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Existence of solutions for a degenerate nonlinear evolution
equation

A. Sanih Bonfoh

Abstract. We consider a model of generalized Cahn-Hilliard equations with a logarithmic free energy
and a degenerate mobility, and obtain a result on the existence of solutions

Existencia de soluciones para una ecuación no lineal degenerada

Resumen. En este trabajo se considera un modelo de ecuaciones Cahn-Hilliard generalizadas con en-
ergı́a libre logarı́tmica y movilidad degenerada, y se obtiene un resultado sobre la existencia de soluciones

1 Introduction
We set Ω =

∏n
i=1]0, Li[, Li > 0, i = 1, . . . , n, n = 2 or 3, and consider the following system:

∂ρ
∂t − a · ∇∂ρ

∂t − div(A∇∂ρ
∂t ) = −∇ · J,

J = −B(ρ)∇w,
w − b.∇w − div(C∇w) = −α∆ρ+ f ′(ρ) + β ∂ρ

∂t + c.∇∂ρ
∂t − div(D∇∂ρ

∂t ),
ρ|t=0 = ρ0,

ρ and J are Ω− periodic;

(1)

where α, β > 0, a, b, c are vectors in Rn, ρ is the order parameter, w is the chemical potential, A,C,D
are three n-dimensional symmetric and positive definite matrices with constant coefficients, and B(ρ) is a
degenerate symmetric and positive matrix (B is called the mobility tensor). For the sake of simplicity, we
assume that B(ρ) = κ(ρ)I, I being the identity matrix and κ the function defined by:

κ(ρ) = (1− ρ2)κ(ρ), (2)

where κ : [−1, 1] → R satisfies:

κ ∈ C1(R), 0 < κ0 ≤ κ(s) ≤ κ1, ∀s ∈ R. (3)

The free energy f : [−1, 1] → R is given by:{
f(s) = 1

2 (1− s2) + θ
2 [(1 + s) ln( 1+s

2 ) + (1− s) ln( 1−s
2 )], s ∈]− 1, 1[,

f(−1) = f(1) = 0,
(4)
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with 0 < θ < 1.
The above problem is based on constitutive equations proposed by M. Gurtin in [8]. This system is a

generalization of the Cahn-Hilliard equation, which describes very important qualitative features of two-
phase systems, namely the transport of atoms between unit cells (see [3] and [4]). In his derivations,
M. Gurtin takes into account the work of the internal microforces, the anisotropy and also the deformations
of the material that are neglected here (see [7] and [10] where full nonlinear partial differential equations
have been derived). Most of the mathematical literature on the Cahn-Hilliard equation (and also generalized
Cahn-Hilliard equations) has concentrated on a polynomial nonlinearity and/or a constant mobility (see
for instance [2], [10] and [11]). Some results concerning the Cahn-Hilliard equation with a logarithmic
potential and/or a non-constant mobility can be found in [1], [5] and [6]. We propose in this paper to study
the existence of solutions of the above problem.

For the mathematical setting of the problem, we denote by ‖ · ‖ and (·, ·) the usual norm and scalar
product in L2(Ω) (and also in L2(Ω)n). For each ρ ∈ L1(Ω), m(ρ) stands for the average of ρ, that is,
m(ρ) = 1

|Ω|
∫
Ω
ρ(x) dx. For a space X, we denote by Ẋ the space {q ∈ X, m(q) = 0}, and by X ′ the dual

space of X . We define L1q = q − a.∇q − div(A∇q), L2q = q − b · ∇q − div(C∇q) and Nq = −∆q,
for all q ∈ H2

per(Ω). The operator N is linear, self-adjoint, strictly positive with compact inverse N−1 on
Ḣ2

per(Ω). We set ΩT = Ω×]0, T [, q = q − m(q); and denote by L2(ΩT ) both spaces L2(0, T ;L2(Ω))
and L2(0, T ;L2(Ω)n). We endow (Ḣ1

per(Ω))′ with the norm ‖ · ‖−1 defined by ‖q‖−1 = ‖N− 1
2 q‖,∀q ∈

(Ḣ1
per(Ω))′. There exist two positive constants c1 and c2 such that c1‖q‖−1 ≤ ‖q‖ ≤ c2‖∇q‖, ∀q ∈

H1
per(Ω).

