density conditions and the problem of projective description.

First of all we introduce the class W of radial weights on the unit disk. Let W be a class of strictly
positive continuous radial weights v on the unit disc D which satisfy limr→1− v(r) = 0 and for which the
restriction of v to [0, 1) is non-increasing. We suppose that the class W is stable under finite minima and
under multiplication by positive scalars.

Next, we assume that there is a sequence Rn : H(D) → H(D), n ∈ N, of linear operators which
are continuous for the compact open topology and such that the range of each Rn is a finite dimensional
subspace of the polynomials. It is also assumed that RnRm = Rmin(n,m) holds for each n, m with n 6= m
and that for each polynomial p there is n such that Rnp = p, from which it follows that Rmp = p for
each m ≥ n. Moreover, we suppose that there is c > 0 such that sup|z|=r |Rnp(z)| ≤ c sup|z|=r |p(z)| for
each n, each r ∈ (0, 1) and each polynomial p.

Finally, setting R0 := 0, and putting rn := 1 − 2−n, n ∈ N ∪ {0}, we assume that the following
conditions are satisfied by the class W:

(P1) There is C ≥ 1 such that for each v ∈ W and for each polynomial p:

1
C

sup
n

(
sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|

)
v(rn) ≤ ‖p‖v

≤ C sup
n

(
sup
|z|=rn

|(Rn+1 −Rn)p(z)|

)
v(rn).

(P2) For each v ∈ W there is D(v) ≥ 1 such that for each sequence (pn)n∈N of polynomials of which
only finitely many are non-zero:

sup
z∈D

∣∣∣∣∣
∞∑

n=1

(Rn+1 −Rn)pn(z)

∣∣∣∣∣ v(z) ≤ D(v) sup
k

(
sup
|z|=rk

|pk(z)|

)
v(rk).

The main example for W is the set of all the strictly positive continuous radial weights v on D which
satisfy limr→1− v(r) = 0, are non-increasing on [0, 1), and such that there are ε0 > 0 and k(0) ∈ N with
the following conditions:

(L1) inf
k

v(rk+1

v(rk)
≥ ε0,

(L2) lim sup
k→∞

v(rk+k(0))
v(rk)

< 1− ε0.

In this case, Rn is the convolution with the de la Vallée Poussin kernel, i.e. for a holomorphic function
f on D, f(z) =

∑∞
k=0 akzk, we have

Rnf(z) :=
2n∑

k=0

akzk +
2n+1∑

k=2n+1

2n+1 − k

2n
akzk.

In fact, Rn is nothing but the arithmetic mean of the partial sums of index 2n, . . . , 2n+1−1 of the Taylor
series of f . The conditions (L1) and (L2) form a uniform version of the conditions introduced by W. Lusky
in [21, 22], and they also appear in the sequence space representations for weighted (LB)-spaces given by
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Mattila, Saksman, Taskinen [23]. Bierstedt and Bonet showed that (L1) and (L2) imply the conditions (P1)
and (P2) (see [7]).

In this section we show that under certain assumptions the dual density condition for HV (D), HV 0(D),
VH(D) and V0H(D) is satisfied if and only if V enjoys condition (∗) of Proposition 1. This is equivalent
to the topological equality VH(D) = HV (D). This is similar to the result of Bierstedt and Bonet, [5], in
the setting of continuous functions.

In the sequel we assume w.l.o.g. that vn ≥ 2vn+1 on G. First we need some auxiliary results.

Lemma 4 Let G be a balanced open subset of CN , N ≥ 1, and V = (vn)n∈N be a decreasing sequence of
strictly positive continuous and radial functions on G such that H(v1)0(G) contains the polynomials and
such that V0H(G) is a topological subspace of HV 0(G). Then (Cn)n∈N, Cn := Bn ∩ V0H(G) for every
n ∈ N, yields a fundamental sequence of bounded sets in V0H(G).

PROOF. Obviously, each bounded set B in V0H(G) is also bounded in HV (G). Hence there is n ∈ N
with B ⊂ Cn. On the other hand, each Cn is bounded in HV (G). Each Cn is contained in V0H(G). Since
V0H(G) is a topological subspace of HV 0(G), Cn is bounded in V0H(G). �

Proposition 4 Let G and V be as in the previous lemma. The space of all polynomials P (endowed with
the topology induced by V0H(G)) satisfies the dual density condition if and only if V0H(G) has the dual
density condition.

