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Abstract. We give an introductory review of Fourier-Mukai transforms and their application to various
aspects of moduli problems, string theory and mirror symmetry. We develop the necessary mathematical
background for Fourier-Mukai transforms such as aspects of derived categories and integral functors as
well as their relative version which becomes important for making precise the notion of fiberwise T-
duality on elliptic Calabi-Yau threefolds. We discuss various applications of the Fourier-Mukai transform
to D-branes on Calabi-Yau manifolds as well as homological mirror symmetry and the construction of
vector bundles for heterotic string theory.

Transformaciones de Fourier-Mukai y aplicaciones a la teorı́a de cuerdas

Resumen. El artı́culo es una introducción a la transformación de Fourier-Mukai y sus aplicaciones
a varios problemas de móduli, teorı́a de cuerdas y simetrı́a “mirror”. Se desarrollan los fundamentos
necesarios para las transformaciones de Fourier-Mukai, entre ellos las categorı́as derivadas y los functores
integrales. Se explican además sus versiones relativas, que se necesitan para precisar la noción de T-
dualidad fibrada en variedades de Calabi-Yau elı́pticas de dimensión tres. Se consideran también varias
aplicaciones de la transformación de Fourier-Mukai a las D-branas en variedades de Calabi-Yau, ası́ como
a la simetrı́a “mirror” y a la construcción de fibrados vectoriales para la cuerda heterótica.
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1 Introduction

The interplay between geometry and physics has a long story. Traditionally differential geometry played
a fundamental role in many physical aspects such as general relativity or gauge theory. Today various
methods and objects of algebraic geometry are required for formulating and understanding string theory.
In particular the physical notion of “duality” has lead in mathematics to unexpected connections between
the geometry of different spaces. Mirror symmetry was an example of this but many more remain to be
explored. On the physics side one hopes to obtain a better understanding of nonperturbative aspects of the
way string theory describes the real world. So both mathematics and physics appear to benefit greatly from
the duality correspondences. These sparked various new developments on both sides, in particular, a new
geometrical understanding of mirror symmetry has begun recently to evolve. Some aspects of this evolution,
like Kontsevich proposal of homological mirror symmetry but also the construction of holomorphic bundles
from spectral data require the use of Fourier-Mukai transforms and inspired the present review paper.

In this paper we will review some aspects of derived categories, Fourier-Mukai transforms and their
relative version, that is, their formulation for families rather than for single varieties.The main advantage of
the relative setting is that base-change properties (or parameter dependencies) are better encoded into the
problem; the drawback is of course the increasing abstraction and technical machinery we need. In most of
this review we will be concerned with the relative Fourier-Mukai transform for elliptic fibrations. However,
to begin let us briefly recall a few aspects of Fourier-Mukai transforms to put the subject in context and
describe how the relative setting enters into string theory.

The Fourier-Mukai transform was introduced in the study of abelian varieties by Mukai and can be
thought of as a nontrivial algebro-geometric analogue of the Fourier transform. Since its original intro-
duction, the Fourier-Mukai transform turned out to be a useful tool for studying various aspects of sheaves
on varieties and their moduli spaces, and as a natural consequence, to learn about the varieties themselves.
In recent years it was found that the Fourier-Mukai transform also enters into string theory. The most
prominent example is given by Kontsevich’s homological mirror symmetry conjecture [81]. The conjec-
ture predicts (for mirror dual pairs of Calabi-Yau manifolds) an equivalence between the bounded derived
category of coherent sheaves and the Fukaya category. The conjecture implies a correspondence between
self-equivalences of the derived category and certain symplectic self-equivalences of the mirror manifold.

Besides their importance for geometrical aspects of mirror symmetry, the Fourier-Mukai transform has
been shown to be also important for heterotic string compactifications on ellipitic fibrations. The motivation
for this came from the conjectured correspondence between the heterotic string and the so called F-theory
which both rely on elliptically fibered Calabi-Yau manifolds. To give evidence for this correspondence, an
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explicit description of stable holomorphic vector bundles was required and inspired the seminal work of
Friedman, Morgan and Witten [58, 59, 61]. They showed how to construct vector bundles in terms of two
geometrical objetcs: a hypersurface in the Calabi-Yau manifold together with a line bundle on it (called the
spectral data). Various aspects and refinements of this construction have been studied in subsequent work
[48, 14, 49, 50, 32, 2, 44, 46, 71, 8, 7]. Moreover, a physical way to understand this bundle construction can
be given if one views holomorphic vector bundles as D-branes and uses the fact that D-branes are mapped
under T-duality to new D-branes (of different dimensions) which can then be made mathematically precise
in terms of a relative Fourier-Mukai transform.

