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A result of existence for an original convection-diffusion
equation

G. Gagneux and G. Vallet

Abstract. In this paper, we are interested in the mathematical analysis of a non-classical conservation
law. The model describes stratigraphic processes of the geology, taking into account a limited weathering
condition. Firstly, we present the physical topic and the mathematical formulation, which lead to an
original conservation law. Then, the definition of a solution and some mathematical tools in order to
prove the existence of a solution.

Un resultado de existencia para una ecuación original de
difusión-convección

Resumen. En este artı́culo se estudia el análisis matemático de una ley de conservación que no
es clásica. El modelo describe procesos estatigráficos en Geologı́a y tiene en cuenta una condición de
tasa de erosión limitada. En primer lugar se presentan el modelo fı́sico y la formulación matemática
(posiblemente nueva). Tras enunciar la definición de solución, se presentan las herramientas que permiten
probar la existencia de soluciones.

1 Introduction

In this paper, we are interested in the mathematical analysis of a stratigraphic model developed by the
Institut Français du Pétrole (IFP). The model concerns geologic basin formation by the way of erosion and
sedimentation. By taking into account large scale in time and space and by knowing a priori, the tectonics,
the eustatism and the sediments flux at the basin boundary, the model has to state about the transport of
sediments. One may find, on the one hand, in D. Greanjeon and al. [10] and R. Eymard and al. [7]
the physical and the numerical modelling of the multi-lithological case, and, on the other hand, in S.N.
Antontsev and al. [2], G. Gagneux and al. [8], [9] a mathematical analysis of the mono-lithological case.

Let us consider in the sequel a sedimentary basin, denoted by Ξ with base Ω a smooth, bounded domain
in RN (N = 1, 2), assumed horizontal. In order to describe the theoretical topography u(t, x) of the basin
for a.e. (t, x) in Q =]0, T [×Ω, the gravitational model has to take into account:
i) a sediment flux assumed to be proportional to −→q th = ∇[u + τ∂tu], where τ is a nonnegative parameter,
ii) an erosion speed, ∂tu in its nonpositive part, that is underestimated by −E, where E is a given nonneg-
ative bounded measurable function in Q (a weathering limited process): i.e. ∂tu + E ≥ 0 in Q.

The original aspect of this model is its weather limited condition on the erosion rate.

Presentado por J. I. Dı́az Dı́az el 2 de marzo de 2005.
Recibido: 15 de febrero de 2005. Aceptado: 1 de junio de 2005.
Palabras clave / Keywords: Stratigraphic models, Weather limited, Degenerated conservation laws.
Mathematics Subject Classifications: 35K65, 35L80, 35Q35.
c© 2005 Real Academia de Ciencias, España.

125



G. Gagneux and G. Vallet

In order to join together the constraint and a conservative formulation, D. Greanjeon [10] proposes to
correct the diffusive flux −→q th by introducing a dimensionless multiplier λ : the new flux is then −→q cor =
−λ∇[u + τ∂tu], where λ is an unknown function with values a priori in [0, 1]. Then, we will have to add
a relevant law of state in the form λ = λ(∂tu) for posing satisfactory closure conditions.

Therefore, the mathematical modelling has to express respectively:

• the mass balance of the sediment: ∂tu− div(λ∇[u + τ∂tu]) = 0 in Q.

• the boundary conditions on ∂Ω = Γe ∪ Γs specifying the input and output fluxes:

−→q cor = f on ]0, T [×Γe,

∂tu + E ≥ 0, f ≥ −→q cor and (f −−→q cor)(∂tu + E) = 0 on ]0, T [×Γs.

• the weather limited condition (moving obstacle depending on climate, bathymetry, . . . ):

∂tu ≥ −E in Q. (1)

• the initial condition u|t=0 = u0 and the closure of the model by defining the role of the flux limitor λ.

In order to simplify, one considers in the sequel homogeneous Dirichlet conditions on the boundary.
G. Gagneux, D. Etienne and G. Vallet [6] have considered boundary conditions of unilateral type with
τ = 0. The mathematical analysis is inspired by the chapter 2 of G. Duvaut and J. L. Lions [5] and by
the “new problems” of J. L Lions [11, p. 420], dealing of thermic. Then, the problem of the regularity of
∂tu arises in view of defining the trace of ∂tu on Γs. If τ = 0, ∂tu belongs a priori to L2(Q) and not to
L2(0, T, H1(Ω)). What justifies the interest for the study of the case τ > 0.