PROOF. First, we show that P is large in V0H(G), i.e. each bounded set in V0H(G) is contained in
the closure of a bounded set in P with respect to V0H(G). For this we fix n ∈ N and f ∈ Cn. The sequence
(Skf)k∈N converges to f in HV 0(G) (see [8, Section 1]), hence in V0H(G) by assumption. Moreover,

each polynomial Skf belongs to Bn ∩ V0H(G) = Cn. We conclude Cn ⊂ P ∩Bn
V0H(G)

. It remains
to show that P has the dual density condition if and only if V0H(G) also satisfies this property. Since
V0H(G) is a (DF )-space and P is large in V0H(G), from [26, 8.3.24] we know that P is a (DF )-space.
An application of [4, Remark 1.10.(b)] yields that P has the dual density condition if and only if V0H(G)
also satisfies this property. �

In the sequel we always assume that the sequence V of weights is contained in the classW . In particular,
note that if V = (vn)n∈N ⊂ W is a decreasing sequence of strictly positive continuous functions on D such
that H(v1)0(D) contains the polynomials, then P has the dual density condition if and only if V0H(D) also
enjoys this property (see [7]).

Theorem 1 Let V = (vn)n∈N ⊂ W be a decreasing sequence of strictly positive continuous functions
on D such that H(v1)0(D) contains the polynomials. Then the following are equivalent:

(a) V0H(D) has the dual density condition.

(b) VH(D) enjoys the dual density condition.

(c) HV 0(D) satisfies the dual density condition.

(d) V = (vn)n∈N satisfies condition (∗).

PROOF. By [6, Proposition 4] we have VH(D) = (V0H(D)′b)
′
i.

(a) =⇒ (b): Let V0H(D) have the dual density condition. Then each bounded subset of V0H(D) is metriz-
able by [4, Theorem 1.5.(a)]. [3, Theorem 1.4] yields that V0H(D)′b has the density condition and is distin-
guished. Thus, VH(D) = (V0H(D)′b)

′
i = VH(D)′′bb , and VH(D) has the dual density condition.

(b) =⇒ (a): Let VH(D) have the dual density condition. Since VH(D) = (V0H(D)′b)
′
i holds, by [27,

Corollary 2], V0H(D)′b has the density condition. An application of [3, Theorem 1.4 and Theorem 1.5.(b)]
implies that V0H(D) enjoys the dual density condition.
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(a) ⇐⇒ (c): By [7, Theorem 1], V0H(D) is a dense topological subspace of HV 0(D). In particular
HV 0(D) is a (DF )-space (see [19, Theorem 12.4.8 (d)]). Using [4, 1.10.(a) and (b)] we obtain the desired
equivalence.

(c) =⇒ (d): This follows immediately from Proposition 1.

(d) =⇒ (c): We assume that (d) is satisfied. By Lemma 1 we have to show:

For every sequence (µk)k∈N of strictly positive numbers and every n ∈ N there are m > n

and v ∈ V with Bn,0 ∩ Cv,0 ⊂
∑m

k=1 µkBk,0.

Since (a) and (c) are equivalent, it suffices to consider only polynomials. We fix n ∈ N as well as a
sequence (µk)k∈N of strictly positive numbers. The assumption (d) yields m > n and v ∈ V . Now put

λk :=
µk

(2c2 + max1≤i≤m Di)Cm
for every k ∈ N,

where c is the constant from the estimate before condition (P1), C the constant from (P1) and Di = D(vi)
for every 1 ≤ i ≤ m in the sense of (P2).

We fix p ∈ (Bn,0 ∩ Cv,0) ∩ P . Then |p| ≤ min
(

1
vn

, 1
v

)∼
on D and (d) implies

(
min

(
1

vn
, 1

v

))∼
≤∑m

k=1
λk

vk
≤ max

(
mλ1
v1

, . . . , mλm

vm

)
on D.

Putting w := min
(

v1
mλ1

, . . . , vm

mλm

)
, w is an element of the class W and w|p| ≤ 1 on D.