More generally, D-branes can be interpreted as objects of the derived category, one then expects the
Fourier-Mukai transform (or its relative version) to act on the spectrum of D-branes. This suggests that the
Fourier-Mukai transform is actually a symmetry of string theory. Furthermore, the study of D-branes on
Calabi-Yau manifolds inspired numerous mathematical questions, for instance, the search for new Fourier-
Mukai partners [91, 97, 35, 79, 76, 112], the reconstruction of the underlying variety from the dervied
category [29], the study of the self-equivalence/monodromy correspondence in the context of mirror sym-
metry and the search for a new categorical stability notion [31, 30] which has been motivated by Douglas
Π-stability of D-branes [52, 53, 54].

The paper is organized as follows: In section 2 we review the definition and basic facts about the derived
category and derived functors. We have tried to avoid technicalities as much as possible. In section 3 we
define Fourier-Mukai functors and some examples of them, together with their composition and IT and
WIT conditions. We also deal with Fourier-Mukai functors for families, and we state the base-change
properties of those functors. Since the main example of a relative Fourier-Mukai functor is the one defined
for elliptic fibrations, we have devoted section 4 to those fibrations, their Weierstrass models and particular
aspects of the Fourier-Mukai transforms for them. We also define spectral covers and so prepare further
applications in Section 7. The computation of the topological invariants of the Fourier-Mukai transform is
given in section 5. Section 6 is devoted to the application of the Fourier-Mukai transform to certain moduli
problems, like the determination of the moduli of relatively stable sheaves on an elliptic fibrations or the
isomorphism of the moduli of absolutely stable sheaves on an elliptic surface with a (generically) integral
system over a Hilbert scheme. In Section 7 we discuss some applications of the Fourier-Mukai transform
to string theory. After giving a brief introduction to D-branes, we discuss the action of the Fourier-Mukai
transform on the spectrum of D-branes on elliptically fibered Calabi-Yau threefolds (in physical terms this
reflects the adiabatic character of T-duality). Then we outline a procedure (which relies on the comparison
of central charges associated to A-type, respectively, B-type D-brane configurations) that allows to make
explicit Kontsevich’s proposed self-equivalence/monodromy correspondence. We refer to monodromies in
the moduli space of the complexified Kähler form which have to be identified by mirror symmetry with
the complex structure moduli space of the mirror manifold. If the complex structure varies while keeping
fixed the Kähler structure, the isotopy classes of Lagrangian submanifolds vary as well and then loops in
the complex structure moduli space produce monodromies on the classes of Lagrangian submanifolds. The
last application is devoted to heterotic string theory on elliptically fibered Calabi-Yau threefolds. It is shown
how the relative Fourier-Mukai transform can be used to construct vector bundles (via the spectral cover
approach) which satisfy the topological consistency conditions of heterotic string theory. We have also
included a short subsection about the influence of mirror symmetry in the problem of the reconstruction of
a variety out of its derived category. Finally there is an appendix that collects some basic definitions and
results regarding pure sheaves and Simpson stability.

2 Aspects of derived categories
Derived categories were introduced in the sixties in the framework of homological algebra and Grothendieck
duality of coherent sheaves. One of the first accounts on the subject is a 1963 Verdier’s booklet reproduced
in [114] and expanded in Verdier’s Ph.D. thesis (1967), which has been now reedited [115]. Since then,
many readable accounts have been written, for instance [77] or quite recently [109].
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2.1 What is the derived category?

Let us start with a complex algebraic variety X whose structure ring sheaf we denote by OX1. By sheaves
we will always understand sheaves of OX -modules and we will denote them by calligraphic letters, like F ,
as far as possible.

