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A Sharp Estimate for Bilinear Littlewood-Paley Operator

Lanzhe Liu

Abstract. We establish a sharp estimate for bilinear Littlewood-Paley operator. As application, we
obtain the weighted norm inequalities and L log L type estimate for the bilinear operator

Una estimacion fina del operador bilineal de Littlewood-Paley

Resumen. Se establece una estimacion fina para el operador bilineal de Littlewood-Paley. Como
aplicacion se obtienen desigualdades para la norma ponderada y estimaciones del tipo L log L para el
operador bilineal.

1 Introduction

It is well known that the singular integral operators and their commutators are of importance in many
applications (see [5,9, 16]). As the development of the singular integral operators, their commutators and
multilinear operators have been well studied (see [2—7, 12—15]. Let T" be the Calderén-Zygmund singular
integral operator, a classical result of Coifman, Rochberg and Weiss (see [5]) states that the commutator
b, T(f) = T(bf) — bT(f) (where b € BMO(RR™)) is bounded on L?(R™) for 1 < p < oo. In [2-4],
Cohen and Gosselin study the LP (p > 1) boundedness of the multilinear singular integral operator 74
defined by
T4(1)(0) = [ T ) )

However, it has known that the commutator [b, 7] is not bounded, in general, from L*(R") to L1:*°(R™).
In [13], C. Pérez proves that the commutator [b, T'] satisfies a L log L type estimate. In [10], Hu and Yang
obtain a variant sharp estimate for the multilinear singular integral operators. The main purpose of this

paper is to establish a sharp estimate for the bilinear operator associated to the Littlewood-Paley operator
and BMO(R") function.

2 Preliminaries and Theorems

In this paper, we will study a class of bilinear operators related to Littlewood-Paley operators, whose defi-
nitions are the following.
Let v be a function on R™ which satisfies the following properties:
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1. [¢(z)dz =0;
2. [(@)] < O+ [a])= 0D
3. [¢(x +y) — v(2)| < Clyl (1 + |2)~"* when 2[y| < |z|.

Let m be a positive integer and let A be a function on R™. The bilinear Littlewood-Paley operator is

defined by »
s = [Cimnerd|

where
FAp@ = [ LW b ey,
R™ |z -y
Rsa(Ai,) = A() = 32— D" Aly)(e — y)"
jal<m

and Yy (x) = t~"(x/t) fort > 0. Set Fy(f)(x) = f * ¢4 (x). We also define that

s = ([ 1 <o ‘ff)/

which is the Littlewood-Paley operator (see [16]).
Let H be the Hilbert space H = {h Rl = (fy [R(t)[? %)1/2 < oo}. Then for each fixed € R,
FA(f)(x) and F;(f)(x) may be viewed as a mapping from (0, +00) to H, and it is clear that

9o (H@) = IFA @I go(H(@) = [ES)@)]-

Note that when m = 0, g;Z‘ is just the commutator of the Littlewood-Paley operator (see [11]). While when
m > 0, it is non-trivial generalizations of the commutators. It is well known that the Littlewood-Paley
operator, as the vector-valued singular integral operators, is of great interest in harmonic analysis (see [15]).
The purpose of this paper is to establish a sharp estimate for the bilinear operator, then the weighted norm
inequalities and L log L type estimate for the bilinear operator are obtained by using the sharp estimate. We
point out that some of our ideas in this paper come from the paper [1] of Alvarez and Pérez.

First, let us introduce some notation (see [8,9, 13]).
For any locally integrable function f, the sharp function of f is defined by

-
f7 () = sup |Q‘/If - fqldy,

where, and in what follows, Q will denote a cube with sides parallel to the axes, and fo = |Q]™* [, o f(x)da.
It is well-known that

f#(z) = sup inf @ﬂ /Q F@) - cldy.

TEQ ceC

We say that f belongs to BMO(R™) if f# belongs to L>°(R™). For 0 < r < oo, we denote f7 by

@) = [(F* @)

Let M be the Hardy-Littlewood maximal operator, that is

M u d
(7)) = sup |Q|/ F@)ldy.
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We write that M, (f) = (M(f?))}/? for 0 < p < oo. For k € N, we denote by M"* the operator M iterated
k times, i.e., M'(f)(x) = M(f)(x) and

MM(f)(@) = MOMP () (@) whenk > 2.