We write κi := 1
mλi

for every i ∈ {1, . . . ,m}, hence w = min(κ1v1, . . . , κmvm).
We have p =

∑∞
n=0(Rn+1 −Rn)p = R1p +

∑∞
n=1(Rn+1 −Rn)p, and the sum is finite. We first treat the

term R1p.
By the condition before (P1) and the estimate on w|p|, we get

w(r1) sup
|z|=r1

|R1p(z)| ≤ cw(r1) sup
|z|=r1

|p(z)| ≤ c.

We select i ∈ {1, . . . ,m} with w(r1) = κivi(r1). From the second inequality in (P1), applied to the
polynomial R1p and vi, and once more the condition before (P1), we conclude

sup
z∈D

vi(z)|R1p(z)| ≤ C sup
n

vi(rn)

(
sup
|z|=rn

|(Rn+1 −Rn)R1p(z)|

)
= Cvi(r1) sup

|z|=r1

|(R2 −R1)R1p(z)|

= C(κi)−1w(r1) sup
|z|=r1

|(R2 −R1)R1p(z)|

≤ 2cC(κi)−1w(r1) sup
|z|=r1

|R1p(z)|

≤ 2c2C(κi)−1.

This implies one of the following facts: R1p ∈ 2Cc2mλ1B1,0, . . . , R1p ∈ 2Cc2mλmBm,0.
To treat the other term p−R1p =

∑∞
n=1(Rn+1−Rn)p, we first apply the first inequality in (P1) for w

and the estimate for w|p| to get

w(rn)

(
sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|

)
≤ C (6)

for every n ∈ N. We can write N as a disjoint union ∪m
i=1Ji such that

w(rj) = κivi(rj) for j ∈ Ji, 1 ≤ i ≤ m.
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Now put gi =
∑

n∈Ji
(Rn+1 − Rn)p for i ∈ {1, . . . ,m}, which is a polynomial; clearly p − R1p =∑m

i=1 gi. We fix i ∈ {1, . . . ,m} and let pi
n := (Rn+2 − Rn−1)p for n ∈ Ji and pi

n := 0 otherwise. The
properties of the sequence (Rn)n∈N imply

gi =
∑
n∈Ji

(Rn+1 −Rn)(Rn+2 −Rn−1)p =
∞∑

n=1

(Rn+1 −Rn)pi
n,

and all the sums are finite; hence

sup
z∈D

vi(z)|gi(z)| = sup
z∈D

vi(z)

∣∣∣∣∣
∞∑

n=1

(Rn+1 −Rn)pi
n

∣∣∣∣∣ .
Since only a finite number of the pi

n are non-zero and all the weights belong to the class W , we can
apply (P2) and the estimate (6) to conclude

sup
z∈D

vi(z)|gi(z)| ≤ Di sup
n

(
sup
|z|=rn

|pi
n(z)|

)
vi(rn)

≤ Di sup
n∈Ji

(
sup
|z|=rn

|pi
n(z)|

)
vi(rn)

= Di sup
n∈Ji

(
sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|

)
vi(rn)

≤ Di(κi)−1 sup
n∈Ji

(
sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|

)
w(rn)

≤ Di(κi)−1C.

This yields gi ∈ mλiDiCBi,0 for every i ∈ {1, . . . ,m}. Thus we have one of the following inclusions

p = R1p +
m∑

i=1

gi ∈ (2c2 + D1)Cλ1mB1,0 +
m∑

i=2

DiCλimBi,0 ⊂
m∑

i=1

µiBi,0, . . . ,

p = R1p +
m∑

i=1

gi ∈
m−1∑
i=1

DiCλimBi,0 + (2c2 + Dm)CλmBm,0 ⊂
m∑

i=1

µiBi,0.

Hence HV 0(D) has the (strong) dual density condition. �

Theorem 2 Let V = (vn)n∈N ⊂ W be a decreasing sequence of strictly positive continuous functions on
D. The following are equivalent:

(a) HV (D) enjoys the dual density condition (or equivalently the strong dual density condition).

(b) The sequence V = (vn)n∈N satisfies condition (∗).

PROOF. (a) =⇒ (b): This is Proposition 1.