A sequence

F ≡ . . .
di−2−−−→ F i−1 di−1−−−→ F i di−→ F i+1 di+1−−−→ . . . (i ∈ Z)

of morphisms of sheaves where the composition of any two consecutive maps is zero, is known as a complex
of sheaves. The morphisms di are also known as differentials of the complex F . The complex is bounded
below if it starts at some place i (that is, the sheaves Fj are zero for j < i), bounded above if it ends at
some place i, and simply bounded if it has only a finite number of non-vanishing sheaves.

A complex has cohomology sheaves defined as

Hi(F ) = Ker di/ Im di−1 .

Morphisms of complexes φ : F → G are defined as collections φi : F i → Gi of morphisms commuting
with the differentials. A complex morphism induces morphisms Hi(φ) : Hi(F ) → Hi(G). We then say
that φ is a quasi-isomorphism whenever all the induced morphisms Hi(φ) are isomorphisms.

The derived category of sheaves is a category built from complexes in such a way that complex quasi-
isomorphisms become isomorphisms. This is accomplished as follows: We first identify two complex
morphisms φ : F → G and ψ : F → G when they are homotopically equivalent. This gives rise to a
category, the category of complexes up to homotopies.

The second step is to “localize” by (classes of) quasi-isomorphims. This localization is a fraction
calculus for categories: just think of the composition of morphisms as a product. Then quasi-isomorphisms
verify the conditions for being a multiplicative system (that is, a nice set of denominators), namely, the
identity is a quasi-isomorphism and the composition of two quasi-isomorphisms is a quasi-isomorphism.
Now, a fraction is nothing but a diagram of (homotopy classes of) complex morphisms

F̄

φ

��

ψ

��?
??

??
??

F G

(1)

where φ is a quasi-isomorphism. We also have a notion of equivalence of fractions, we say that two “frac-
tions”

F̄

φ

��

ψ

��?
??

??
??

F G

F̄ ′

φ′

��

ψ′

  @
@@

@@
@@

F G

are equivalent when there exist quasi-isomorphisms

F̃
γ

����
��

��
�

γ′

��?
??

??
??

?

F̄ F̄ ′

such that φ ◦ γ = φ′ ◦ γ′ and ψ ◦ γ = ψ′ ◦ γ′.
1Definitions and properties in this section are true for schemes over an arbitrary algebraically closed field. Most of them remain

true even for more general schemes.
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The derived category of complexes of sheaves D(X) is then defined as the category whose objects are
complexes of quasi-coherent sheaves and whose morphisms are “fractions” like (1) where two equivalent
fractions give rise to the same morphism.

By the very definition, complex quasi-isomorphisms become isomorphisms inD(X) and quasi-isomor-
phic complexes (that is, complexes F and G such that there exists a diagram like 1 where both φ and ψ are
quasi-isomorphisms), become isomorphic.

Some other derived categories can be defined in a similar way:

1. The derived category D+(X) of bounded below complexes of sheaves,

F ≡ Fm → Fm+1 → . . . (m ∈ Z) .

There is a functor D+(X) → D(X), that is an equivalence between D+(X) and the subcategory
of objects in D(X) defined by complexes which are quasi-isomorphic to bounded below complexes.
One can see that they are exactly those complexes F whose homology sheavesHi(F ) are zero for all
i < m for a certain m ∈ Z.

2. The derived category D−(X) of bounded above complexes,

F ≡ · · · → Fm−1 → Fm (m ∈ Z) .

As above, D−(X) is equivalent to the subcategory of all objects in D(X) defined by complexes
quasi-isomorphic to bounded above complexes, or what amount to the same, to complexes F whose
homology sheaves Hi(F ) are zero for all i ≥ m for a certain m ∈ Z.

3. The derived category Db(X) of bounded complexes of sheaves,

F ≡ Fm → Fm+1 → · · · → Fs−1 → Fs (m ≤ s ∈ Z) .

Again Db(X) is equivalent to the subcategory of complexes in D(X) that are quasi-isomorphic to
bounded complexes, or all complexes F whose homology sheaves Hi(F ) are zero for all i /∈ [m, s]
for some m ≤ s ∈ Z.