If b = 0, then the linear operator L2 is self-adjoint, strictly positive with compact inverse L−1
2 on

H2
per(Ω). We can then introduce the following weak formulation of the problem:

Find (ρ, J) : [0, T ] → H1
per(Ω)× L2(Ω)n, such that ρ(0) = ρ0, and for a.e. t ∈ [0, T ], ∀T > 0,

d

dt
(L1ρ, q) = (J,∇q), ∀q ∈ H1

per(Ω), (5)

(J, q) = (κ(ρ)∇L−1
2 (−α∆ρ+ f ′(ρ) + β

∂ρ

∂t
+ c.∇∂ρ

∂t
− div(D∇∂ρ

∂t
), q), (6)

∀q ∈ H1
per(Ω)n.

Throughout this paper, the same letter C shall denote positive constants that may change from line to
line.

2 Preliminary results
In this section, we assume that A and C are not necessarily symmetric and positive definite and that the
mobility κ is such that

κ ∈ C(R), 0 < κ0 ≤ κ(s) ≤ κ1, ∀s ∈ R. (7)

We further assume that the potential f satisfies the following conditions: f ∈ C1(R),
f(s) ≥ −c1, c1 > 0, ∀s ∈ R,

|f ′(s)| ≤ c2|s|q + c3, c2, c3 > 0, ∀s ∈ R,
(8)

where q ≥ 1 if n = 2 and q ∈ [1, 6] if n = 3.
Now, we consider the following weak formulation:
Find (ρ,w) : [0, T ] → H1

per(Ω)× L2(Ω), such that ρ(0) = ρ0, and for a.e. t ∈ [0, T ], ∀T > 0,

d

dt
(L1ρ, q) = −(κ(ρ)∇w,∇q), ∀q ∈ H1

per(Ω), (9)
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(L2w, q) = α(∇ρ,∇q) + (f ′(ρ), q)+β(
∂ρ

∂t
, q) + (c.∇∂ρ

∂t
, q)− (div(D∇∂ρ

∂t
), q),

∀q ∈ H1
per(Ω).

(10)

We note that a · ∇ is antisymmetric on H1
per(Ω), that is, (a · ∇p, q) = −(p, a · ∇q), ∀p, q ∈ H1

per(Ω). We
take q = 1 in (9) and observe that the average of ρ is conserved:

m(ρ(t)) = m(ρ0), ∀t ≥ 0. (11)

We now take q = 1 in (10) and obtain
m(w) = m(f ′(ρ)). (12)

Under assumptions (7) and (8) we prove the following result.

Theorem 1 We assume that ρ0 ∈ H1
per(Ω), a + b = 0 and that A = C. Then, there exists a pair

of functions (ρ,w) solution of (9)–(10) such that ρ ∈ C([0, T ]; H1
per(Ω)), w ∈ L2(0, T ; H1

per(Ω)) and
∂ρ
∂t ∈ L

2(0, T ;H1
per(Ω)).

PROOF. The existence follows from standard arguments, using Galerkin approximations and then passing
to the limit (see for instance [9] and [11]). In order to derive a priori estimates, we formally take q = w
in (9) and q = ∂ρ

∂t in (10). We obtain∫
Ω

L1
∂ρ

∂t
w dx+

∫
Ω

κ(ρ)|∇w|2 dx = 0; (13)

and
d

dt

∫
Ω

(
α

2
|∇ρ|2 + f(ρ)) dx+ β

∫
Ω

|∂ρ
∂t
|2 dx+

∫
Ω

|D 1
2∇∂ρ

∂t
|2 dx−

∫
Ω

∂ρ

∂t
L2w dx = 0, (14)

noting that (c · ∇∂ρ
∂t ,

∂ρ
∂t ) = 0. Assuming that a + b = 0 and A = C, we have (L1

∂ρ
∂t , w) = (∂ρ

∂t , L2w),
therefore ∫

Ω

(
α

2
|∇ρ|2 + f(ρ)) dx+ β

∫
ΩT

|∂ρ
∂t
|2 dxdt+

∫
ΩT

|D 1
2∇∂ρ

∂t
|2 dxdt

+
∫

ΩT

κ(ρ)|∇w|2 dxdt =
∫

Ω

(
α

2
|∇ρ0|2 + f(ρ0)) dx.