(b) =⇒ (a): This proof is very similar to the one of the implication (d) =⇒ (c) in Theorem 1. Since there
are some technical changes, we give the full proof here. We assume that (b) is true. By Lemma 1 we have
to show:

for every sequence (µk)k∈N of strictly positive numbers and every n ∈ N there are m > n
and v ∈ V with Bn ∩ Cv ⊂

∑m
k=1 µkBk.
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We fix n ∈ N and a sequence (µk)k∈N of strictly positive numbers and we apply (b) to find m > n and
v ∈ V . Now put

λk :=
µk

C(2c2 + max1≤j≤m Dj)Cm
for every k ∈ N,

where c is the constant from the estimate before condition (P1), C the constant from P1) and Dj = D(vj)
for every 1 ≤ j ≤ m in the sense of (P2).

We fix f ∈ (Bn ∩ Cv) ∩ P . Then |f | ≤ min
(

1
vn

, 1
v

)∼
on D and (b) implies

(
min

(
1

vn
, 1

v

))∼
≤∑m

k=1
λk

vk
≤ max

(
mλ1
v1

, . . . , mλm

vm

)
on D.

Putting w := min
(

v1
mλ1

, . . . , vm

mλm

)
, w is an element of the class W .

We write κi := 1
mλi

for every i ∈ {1, . . . ,m}, hence w = min(κ1v1, . . . , κmvm).
Using the Cesàro means (of the partial sums) of the Taylor series of f about 0 we obtain a sequence

(Skf)k∈N of polynomials with w|Skf | ≤ w|f | ≤ 1 for every k ∈ N and Skf → f in (H(D), co).
We have Skf =

∑∞
n=0(Rn+1 − Rn)Skf = R1Skf +

∑∞
n=1(Rn+1 − Rn)Skf , and the sum is finite.

We first treat the term R1Skf .
By the condition before (P1) and the estimate on w|Skf |, we get

w(r1) sup
|z|=r1

|R1Skf(z)| ≤ cw(r1) sup
|z|=r1

|Skf(z)| ≤ c.

We select i ∈ {1, . . . ,m} with w(r1) = κivi(r1). From the second inequality in (P1), applied to the
polynomial R1p and vi, and once more the condition before (P1), we conclude

sup
z∈D

vi(z)|R1Skf(z)| ≤ 2c2C(κi)−1.

This implies one of the following facts: R1Skf ∈ 2Cc2mλ1B1, . . . , R1Skf ∈ 2Cc2mλmBm.
To treat the other term Skf − R1Skf =

∑∞
n=1(Rn+1 − Rn)Skf , we first apply the first inequality in

(P1) for w and the estimate for w|Skf | to get

w(rn)

(
sup
|z|=rn

|(Rn+2 −Rn−1)Skf(z)|

)
≤ C. (7)

We can write N as a disjoint union ∪m
i=1Ji such that

w(rj) = κivi(rj) for j ∈ Ji.

Now put gi =
∑

n∈Ji
(Rn+1 − Rn)Skf for i ∈ {1, . . . ,m}, which is a polynomial; clearly Skf −

R1Skf =
∑m

i=1 gi. We fix i ∈ {1, . . . ,m} and let (Skf)i
n := (Rn+2 − Rn−1)Skf for n ∈ Ji and

(Skf)i
n := 0 otherwise. The properties of the sequence (Rn)n∈N imply

gi =
∑
n∈Ji

(Rn+1 −Rn)(Rn+2 −Rn−1)Skf =
∞∑

n=1

(Rn+1 −Rn)(Skf)i
n,

and all the sums are finite; hence

sup
z∈D

vi(z)|gi(z)| = sup
z∈D

vi(z)

∣∣∣∣∣
∞∑

n=1

(Rn+1 −Rn)pi
n

∣∣∣∣∣ .
Since only a finite number of the (Skf)i

n are non-zero and all the weights belong to the class W , we
can apply (P2) and the estimate (6) to conclude as before

sup
z∈D

vi(z)|gi(z)| ≤ Di(κi)−1C.
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This yields gi ∈ mλiDiCBi for every i ∈ {1, . . . ,m}. Thus one of the following inclusions holds

Skf = R1Skf +
∑m

i=1 gi ∈ (2c2 + D1)Cλ1mB1 +
∑m

i=2 DiCλimBi ⊂
∑m

i=1 µiBi, . . . ,

Skf = R1Skf +
∑m

i=1 gi ∈
∑m−1

i=1 DiCλimBi + (2c2 + Dm)CλmmBm ⊂
∑m

i=1 µiBi.