Let B be a Young function and B be the complementary associated to B. Set, for a function f,

|f||BA,Q=inf{A>o:22|/QB(@) <1},

The maximal function associated to || f[| 5 ,, is defined by

Mp(f)(z) = sup || fllp.o-
TEQ

The main Young function to be using in this paper is B(t) = ¢ (1 + log™ ¢) and its complementary B(t) ~
expt, the corresponding maximal functions denoted by My 1os 1 and Meyp 1. From [13], we have the
generalized Holder’s inequality

1
ol /Q @)l dy < 1 flp.o loll5.0

and the following equivalence, for any x € R",

MpiogL(f)(x) = CM?(f)(x).
From the John-Nirenberg inequality (see [9]), we have the following inequalities, for all cube () and any
b€ BMO(R™),
16 = b@llexp . < CllbllBro
and
|bors1g — bag| < 2K||b] Baso-
We denote the Muckenhoupt weights by A, for 1 < p < oo (see [9]).

Now we are in position to state our results.

Theorem 1 Let DA € BMO(R"™),
such that for any f € C§°(R™),

(go (M @) <0 Y [ID*AllsroM*(f)(@).

la|=m

a| = m. Then for any 0 < r < 1, there exists a constant C' > 0

Theorem 2 Let 1 < p < oo and D*A € BMO(R"™),
that is

al =m, w € A,. Then 9;2 is bounded on LP (w),

g (Nllrw) < C S IIDAllsarollf 1o -

lal=m

Theorem 3 Let D*A € BMO(R") for o] = m and w € A;. Then there exists a constant C > 0 such
that for each \ > 0,

w({x e R": g;;}‘(f)(a?) > A} < C<I>< Z ||D°‘A||BMO) /Rn |f()\$)| (1 + log™ (|f()\x)>) w(z) dx,

la|=m

where ®(t) = t(1 +log™ t).

Asin [13,15], Theorem 2 and 3 follow from Theorem 1. So we only need to prove Theorem 1.

137



L. Liu

3 Some lemmas

We begin with some preliminary lemmas.

Lemma 1 (Kolmogorov, [9, p. 485]) Ler 0 < p < q < oo and for any function f > 0. Set

n 1
£l o = supAl{z € B™ - f() > A},
>

Nyo(f) = sup WX gy ),

e IXell,-’

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

1/p
1l < NoaF) < (qqp) T,

Lemma 2 ( [2, p. 448]) Let A be a function on R™ and D*A € L1(R"™) for all o with || = m and some
q > n. Then

1/q
m 1 «
[Rim(A;2,y)| < Clz -y Z (M o )|D A(Z)qdz> ;
) x,y

la]=m
where Q(xz,y) is the cube centered at = and having side length 5 \/n |z — y|.

Lemma 3 ([13, p. 165]) Let w € A;. Then there exists a constant C > 0 such that for any function f
and for all A > 0,

w({y € R™: M?(f)(y) > A}) < C/\‘l/ [f () (1 +log™ (A7 F(w)]) wly) dy.

n

Lemma4 Lerl < p < ocoand D*A € BMO(R") for |a] =m, 1 <r <oo,1/q=1/p+1/r. Then g;Z‘
is bounded from LP(R™) to L4(R™), that is

g (e <C D ID*All o1 fl -

loe|=m

PROOF. By Minkowski inequality and the condition of 1, we have

- 00 1/2
g:/?(f)(x) S/n |f(y)| |Rm+1(Aa 7y)‘ (/0 W)t(x_y)FCit) dy

|z —y|™
<C [f(W)] [Rms1(A4;52,9)] /°° t—2n @ 1/2dy
— Jre |z —y|™ o (14 |z —yl[/)2m+D ¢

|Riy1(A;7,y)

|
<C dy,
<C [ Tle— g 1f(y)l dy

thus, the lemma follows from [6,7]. W
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4 Proof of Theorems

We only need to prove Theorem 1.

PROOF OF THEOREM 1. For z € R™, let Q@ = Q(xo,d) be a cube centered at 2o and having side
length d such that z € Q. It is sufficient to prove for f € C§°(R™) and some constant Cy, that the following
inequality holds:

1/r
(K-12| /Q |g;2<f><m>—co|’"dx) < OM2(f)(@).