In order to give a mathematical modelling of λ, Th. Gallouët and R. Masson [7] propose to consider the
following global constraint, leading to a non-standard free boundary problem:

∂tu + E ≥ 0, 1− λ ≥ 0 and (∂tu + E)(1− λ) = 0 in Q. (2)

It means that the flux has to be corrected because of the constraint (i.e. if λ < 1, then ∂tu + E = 0). If
the erosion rate constraint is inactive, the flux is equal to the diffusive one.

Then S. N. Antontsev, G. Gagneux and G. Vallet [2] propose (if τ = 0) the following conservative
formulation that contains implicitly (1). See G. Vallet [14] too. If H denotes the maximal monotone graph
of the Heaviside function, then (λ, h) formally solves:

0 = ∂tu− div(λ∇[u + τ∂tu]) where λ ∈ H(∂tu + E) in Q.

This general problem remains an open problem and the aim of this paper is to give some mathematical
results when H is replaced by a continuous function a, an approximation Yosida of H for example. Another
physical motivation can be found in [12] and [13] for describing the hysteresis phenomena of pore water.

2 Presentation of the model
Thus, the problem of the stratigraphic motion may be written:

find u a priori in L2(0, T, V ) with ∂tu in L2(0, T, V ) where V = H1
0 (Ω) and H = L2(Ω)

such that, ∂tu + E ≥ 0 a.e. in Q and ∀v ∈ V, for a.e. t in ]0, T [,∫
Ω

{∂tuv + a(∂tu + E)∇[u + τ∂tu]∇v} dx = 0, (3)

together with the initial condition u|t=0 = u0 a.e. in Ω.
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In the sequel τ > 0, E : [0, T ] → R is a non negative continuous function and a is a continuous function
defined on R+ that satisfies: 0 ≤ a ≤ M, a(0) = 0 and a(x) > 0 if x > 0, in order to have implicitly
∂tu + E ≥ 0 a.e. in Q and A(x) =

∫ x

0
a(s) ds. Moreover, and for technical reasons (the motivation is to

derive various ways of approximating the Heaviside graph by Yosida regularized functions), one assumes
that a ◦ A−1 has got on R+ a continuity modulus whose square is an Osgood function; for simplicity, we
consider the case where a ◦A−1 is Hölder continuous with exponent 1

2 .

Remark 1 1. The problem can be written in the non-classical form:{
∂tu− τ∆A(∂tu + E)− div(a(∂tu + E)∇u) = 0 and ∂tu + E ≥ 0 in Q,
u = 0 and ∂tu = 0 in ]0, T [×∂Ω, u|t=0 = u0 in Ω.

2. If by extension a(x) = 0 for any negative x, the suitable test function v = (∂tu + E)− leads to
∂tu + E ≥ 0 a.e. in Q. So, one may assumes in the sequel such an hypothesis on the function a.

3. If u0 ∈ V , then u and ∂tu belong to L∞(0, T, V ).
By considering ε > 0 and v =

∫ ∂tu

0
ds

a(s+E)+ε in the variational formulation, one gets:

1
M
||∂tu||2H +

∫
Ω

∇[u + τ∂tu]∇∂tu dx ≤ 0, (4)

and

1
M
||∂tu||2L2(0,t,H) +

1
2
||∇u(t)||2HN + τ ||∇∂tu||2L2(0,t,HN ) ≤

1
2
||∇u0||2HN . (5)

Note that this is also true for any t since u ∈ Cs([0, T ], V ), i.e. u(t) exists in V for any t.
Let us consider again inequality (4) to obtain with the above estimates the assertion:

1
M
||∂tu||2H +

τ

2
||∇∂tu||2HN ≤ C||∇u0||2HN �

3 Existence of a strong solution
The key for understanding compactness properties in the regularizing procedure is the following assertion:

Lemma 1 Let us consider κ given in H1(Ω), E a real number and b a bounded essentially nonnegative
continuous function such that b ◦B−1 is Hölder continuous with exponent 1

2 , B′ = b. Then, there exists at
most one solution w in V such that for any v in V ,∫

Ω

{wv + b(w + E)∇[κ + w]∇v} dx = 0. (6)

PROOF. If one denotes by w1 and w2 two admissible solutions, one gets∫
Ω

{(w1 − w2)v +∇[B(w1 + E)−B(w2 + E)]∇v + [b(w1 + E)− b(w2 + E)]∇κ∇v} dx = 0.