Finally, each Skf belongs to
∑m

i=1 µiBi. Every Bi is co-compact and Skf → f with respect to co.
Now, we can conclude that f is an element fo

∑m
i=1 µiBi. The claim follows. �

Theorem 3 (Bierstedt, Bonet [7, Theorem 7]) Let V = (vn)n∈N be a decreasing sequence of strictly
positive continuous functions on D in the class W . Then the topological equality VH(D) = HV (D) holds
if and only if for every sequence (λj)j∈N of strictly positive numbers there is v ∈ V such that for every
n ∈ N and every M > 0 there is m > n with

(+)
(

min
(

M

vn
,
1
v

))∼
≤

m∑
j=1

λj

vj
.

In the following we want to show the equivalence of the condition (∗) and (+). To do this we first prove
that under certain assumptions HV (D) is a (DF )-space. We need some auxiliary results.

Lemma 5 (Bierstedt, Bonet, [5, Lemma A in Section 5]) Let E be a locally convex space with a
fundamental sequence (Bn)n∈N of absolutely convex bounded sets and U0 a fixed basis of absolutely convex
0-neighborhoods in E. Then E is a (DF )-space if and only if, for every sequence (λn)n∈N of posi-
tive numbers and for every sequence (Wn)n∈N ⊂ U0, the intersection

⋂
n∈N(Wn +

∑n
k=1 λkBk) is a

0-neighborhood in E.

Lemma 6 Let V = (vn)n∈N be a decreasing sequence of strictly positive continuous functions on D in the
class W such that there is a fundamental system of weights in V contained in W . Then, for every n ∈ N,
every wn ∈ V ∩W and every sequence (λk)k∈N of strictly positive numbers

1
2
B ⊂

(
Cwn +

n∑
k=1

λkBk

)

holds, where B := {f ∈ HV (D); |f | ≤ 1
C(D1+2c2)wn

+
∑n

k=1
λk

C(Dk+1+2c2)
1

2k+1vk
on D} and c is the

constant in the estimate before (P1), C the constant in (P2), D1 = D(wn), Di+1 = D(vi) for every
1 ≤ i ≤ n in the sense of (P2).

PROOF. This proof is very similar to the one of the implication (d) =⇒ (c) in Theorem 1. Since there
are some technical changes, we give the full proof here. We fix n ∈ N, wn ∈ V ∩ W and a sequence
(λk)k∈N of strictly positive numbers and choose f ∈ 1

2B. We have f ∈ HV (D) and

|f | ≤ 1
2

(
1

C(D1 + 2c2)
1

wn
+

n∑
k=1

λk

C(Dk+1 + 2c2)
1

2k+1vk

)

≤ max
(

1
C(D1 + 2c2)

1
wn

,
λ1

C(D2 + 2c2)
1
v1

, . . . ,
1

C(Dn+1 + 2c2)
1
vn

)
Put u := min

(
C(D1 + 2c2)wn, C(D2+2c2)

λ1
v1, . . . ,

C(Dn+1+2c2)
λn

vn

)
. u belongs to the class W and

u|f | ≤ 1 on D. We write κ1 := C(D1 + 2c2), κi := C(Di+2c2)
λi−1

for 2 ≤ i ≤ n + 1, u1 := wn, ui = vi−1

for 2 ≤ i ≤ n + 1.
Using the Cesàro means of the partial sums of the Taylor series of f about 0 we get a sequence (Skf)k∈N

of polynomials with u|Skf | ≤ u|f | ≤ 1 for every k ∈ N and Skf → f in (H(D), co). By assumption Skf
is an element of HV (D).
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We have Skf =
∑∞

n=0(Rn+1 − Rn)Skf = R1Skf +
∑∞

n=1(Rn+1 − Rn)Skf and the sum is finite.
We first treat the term R1Skf .