Set Q = 5y/n Qand A(z) = A(z) — i(DaA)Qx“, then R, (A;z,y) = Ry (A; x,y) and D*A =
lal=m

D*A — (DO‘A)C2 for || = m. We write, for f; = fxgand fo = fon\Q,

Ye(z — y)limtln(A;x, Y) o) dy
R™ |1’ yI

R™ lz =yl

= 1 [ Yz —y)(z—y)*D*A(y)

al Jgn jz —y|™

FtA(f)(af) =

+

fi(y) dy,

la|=m

then

g2 (N@) = g (£2)(wo)| = [IFA (D) @) = IF () o)
IFA @) = F () o)l
F, <Wﬁ> @)+ > %

|a]=m

+ | EA(f2) (@) — FA(f2) (o)
=1(z)+ [(x)+ I1I(z),

IN

IA

A (e an ) o

thus,
(a1 [, lot0e ~ofiseo ar) :

< (&/@I(x)rdfc)l/T+ (|g/QH(m)de>l/r+ <|QC|/QIII(96)Td;c>1/T

=I+I1I+1I1.

Now, let us estimate I, [T and 111, respectively. First, forx € Q and y € Q using Lemma 2, we get

Rpn(A;2,y) < Clo—y|™ > | DAl smo,

|a]=m
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thus, by Lemma 1 and the weak type (1,1) of gy, (see [11, 16]), we obtain

-t llge (f1)Xall .-

I1<C DA
<C 3 1D Al QI

|al=m
<C Z 1D Allaro 1Q1 ™ lgw (f1)(f1)lw e
la|=
<0 32 1" lwo Q1 AL
la|=
<C Z | D*Allgaro M(f)(Z);
|a]=m

For 11, similar to the proof of I, we get

IISC Z |Q|—1Hg¢

jal=m

<0 Y 1QI gD Af)lwen

la|=m

<c Y lor / 1D A()|Lf ()] dy

lee|=m.

<C Y DAl 1.6 10g 1.

laj=m
<C Z |1 D*A|lpmoMrpiog 1 f(Z)

lee|=m

<C Z DAl proM?(f)(7);

lee|=m

(DAf)
IXQllrra-n

To estimate 111, we write,

FA(f2) (@) — FA(f2) (o)
_ / [¢t($ —y)  Yi(xo—y)

|z — y[™ |zg — y|™

} R (A: 2,9) foly) dy

- Wo%y){f(y)[l%m(fl;x,y) — Rin(4;20,y)] dy
R~ lzo — yl
B Yile —y) (@ —y)*  Prlro —y)(Eo =Y\ Ha 3
Z ol / ( iz —y|m 70 — g™ )D A(y)f(y) dy

lee|=

=11L + 111, + II1;.

Note that |z — y| ~ |zo — y| for z € Q and y € R™ \ Q. By Lemma 3 and the following inequality
(see [9])
ba, = bq,| < Clog (IQal/|@1]) 1Pl Baro,  for @1 C Qo
we know that, for z € Q and y € 2¥1Q \ 2FQ,
| B (A5 2,9) < Clz —y|™ Y (ID*Allsaro + (D A) g,y — (D*A)g])

|a|=m

< Ckle—y[™ Y IID* Al sro;

|a]=m
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By the condition of v, and similar to the proof of Lemma 4, we obtain

111, gc/w\@ mz%m(ﬁ;x,y)f(y) dy
< 3 o A||BMOZ 0 RN el L
<C S D% Alao Yo k2L
= =7 gl
<c Z ||DQA||BMOikQ_k/QM(f)(f)
jal=m k=1
<C Y |ID*Al oM (f)(&);
lal=m

For 1115, by the formula (see [2]):

~ 1 ~
R (A;2,y) = R(A;z0,y) = Y @Rm—\m(DﬁA;x,zo)(x -y)°

|Bl<m

and Lemma 1, we have

|Rin(Asz,y) = R(Aszo,9)| <C Y Y o — o™ VPl — o7 D* A paro,
IBl<m |a|=m

similar to the estimates of 1117, we get

i
sy <¢ 3 10 Aoy | ) dy

lal= k+1Q\2kQ |I0 -

<C Z | D*A|lgaro M (f)(&);

lo|=m

For 1113, similar to the estimates of 111, we get

ni<e % / DA )y

aEm i J2rrG\2rQ |$0—

<C ) Zk? “ID Al p 1261 L10gr 206 + 1D All aro M(f)(2))

ja]=m k=1

<C 3 STk 4 2752) | DAl paro My g L (f) ()
ja]=m k=1

<C 7 ID*AllsaoM?(f)(@).

lal=m

Thus,
III1<C Y ||D*Al o M?(f)(&).

|a]=m

This completes the proof of Theorem 1. W
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From Theorem 1 and the weighted boundedness of g, and M, we may obtain the conclusion of Theo-

rem 2.

From Theorem 1 and Lemma 3, we may obtain the conclusion of Theorem 3.

Acknowledgement. The author would like to express his deep gratitude to the referee for his valuable
comments and suggestions.
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