(15)

Since ρ0 ∈ H1
per(Ω), we obtain∫

Ω

(
α

2
|∇ρ|2 + f(ρ)) dx+ β

∫
ΩT

|∂ρ
∂t
|2 dxdt+

∫
ΩT

|D 1
2∇∂ρ

∂t
|2 dxdt+

∫
ΩT

κ(ρ)|∇w|2 dxdt ≤ C; (16)

hence

‖ρ‖L∞(0,T.H1
per(Ω)) ≤ C, ‖∂ρ

∂t
‖L2(0,T ;H1

per(Ω)) ≤ C, ‖w‖L2(0,T ;H1
per(Ω)) ≤ C; (17)

using Sobolev embedding theorems and Poincaré’s inequality. Finally, the fact that ρ ∈ C([0, T ];H1
per(Ω))

follows from standard compactness results (see [9] and [11]). �

Remark 1 Theorem 1 is still true if, instead of a+ b = 0 and A = C, we consider the following assump-
tion: there exists a positive constant c0 such that βx2 + κ(s)|y|2 + Dz.z + (A − C)y.z + (a + b).yx ≥
c0(x2 + |y|2 + |z|2), ∀s, x ∈ R,∀y, z ∈ Rn. �
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3 A regularized problem
We denote by ψ and φ the functions

ψ(s) =
θ

2

[
(1 + s) ln

(
1 + s

2

)
+ (1− s) ln

(
1− s

2

)]
, (18)

and φ(s) = ψ′(s), for s ∈]− 1, 1[. We then have f(s) = 1
2 (1− s2) + ψ(s) and f ′(s) = −s+ φ(s).

The major difficulty in the study of problem (1)–(4) is that κ degenerates and φ(s) is singular at s = ±1
and, therefore, has no meaning if ρ = ±1 in an open set of non-zero measure. To overcome this difficulty,
we consider a regularized problem as in [1] and [6]. The mobility κ is replaced by the non-degenerate
function κε defined by:

κε(s) =


κ(−1 + ε) if s ≤ −1 + ε,
κ(s) if |s| ≤ 1− ε,
κ(1− ε) if s ≥ 1− ε;

(19)

and the logarithmic free energy f(ρ) is replaced by the twice continuously differentiable function fε(s) =
1
2 (1− s2) + ψε(s), where ε ∈]0, 1[, and

ψε(s) =


θ
2 (1− s) ln[ 1−s

2 ] + θ
4ε (1 + s)2 + θ

2 (1 + s) ln[ ε
2 ]− θε

4 if s ≤ −1 + ε,
ψ(s) if |s| ≤ 1− ε,
θ
2 (1 + s) ln[ 1+s

2 ] + θ
4ε (1− s)2 + θ

2 (1− s) ln[ ε
2 ]− θε

4 if s ≥ 1− ε.
(20)

The monotone function φε = ψ′ε has the following properties (see [1]):

• for all r, s, f ′ε(s)(r − s) ≤ fε(r)− fε(s) +
1
2
(r − s)2; (21)

• ∀ε ≤ 1
2
,

{
θ(r − s)2 ≤ (φε(r)− φε(s))(r − s), ∀r, s,
ε
θ (φε(r)− φε(s))2 ≤ (φε(r)− φε(s))(r − s), ∀r, s;

(22)

• for ε sufficiently small, e.g. if ε ≤ ε0 =
θ

8
, then

fε(s) ≥
θ

8ε
([s− 1]2+ + [−1− s]2+)− 1 ≥ −1 ∀s, (23)

where [·]+ = max{·, 0}.
We now study the corresponding regularized problem of (5)–(6):

Find (ρε, Jε) : [0, T ] → H1
per(Ω) × L2(Ω)n, such that ρε(0) = ρ0, and for a.e. t ∈ [0, T ], ∀T > 0,

Jε = −κε(ρε)∇wε and
d

dt
(L1ρε, q) = (Jε,∇q), ∀q ∈ H1

per(Ω), (24)

(Jε, q) = (κε(ρε)∇L−1
2 (−α∆ρε+f ′ε(ρε) + β

∂ρε

∂t
+ c · ∇∂ρε

∂t
− div(D∇∂ρε

∂t
), q),

∀q ∈ H1
per(Ω)n.