By the condition before (P1) and the estimate on u|Skf |, we get

u(r1) sup
|z|=r1

|R1Skf(z)| ≤ cu(r1) sup
|z|=r1

|Skf(z)| ≤ c.

We select i ∈ {1, . . . , n + 1} with u(r1) = κiui(r1). From the second inequality in (P1), applied to the
polynomial R1Skf and ui, and once more the condition before (P1), we conclude as before

sup
z∈D

ui(z)|R1Skf(z)| ≤ 2c2C(κi)−1.

This implies one of the following facts: R1Skf ∈ 2c2C
C(D2+2c2)λ1B1, . . . , R1Skf ∈ 2c2C

C(Dn+1+2c2)λnBn.
To treat the other term Skf − R1Skf =

∑∞
n=1(Rn+1 − Rn)Skf , we first apply the first inequality in

(P1) for u and the estimate for u|Skf | to get

u(rn)

(
sup
|z|=rn

|(Rn+2 −Rn−1)Skf(z)|

)
≤ C (8)

for every n ∈ N. We can write N as a disjoint union ∪n+1
i=1 Ji such that

u(rj) = κiui(rj) for every j ∈ Ji, i ∈ {1, . . . , n + 1}.

Now put, for i ∈ {1, . . . , n + 1}, gi =
∑

n∈Ji
(Rn+1 − Rn)Skf , which is a polynomial; clearly

Skf − R1Skf =
∑n+1

i=1 gi. We fix i ∈ {1, . . . , n + 1} and let (Skf)i
n := (Rn+2 − Rn−1)Skf for n ∈ Ji

and (Skf)i
n := 0 otherwise. The properties of the sequence (Rn)n∈N imply

gi =
∑
n∈Ji

(Rn+1 −Rn)(Rn+2 −Rn−1)Skf =
∞∑

n=1

(Rn+1 −Rn)(Skf)i
n,

and all the sums are finite; hence

sup
z∈D

ui(z)|gi(z)| = sup
z∈D

ui(z)

∣∣∣∣∣
∞∑

n=1

(Rn+1 −Rn)(Skf)i
n

∣∣∣∣∣ .
Since only a finite number of the Skf i

n are non-zero and all the weights belong to the class W , we can
apply (P2) and the estimate (6) to conclude as before

sup
z∈D

ui(z)|gi(z)| ≤ Di(κi)−1C.

We obtain g1 ∈ CD1
C(D1+2c2)Cwn and gi+1 ∈ CDi+1λi

C(Di+1+2c2)Bi for every i ∈ {1, . . . , n}. Hence one of the
following inclusions holds

Skf ∈ C(D1+2c2)
C(D1+2c2)Cwn + D2C

C(D2+2c2)λ1B1 + · · ·+ Dn+1C
C(Dn+1+2c2)λnBn ⊂ Cwn +

∑n
k=1 λkBk, . . . ,

Skf ∈ CD1
C(D1+2c2)Cwn + · · ·+ C(Dn+1+2c2)

C(Dn+1+2c2)λnBn ⊂ Cwn +
∑n

k=1 λkBk.

Finally we obtain Skf ∈ Cwn +
∑n

k=1 λkBk. Cwn and Bi are co-compact for every i ∈ {1, . . . , n}
and Sk → f in (H(D), co). Thus, f is an element of Cwn +

∑n
k=1 λkBk. �

The proof of the following proposition is analogous to the proof of [5] Proposition B in Section 4 with
a slight change. We replace the ”Ernst-Schnettler-trick” by the previous proposition.
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Proposition 5 Let V = (vn)n∈N be a decreasing sequence of strictly positive continuous functions on
D in the class W such that a fundamental system of weights in V is contained in W . Then HV (D) is a
(DF )-space.

PROOF. We fix a sequence (λk)k∈N of strictly positive numbers and a sequence (wn)n∈N of weights
in V ∩W . By Lemma 5 we have to show that

W :=
⋂
n∈N

(
Cwn

+
n∑

k=1

λkBk

)

is a 0-neighborhood in HV (D). By Lemma 6 we have 1
2B ⊂ Cwn +

∑n
k=1 λkBk. Now, we put

an :=
1
2

(
1

C(D1 + 2c2)
1

wn
+

n∑
k=1

λk

C(Dk+1 + 2c2)
1

2k+1vk

)

vn :=
1
an

, n ∈ N, and v := sup
n∈N

vn.

