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Existence of solutions for a degenerate nonlinear evolution
equation

A. Sanih Bonfoh

Abstract. We consider a model of generalized Cahn-Hilliard equations with a logarithmic free energy
and a degenerate mobility, and obtain a result on the existence of solutions

Existencia de soluciones para una ecuacion no lineal degenerada

Resumen. En este trabajo se considera un modelo de ecuaciones Cahn-Hilliard generalizadas con en-
ergia libre logaritmica y movilidad degenerada, y se obtiene un resultado sobre la existencia de soluciones

1 Introduction
We set Q@ = []:,]0,L;[, L; >0,i=1,...,n, n=2or 3, and consider the following system:

% 0V _div(AVE)= -V J,

ot
w—b.Vw — div(CVw) = —alp + f'(p) + B + VL — div(DV ), (1)
Plt=0 = pPo,

p and J are 2 — periodic;

where o, 5 > 0, a,b, ¢ are vectors in R", p is the order parameter, w is the chemical potential, A, C, D
are three n-dimensional symmetric and positive definite matrices with constant coefficients, and B(p) is a
degenerate symmetric and positive matrix (B is called the mobility tensor). For the sake of simplicity, we
assume that B(p) = x(p)I, I being the identity matrix and & the function defined by:

k(p) = (1= p*)E(p), 2)
where & : [—1, 1] — R satisfies:
ReCY(R), 0<Fy<FR(s) <R, VscR. 3)

The free energy f : [—1,1] — R is given by:

{f(S) =51 =)+ 3[(1+ ) () + (1 - 5)In(5)], s€]-1,1], @)

f(1) =0,
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with0 < 0 < 1.

The above problem is based on constitutive equations proposed by M. Gurtin in [8]. This system is a
generalization of the Cahn-Hilliard equation, which describes very important qualitative features of two-
phase systems, namely the transport of atoms between unit cells (see [3] and [4]). In his derivations,
M. Gurtin takes into account the work of the internal microforces, the anisotropy and also the deformations
of the material that are neglected here (see [7] and [10] where full nonlinear partial differential equations
have been derived). Most of the mathematical literature on the Cahn-Hilliard equation (and also generalized
Cahn-Hilliard equations) has concentrated on a polynomial nonlinearity and/or a constant mobility (see
for instance [2], [10] and [11]). Some results concerning the Cahn-Hilliard equation with a logarithmic
potential and/or a non-constant mobility can be found in [1], [5] and [6]. We propose in this paper to study
the existence of solutions of the above problem.

For the mathematical setting of the problem, we denote by || - || and (-,-) the usual norm and scalar
product in L?(Q) (and also in L?(2)™). For each p € L*(Q), m(p) stands for the average of p, that is,
m(p) = ﬁ Jo p(x) da. For a space X, we denote by X the space {q € X, m(q) = 0}, and by X’ the dual
space of X. We define L1q = ¢ — a.Vq — div(AVq), Lag = ¢ — b - Vg — div(CVq) and Ng = —Aq,

for all ¢ € ngT(Q). The operator N is linear, self-adjoint, strictly positive with compact inverse N ! on

H2 (). We set Qp = Q0x]0,T[, 7 = g — m(q); and denote by L?(Q7) both spaces L2(0,T; L?(Q))

per

and L2(0, T; L*(2)"). We endow (F},,.(Q))’ with the norm || - ||_; defined by ||¢||_1 = [N~ 2¢]|,Vq €
(H!,,.(Q))". There exist two positive constants c; and ¢y such that ¢1]|g]—1 < [|g]| < c2||Vqll, Vq €
H!. (Q).

per

If b = 0, then the linear operator L, is self-adjoint, strictly positive with compact inverse L, ! on

H ger (€2). We can then introduce the following weak formulation of the problem:
Find (p, J) : [0,T] — H,,,.(€2) x L*(€)", such that p(0) = po, and for a.e. t € [0,T], VT > 0,
d
—(L1p.q) = (1, Va), Vg & Hp,, (%), )
_ 0 0 . 0
(,0) = (K(p)VLy (—adp + ['(p) + 557 + V5, —div(DV ), 0), ©)

Vq € Hp,, ()"

Throughout this paper, the same letter C' shall denote positive constants that may change from line to
line.