For a given µ > 0, let us set pµ(t) = 1[µ,+∞[(t)+ ln( e
µ t)1[ µ

e ,µ[(t) and v = pµ(ξ) where ξ = B(w1 +E)−
B(w2 + E); therefore, it comes∫

Ω

(w1 − w2)pµ(ξ) dx +
∫

Ω∩{µ
e ≤ξ≤µ}

1
2ξ
∇2ξ dx ≤ C

∫
Ω∩{µ

e ≤ξ≤µ}
∇2κ dx,

and the solution is unique by considering the limits when µ goes to 0+. �
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3.1 Semi-discretized degenerated processes
Let us consider h > 0, u0 in V , E ≥ 0 and for a given positive α, aα = max(α, a). We record for later use
the following assertion thanks to Schauder-Tychonov fixed point theorem and lemma 1.

Proposition 1 There exists a unique uα in V such that, ∀v ∈ V,∫
Ω

{uα − u0

h
v + aα(

uα − u0

h
+ E)∇[uα + τ

uα − u0

h
]∇v} dx = 0. (7)

We derive from the proposition 7 and the lemma 1 a version of the degenerated case.

Proposition 2 Let us consider h > 0, u0 in V , then there exists a unique u in V such that, ∀v ∈ V,∫
Ω

{u− u0

h
v + a(

u− u0

h
+ E)∇[u + τ

u− u0

h
]∇v} dx = 0,

u− u0

h
+ E ≥ 0 a.e. in Ω. (8)

3.2 Semi-discretized degenerated differential inclusion
Proposition 3 There exists (u, λ) in V × L∞(Ω) such that, λ ∈ H(u−u0

h + E) where H is the maximal
monotone graph of the function of Heaviside, and ∀v ∈ V,∫

Ω

{u− u0

h
v + λ∇[u + τ

u− u0

h
]∇v

}
dx = 0. (9)

PROOF. Let us assume in this section that for any given positive ε, a = aε = max(0,min(1, 1
εId)).

The corresponding solutions are denoted by uε and thanks to the above inequality, a sub-sequence still
indexed by ε can be extracted, such that uε converges weakly in V towards u, strongly in H and a.e. in
Ω. Moreover, u−u0

h + E ≥ 0 a.e. in Ω. Furthermore, Aε converges uniformly towards (.)+ and then
Aε(uε−u0

h + E) converges weakly in V towards u−u0
h + E.

Up to a new sub-sequence, let us denote by λ the weak−∗ limit in L∞(Ω) of aε(uε−u0
h + E) and remark

that inevitably λ = 1 a.e. in {u−u0
h + E > 0} i.e. λ ∈ H(u−u0

h + E).
Passing to the limits in the variational relation stating uε and since ∇uε−u0

h = 0 in {λ 6= 1}, one gets (9).
�

3.3 Existence of a strong solution
Inductively, the following result can be proved:
let us consider N ∈ N∗ with h = T

N , u0 in V and Ek ≥ 0 for any integer k.

Proposition 4 For u0 = u0, there exists a unique sequence (uk)k in V such that, ∀v ∈ V,∫
Ω

{uk+1 − uk

h
v + a(

uk+1 − uk

h
+ Ek)∇[uk+1 + τ

uk+1 − uk

h
]∇v} dx = 0.

Moreover, uk+1−uk

h + Ek ≥ 0 a.e. in Ω,

1
M
||u

k+1 − uk

h
||2H + τ ||u

k+1 − uk

h
||2V +

1
2h

[||uk+1||2V + ||uk+1 − uk||2V − ||uk||2V ] ≤ 0. (10)

For any sequence (vk)k ⊂ H, let us note in the sequel

vh =
N−1∑
k=0

vk+11[kh,(k+1)h[ and ṽh =
N−1∑
k=0

[
vk+1 − vk

h
(t− kh) + vk]1[kh,(k+1)h[.
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Then, from (10), one has that (uh)h and (ũh)h are bounded sequences in L∞(0, T, V ) and that (∂tũ
h)h

is a bounded sequence in L2(0, T, V ). Still coming from (10), one gets

1
M
||u

k+1 − uk

h
||2H + τ ||u

k+1 − uk

h
||2V ≤ 1

2τ
||uk+1||2V

and (∂tũ
h)h is a bounded sequence in L∞(0, T, V ).

In particular, (ũh)h is bounded in H1(0, T, V ) and there exists a sub-sequence, still indexed by h such
that for any t, ũh(t) ⇀ u(t) in V .

Moreover, if t ∈ [kh, (k+1)h[, ||uh(t)−ũh(t)||V = ||ũh(kh)−ũh(t)||V ≤
∫ (k+1)h

kh
||∂tũ

h(s)||V ds ≤
Ch. Then, for any t, uh(t) ⇀ u(t) in V .