We get

vn ≤ 2 inf
{

C(D2 + 2c2)22

λ1
v1, . . . ,

C(Dn+1 + 2c2)2n+1

λn
vn, C(D1 + 2c2)wn

}
(9)

for every n ∈ N. Hence vn : G → R+ belongs to the Nachbin system V = V (V) associated with V on G

with respect to the discrete topology. (9) yields w ∈ V such that

{f ∈ HV (D);w|f | ≤ 1 on G} ⊂ Cwn
+

n∑
k=1

λkBk

for n ∈ N. By [10] section 4.2, there is v ∈ V with w ≤ v and {f ∈ HV (D); v|f | ≤ 1 on D} is a
0-neighborhood in HV (D) and contained in W . The claim follows. �

Proposition 6 Let V = (vn)n∈N be a decreasing sequence of strictly positive continuous functions on D
in the class W such that a fundamental system of weights in V is contained in W . Then the conditions (+)
and (∗) are equivalent.

PROOF. Obviously, (+) implies (∗).
(∗) =⇒ (+): By Theorem 3 (∗) yields that HV (D) has the dual density condition. Moreover HV (D) is a
(DF )-space by Proposition 5. We obtain the topological equality VH(D) = HV (D) (see [8]) and finally
(+) (see Theorem 3). �

Corollary 1 Let V = (vn)n∈N be a decreasing sequence of strictly positive continuous functions on D in
the class W such that a fundamental system of weights in V is contained in W . Consider the following
assertions:

(a) HV (D) = VH(D) holds algebraically and topologically.

(b) HV (D) has the dual density condition (or equivalently the strong dual density condition).

(c) HV (D) has metrizable bounded subsets.

(d) HV 0(D) enjoys the dual density condition.
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(e) V0H(D) satisfies the dual density condition.

The assertions (a) to (d) are equivalent. If we assume in addition that H(v1)0(D) contains the polyno-
mials, then all conditions are equivalent.

We finish this article by providing examples which satisfy the assumption that a fundamental system of
weights in V is contained in W .

Proposition 7 Let V = (vn)n∈N be a decreasing sequence of strictly positive continuous functions on D.
We assume that there are ε0 > 0 and k0 ∈ N such that the following conditions are satisfied:

(L1) infk
vn(rk+1)
vn(rk)

≥ ε0 for every n ∈ N.

(L2) There is k1 ∈ N with
vn(rk+k0) < (1− ε0)vn(rk)

for every k ≥ k1 and n ∈ N.

Then there is a fundamental system of weights in V contained in W .

PROOF. We fix v ∈ W . There is w ∈ W with v ≤ w such that there is a sequence (βn)n∈N of positive
numbers such that for every r > 0 there is k(r) ∈ N with

w(z) = min
1≤n≤k(r)

βnvn(z) (10)

for every z ∈ D with |z| ≤ r.
We have to show that there are ε2 > 0 and k2 ∈ N such that

(L1) infk
w(rk+1)
w(rk) ≥ ε2.

(L2) lim supk→∞
w(rk+k2 )

w(rk) < 1− ε2.

We choose ε2 = ε0 and k2 = k0 and prove (L1). For a fixed k ∈ N it remains to show

ε2w(rk) ≤ w(rk+1).

We select 0 < rk+1 < s < 1 and get by (10)

w(z) = min
1≤n≤k(s)

βnvn(z)

for z ∈ D with |z| ≤ s. We distinguish the following cases:

(i) We have w(rk) = βjvj(rk) and w(rk+1) = βjvj(rk+1). This yields
ε2w(rk) = ε2βjvj(rk) ≤ βjvj(rk+1) = w(rk+1).

(ii) We assume w(rk) = βjvj(rk) and w(rk+1) = βlvl(rk+1). It follows

ε2w(rk) = ε2βjvj(rk) ≤ ε2βlvl(rk) ≤ βlvl(rk+1) = w(rk+1)

Thus infk
w(rk)

w(rk+1)
≥ ε2.