2 Preliminary results

In this section, we assume that A and C' are not necessarily symmetric and positive definite and that the
mobility x is such that

k€CR), 0<ry<k(s) <k, VseR. @)
We further assume that the potential f satisfies the following conditions:
feC(R),
f(s) > —c1, ¢1 >0, VseR, )]

[/ (s)] <cols]?4c3, c2,c3>0, Vs ER,

where ¢ > 1ifn=2and ¢ € [1,6] if n = 3.
Now, we consider the following weak formulation:
Find (p,w) : [0,T] — HZ,, (Q) x L*(), such that p(0) = po, and for a.e. t € [0,T], VT > 0,

per

d
a(L1p7Q) = _(K‘(p)vwv Vq)a vq € H;er(Q)a (9)
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(Law.q) = a(Tp.¥a) + (7'(0). 4B (g0 + (T 50 0) — @DV G0 o

ot
VQ €H per (Q) .

We note that a - V is antisymmetric on H, (Q), thatis, (a - Vp,q) = —(p,a - Vq), Vp,q € H}, (Q). We

per per
take ¢ = 1 in (9) and observe that the average of p is conserved:

m(p(t)) = m(po), Vt=0. (1)

We now take ¢ = 1 in (10) and obtain
m(w) = m(f'(p)). (12)

Under assumptions (7) and (8) we prove the following result.

Theorem 1 We assume that py € H),,.(Q), a +b = 0 and that A = C. Then, there exists a pair

of functions (p, w) solution of (9)-(10) such that p € C([0,T]; H}.,.()), w € L*(0,T; H},,.(Q)) and
9% ¢ 12(0,T; HL,, ().

per

PROOF. The existence follows from standard arguments, using Galerkin approximations and then passing
to the limit (see for instance [9] and [11]). In order to derive a priori estimates, we formally take ¢ = w
in (9) and ¢ = %2 in (10). We obtain

/Ll@wd:c—&—/ﬁz(pﬂVdex:O; (13)
o Ot Q
and

%/Hv 24 £(p)) dx+ﬁ/| 2 da +/|D2 /pLdem—O (14)

noting that (c - V%, %) = 0. Assuming that e + b = 0 and A = C, we have (ng—é’, ) = (m,ng)
therefore

/(9|vp|2+f(p))dx+ﬂ |@|2dxdt+/ D> v |2d dt

02 0 O s

+ [ wp)Tuddt = [ (5190 + (o)) do
Qr Q

Since po € H},,.(Q), we obtain

per

/(g\vp|2+f(p))da;+ﬁ %Pdmw/ D= v |2d dt+/ Kk(p)|Vw|? dzdt < C; (16)
Q Qr Q

T
hence

v @) <0, lwllp2omm, (o) < C; (17)

per per

dp
Lo o,r.m2 (o) < C, H§||L2 0,T:H

per

using Sobolev embedding theorems and Poincaré’s inequality. Finally, the fact that p € C([0, T; H},,.(2))
follows from standard compactness results (see [9] and [11]). W

Remark 1 Theorem 1 is still true if, instead of a + b = 0 and A = C, we consider the following assump-
tion: there exists a positive constant co such that Bx® + k(s)|y|?> + Dz.z + (A — C)y.z + (a + b).yx >
co(2? + |y|2 + |2|%), Vs,z € R,Vy,z € R*. O
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3 Aregularized problem

We denote by ¢ and ¢ the functions
0 1+s 1—s
w(s):2[(1—|—s)ln< 5 >+(1—s)ln< 5 )], (18)

and ¢(s) = ¢'(s), for s €] — 1,1[. We then have f(s) = 1(1 — s?) +¢(s) and f(s) = —s + ¢(s).

The major difficulty in the study of problem (1)—(4) is that x degenerates and ¢(s) is singular at s = +1
and, therefore, has no meaning if p = =1 in an open set of non-zero measure. To overcome this difficulty,
we consider a regularized problem as in [1] and [6]. The mobility « is replaced by the non-degenerate
function k. defined by:

k(=1+4+¢€) ifs<—-1+e¢,
Ke(s) = ¢ Kk(s) if|s] <1—c¢, (19)
k(1 —¢) ifs>1—g¢
and the logarithmic free energy f(p) is replaced by the twice continuously differentiable function f.(s) =
£(1 = %) +1be(s), where € €]0, 1[, and

bA—s)In[A5E ]+ L(1+s)2+ (1 +s)In[5] — & ifs< —1+e

Ye(s) = < P(s) if[s| <1—c¢, (20)
g(l + s) In[1£=] + %(1 -5+ g(l —s5)In[§] — % ifs>1—e
The monotone function ¢, = 1)/ has the following properties (see [1]):

e forallr, s, FLs)(r —s) < folr) — fo(s) + %(T —5)% 20

L J0(r —5)* < (¢e(r) — ¢e(5))(r — 5), vr, s,
o Ve< —, (22)