Since ∂tũ
h is bounded in L∞(0, T, V ), it follows that for any t of Z where Z ⊂ [0, T ] is a measurable

set such that L([0, T ]\Z) = 0, ∂tũ
h(t) is a bounded sequence in V.

Therefore, up to a sub-sequence indexed by ht ∂tũ
ht ⇀ ξ(t) in V, strongly in L2 and a.e. in Ω with

ξ(t) + E(t) ≥ 0 a.e. in Ω. Let us note that for any t in [kh, (k + 1)h[,

∀v ∈ V,

∫
Ω

{∂tũ
hv + a(∂tũ

h + Eh)∇[uh + τ∂tũ
h]∇v} dx = 0. (11)

Given that, a(∂tũ
ht + E)∇v converges towards a(ξ(t) + E)∇v in L2(Ω)N and that ∇[uht + ε∂tũ

ht ]
converges weakly towards ∇[u(t) + εξ(t)] in L2(Ω)N , ξ(t) is a solution to the problem: at time t, find w
in V with w + E(t) ≥ 0 a.e. in Ω, such that for any v in V ,∫

Ω

{wv + a(w + E(t))∇[u(t) + τw]∇v} dx = 0. (12)

Thanks to Lemma 1 with b = τ a in R+ and κ = 1
τ u(t), the solution ξ(t) is unique and all the sequence

∂tũ
h(t) converges towards ξ(t) weakly in V . For any f in H−1(Ω), since t 7→< f, ξ(t) > is the limit

of the sequence of measurable functions t 7→< f, ∂tũ
h(t) >, it is a measurable function thanks to Pettis

theorem (K. Yosida [16, p. 131]), since V is a separable set.
For any v in L2(0, T, V ), (∂tũ

h(t), v(t)) converges a.e. in ]0, T [ towards (ξ(t), v(t)). Moreover,
|(∂tũ

h(t), v(t))| ≤ C||v(t)||V a.e. since the sequence (∂tũ
h)h is bounded in L∞(0, T, V ). Thus, the

weak convergence in L2(0, T, V ) of ∂tũ
h towards ξ can be proved. And one gets that ξ = ∂tu.

At last, for t a.e. in ]0, T [, passing to limits in (11) leads to the existence of a solution.

4 About the differential inclusion
On the one hand, one may remark that the estimations (10) remain for the sequence of solutions given
by (9). Moreover, the sequence of associated parameters (λk) is bounded in L∞(Ω) and then, one gets:

∀v ∈ L2(0, T, V ),
∫

Q

{∂tũ
hv + λh∇[uh + τ∂tũ

h]∇v} dxdt = 0, (13)

where the same a priori estimates hold for the sequences (ũh)h and (uh)h than the one given in the existence
section. Furthermore, (λh) is bounded in L∞(Q) and λh ∈ H(∂tũ

h + Eh).
On the other hand, if a = aε = max(0,min(1, 1

εId)) and if uε is a solution to the problem (3), the
remarks to the presentation section lead to:
(uε) (resp. (λε)ε = (aε(∂tuε + E))ε) is a bounded sequence in W 1,∞(0, T, V ) (resp. L∞(Q)) and

∀v ∈ L2(0, T, V ),
∫

Q

{∂tuεv + λε∇[uε + τ∂tuε]∇v} dxdt = 0. (14)

In both cases, each accumulation point provides a “mild solution” in the sense of Ph. Bénilan and al. [4]
but, as already mentioned in G. Gagneux and al. [8] the double weak convergence in the term λε∇uε does
not allow us to pass to limits.
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5 Conclusion and open problems
A solution has been found in Lip([0, T ],H1

0 (Ω)) to the degenerated problem
∂tu− τ∆A(∂tu + E)− div(a(∂tu + E)∇u) = 0 in Q,

∂tu + E ≥ 0 in Q,

u = 0 and ∂tu = 0 in ]0, T [×∂Ω, u|t=0 = u0 in Ω.

In order to conclude that this problem is well-posed in the sense of Hadamard, one still has to prove that
such a solution is unique. This is still an open problem, mainly due to a behaviour of hysteresis type of the
equation.

Let us cite a recent paper of Z. Wang and al. [15] where the uniqueness of the solution to a weakly
similar equation has been proved. The method is based on a Holmgren approach.

Another possibility consists in getting information on the localization and the finite speed propagation
of ground via the methods of S.N. Antontsev and al.’s book [1].

The above solution is a solution to a perturbation of the real problem since a has to be the graph of
the Heaviside function in order to satisfy the condition (2). This problem is open too as mentioned in the
section: About the differential inclusion.
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