It remains to show (L2). As before we choose ε2 = ε0 and k2 = k0. We have to prove that there is
N0 ∈ N such that for every k ≥ N0

w(rk+k2) < (1− ε2)w(rk)

163



E. Wolf

holds. There is k1 ∈ N such that for every k ≥ k1 and for every n ∈ N we have

vn(rk+k2) < (1− ε2)vn(rk).

We fix k ≥ k1 and select 0 < k + k2 < s < 1. Hence by (10)

w(z) = min
1≤n≤k(s)

βnvn(z)

for every z ∈ D with |z| ≤ s.
We put N0 := k1 and distinguish the following cases:

(i) We have w(rk+k2) = βjvj(rk+k2) and w(rk) = βjvj(rk). This implies
w(rk+k2) = βjvj(rk+k2) < (1− ε2)βjvj(rk) = (1− ε2)w(rk).

(ii) We assume w(rk+k2) = βjvj(rk+k2) and w(rk) = βlvl(rk). Hence
w(rk+k2) = βjvj(rk+k2) ≤ βlvl(rk+k2) < (1− ε2)βlvl(rk) = (1− ε2)w(rk).

The claim follows. �
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by Klaus D. Bierstedt and José Bonet. The author thanks both of them for all their advice, helpful remarks
and valuable suggestions. The discussions with them have been particularly stimulating.

References
[1] Anderson, J.M., Duncan, J. (1990). Duals of Banach spaces of entire functions, Glasgow Math. J. 32, 215–220.

[2] Bastin, F. (1990). Weighted spaces of continuous functions, Bull. Soc. Roy. Sci. Liège 59, no. 1, 3–82.
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567–589.

[6] Bierstedt, K.D., Bonet, J. (2001). Biduality in (LF )-spaces, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser.
A Math. 95, no. 2, 171–180.

[7] Bierstedt, K.D., Bonet, J. (2003). Projective description of weighted (LF )-spaces of holomorphic functions on
the disc, Proc. Edinb. Math. Soc. (2) 46, no. 2, 435–450.

[8] Bierstedt, K.D., Bonet, J., Galbis, A. (1993). Weighted spaces of holomorphic functions on balanced domains,
Michigan Math. J. 40, no. 2, 271–297.

[9] Bierstedt, K.D., Bonet, J., Taskinen, J. (1998). Associated weights and spaces of holomorphic functions, Studia
Math. 127, no. 2, 137-168.

[10] Bierstedt, K.D., Meise, R. (1986). Distinguished echelon spaces and the projective description of weighted induc-
tive limits of type VdC(X), pp. 169–226 in Aspects of Mathematics and its Applications, North-Holland Math.
Library 34, Amsterdam.

[11] Bierstedt, K.D., Meise, R., Summers, W.H. (1982). A projective description of weighted inductive limits, Trans.
Amer. Math. Soc. 272, no. 1, 107–160.

[12] Bonet, J. (1986). On weighted inductive limits of spaces of continuous functions, Math. Z. 192, 9–20.

164



Weighted (LB)-spaces of holomorphic functions

[13] Bonet, J., Melikhov, S.N. (1997). Interpolation of entire functions and projective descriptions, J. Math. Anal.
Appl. 205, no. 2, 454–460.

[14] Bonet, J., Taskinen, J. (1995). The subspace problem for weighted inductive limits of spaces of holomorphic
functions, Michigan Math. J. 42, no. 2, 259–268.

[15] Bonet, J., Vogt, D. (1997). Weighted spaces of holomorphic functions and sequence spaces, Note Mat. 17, 87–97.

[16] Floret, K. (1980). Some aspects of the theory of locally convex inductive limits, pp. 205–237 in Functional
Analysis: Surveys and Recent Results II (Paderborn 1979), North-Holland Math. Stud. 38, Amsterdam.

[17] Grothendieck, A. (1954). Sur les espaces (F ) et (DF ), Summa Brasil Math. 3, 57-123.

[18] Hedenmalm, H., Korenblum, B., Zhu, K. (2000). Theory of Bergman Spaces, Graduate Texts in Mathematics 199
New York, Springer-Verlag.

[19] Jarchow, H. (1981). Locally Convex Spaces, Math. Leitfäden, B.G. Teubner, Stuttgart.
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