(25)

We prove the following result.

Lemma 1 We assume that ρ0 ∈ H1
per(Ω) with ‖ρ0‖L∞(Ω) ≤ 1, a = b = 0 and that A = C. Then, for all

ε ≤ ε0, there exists a pair of functions (ρε, Jε) solution of (24)–(25) such that

‖ρε‖L∞(0,T ;H1
per(Ω)) ≤ C, ‖Jε‖L2(ΩT ) ≤ C, ‖∂ρε

∂t
‖L2(0,T ;H1

per(Ω)) ≤ C, (26)

and
‖[ρε − 1]+‖L∞(0,T ;L2(Ω)) + ‖[−ρε − 1]+‖L∞(0,T ;L2(Ω)) ≤ Cε

1
2 , (27)

where C is independent of ε.
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PROOF. Since κε and fε satisfy assumptions (7) and (8) respectively, we deduce from Theorem 1 that,
for all ε > 0, there exists a solution (ρε, wε) for the regularized counterpart of (9)–(10) such that ρε ∈
C([0, T ];H1

per(Ω)), wε ∈ L2(0, T ;H1
per(Ω)) and ∂ρε

∂t ∈ L2(0, T ;H1
per(Ω)). As in the proof of Theorem 1,

the solution (ρε, wε) further satisfies the following estimate∫
Ω

(
α

2
|∇ρε|2 + fε(ρε)) dx+ β

∫
ΩT

|∂ρε

∂t
|2 dxdt+

∫
ΩT

|D 1
2∇∂ρε

∂t
|2 dxdt

+
∫

ΩT

κε(ρε)|∇wε|2 dxdt ≤
∫

Ω

(
α

2
|∇ρ0|2 + f(ρ0)) dx ≤ C,

(28)

hence, ess supt∈[0,T ] ‖∇ρε‖ ≤ C, ‖[κε(ρε)]
1
2∇wε‖L2(ΩT ) ≤ C, ‖∂ρε

∂t ‖L2(0,T ;H1
per(Ω)) ≤ C, and

ess sup
t∈[0,T ]

∫
Ω

([ρε − 1]2+ + [−1− ρε]2+) dx ≤ Cε, (29)

which follows from (23); noting that fε(ρ0) ≤ f(ρ0) for ε sufficiently small. Since m(ρε) = m(ρ0),
Poincaré’s inequality yields ess sup0≤t≤T ‖ρε‖H1

per(Ω) ≤ C, where the generic constant C does not depend
on ε, ε ≤ ε0, for a sufficiently small ε0. �

Theorem 2 Let the assumptions of Lemma 1 hold. Then, there exists a solution (ρ, J) of (5)–(6) such that
ρ ∈ C([0, T ];H1

per(Ω)), J ∈ L2(ΩT ), |ρ| ≤ 1 a.e. in ΩT and ∂ρ
∂t ∈ L

2(0, T ;H1
per(Ω)).

PROOF. It follows from Lemma 1 that there exists a subsequence (which we still denote by (ρε, Jε)ε>0)
and a pair of functions (ρ, J) such that

ρε, ∇ρε → ρ, ∇ρ strongly in L2(ΩT ) and a.e. in ΩT ,

∂ρε

∂t
⇀

∂ρ

∂t
weakly in L2(0, T ;H1

per(Ω)),

Jε ⇀ J weakly in L2(ΩT ).

We then pass to the limit in the regularized problem (24)–(25) (see [6] for more details). �

Remark 2 The more interesting case is when a + b 6= 0 and A 6= C. But, we are unable to deal this
situation. The technique used in the proof of Theorem 2 failed. �

Remark 3 Theorem 2 is still true even if D = 0 and β = 0. Indeed, we have ‖q‖2 + ‖A 1
2∇q‖2 =

(L1q, q) ≤ c‖L1q‖−1‖∇q‖, c > 0, ∀q ∈ Ḣ1
per(Ω), and therefore there exist two positive constants c1, c2

such that c1‖∇∂ρε

∂t ‖L2(ΩT ) ≤ ‖∂L1ρε

∂t ‖L2(0,T ;(H1
per(Ω))′) ≤ c2‖Jε‖L2(ΩT ), ∀ε > 0, which leads to the

result together with the other estimates. �
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