“=3 {5(@(7’) = 0c(5))? < (Pe(r) — @e(5))(r — 5), Vr, s;

e for e sufficiently small, e.g. if e < ¢y = g then

fuls) > g5 =1+ [l - sP) — 1> -1 Vs, 23)

where [-]+ = max{-,0}.
We now study the corresponding regularized problem of (5)—(6):
Find (p, Je) : [0,T] — H}L,,. () x L*(Q)", such that p.(0) = py, and for ae. t € [0,7], VT > 0,

Je = —ke(pe) Vw, and .
d
—(Lipe, ) = (Je, Va), ¥g € Hy, (Q), 24
(Jerd) = () VL (~adpetfl(pe) + B2 4 e VI —aiv(DV 92 )
@) = (Ke(pe) VL3 petfe(pe ot ot 1 (25)
VqGHéer(Q)"

We prove the following result.

Lemma 1 We assume that pg € H},,.() with ||po| ) < 1. a = b = 0and that A = C. Then, for all

per

€ < €q, there exists a pair of functions (pe, J.) solution of (24)—(25) such that

lpellos 0,712, ) < O, el < C, || ||L2(0THW(Q)) <C, (26)

per

and
1

1[pe = Ul Lo 0,7:22(0)) + I[=pe = L+l Lo(0.1:L2(0)) < Ce?, @7

where C'is independent of e.
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PROOF. Since k. and f, satisfy assumptions (7) and (8) respectively, we deduce from Theorem 1 that,
for all € > 0, there exists a solution (p.,w,) for the regularized counterpart of (9)—(10) such that p. €
C([0,T); HL, (), we € L2(0, T; H},,. () and 92« € L2(0, T H},,.(€2)). As in the proof of Theorem 1,
the solution (p., w.) further satisfies the following estimate

8 € 1 a €
/(9|vp6|2+fe(pe>)dx+ﬁ 90 |2dmdt+/ D32 2 gt

(28)
4 [ wdpolVu st < [ (G1VmP + flon)) da < C.
Qrp Q 2
hence, ess supe(o. 7 [|Voel| < C. [|[ke(pe)]? Vel 2 o) < O, 195 220, 7:112,,, () < C; and
ess sup / ([pe = 13 + [-1 = p3) da < Ce, (29)
te[0,T] JQ

which follows from (23); noting that f.(py) < f(po) for e sufficiently small. Since m(p.) = m(po),
Poincaré’s inequality yields esssup< <7 |||l a1, (@) < C, where the generic constant C' does not depend
on e, € < €, for a sufficiently small ¢g. W

Theorem 2 Let the assumptions of Lemma 1 hold. Then, there exists a solution (p, J) of (5)—(6) such that
p€C([0,T]; HL,,(Q), J € L*(Qr), |p| < 1ae. in Qr and % € L*(0,T; H,,. ().

per

PROOF. It follows from Lemma 1 that there exists a subsequence (which we still denote by (pe, Je)es0)
and a pair of functions (p, J) such that

pe, Ve — p, Vp strongly in L?(Q7) and a.e. in Qr,
aapte - % weakly in L?(0, T} H;GT(Q)),
Je—~J weakly in L?(Qr).

We then pass to the limit in the regularized problem (24)—(25) (see [6] for more details). M

Remark 2 The more interesting case is when a + b # 0 and A # C. But, we are unable to deal this
situation. The technique used in the proof of Theorem 2 failed. [

Remark 3 Theorem 2 is still true even if D = 0 and B = 0. Indeed, we have ||q||> + ||A%Vq||2 _
(L1q,q) < cl|L1g||-1[IVqll, ¢ > 0, Vg € H},.(Q), and therefore there exist two positive constants ¢y, ¢
such that 61”V%”L2(QT) < Haléltpe

result together with the other estimates. [

L2(0,T;(HL, (2))") < CQ||J€||L2(QT)7 Ve > 0, which leads to the

per
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