4. The corresponding categories Dqc(X), D+
qc(X), D−qc(X), Db

qc(X) defined as above by using com-
plexes of quasi-coherent sheaves. They are isomorphic to the subcategories of D(X), for instance
Db
qc(X) is equivalent to the subcategory of D(X) defined by complexes of quasi-coherent sheaves

whose cohomology sheaves are coherent and zero above and below certain finite indexes.

5. Finally, the corresponding categories Dc(X), D+
c (X), D−c (X), Db

c(X) defined as above using com-
plexes of coherent sheaves instead of complexes of quasi-coherent sheaves. It turns out that they
are isomorphic to the subcategories of Dqc(X) and D(X). For instance, D+

c (X) is equivalent to the
subcategory ofD+

qc(X) defined by bounded below complexes of quasi-coherent sheaves whose coho-
mology sheaves are coherent, and also to the subcategory of D(X) of complexes whose cohomology
sheaves Hi(F ) are coherent and zero for all i < m for m ∈ Z.

The derived categories we have defined are triangulated categories. We are not giving the definition of
what a triangulated category is. We just say that part of the notion of triangulated category is the existence
of a translation functor. In the case of D(X) (and of any of the other derived categories) that functor is

D(X) τ−→ D(X)
F 7→ τ(F ) = F [1]

where for a complex F and an integer number i, the complex F [i] is the complex given by F [i]n = Fn+i,
that is, is the complex F shifted i-places to the left.
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2.2 Derived functors in derived categories

Derived functors are the “derived category notion” that corresponds to “cohomolgy”. We know that sheaf
cohomology groups are computed with the aid of resolutions. If we have a resolution

0 → F → R ' R0 → R1 → . . .

of a sheaf F by injective sheaves Ri, the cohomology groups of F are defined as the cohomology groups

Hi(X,F) = Hi(Γ(X,R))

of the complex
Γ(X,R) ' Γ(X,R0) → Γ(X,R1) → . . .

One proves that the definition ofHi(X,F) is well-posed, that is, it is independent of the injective resolution
R. Working in the derived category, we can see that this is equivalent to saying that whenever R and R̄ are
injective resolutions of a sheaf F , then the complexes Γ(X,R) and Γ(X, R̄) are quasi-isomorphic, that is,
Γ(X,R) ' Γ(X, R̄) in the derived category.

In that way we can associated to F a single object RΓ(X,F) := Γ(X,R) of the derived category.
This suggests that the derived category is the natural arena for cohomology constructions, such as derived
functors.

The derived direct image

Assume for instance that f : X → Y is a morphism of algebraic varieties (or schemes if you prefer so). As
for cohomolgy, the higher direct images are defined as the cohomology sheaves Rif∗(F) = Hi(f∗(R)),
where

0 → F → R0 → R1 → . . .

is a resolution of F by injective sheaves ofOX -modules. As for the cohomology groups, we can generalize
to the derived category the construction of the higher direct images by defining the right derived functor of
the direct image as the functor

Rf∗ : D+(X) → D+(Y )
F 7→ Rf∗(F ) := f∗(R)

whereR is a bounded below complex of injective sheaves quasi-isomorphic to F . Such a complexR always
exists.

In this way we can derive many functors. Sometimes, as we have seen, we can extend functors defined
for sheaves and taking values on sheaves as well; besides, we can also derive, that is, extend to the derived
category, functors defined only for complexes and taking values in complexes of sheaves.

Let us go back to the right derived direct imageRf∗ : D+(X) → D+(Y ). Under very mild conditions,2

Rf∗ maps complexes with quasi-coherent cohomology to complexes with quasi-coherent cohomolgy, thus
defining a functor

Rf∗ : D+
qc(X) → D+

qc(Y ) ,

that we denote with the same symbol. When f is proper, so that the higher direct images Rif∗F of a
coherent sheaf F are coherent as well (cf. [67, Thm.3.2.1] or [69, Thm. 5.2], [103] in the projective case),
we also have a functor

Rf∗ : D+
c (X) → D+

c (Y ) .

2f has to be quasi-compact locally of finte type so that the direct image of a quasi-coherent sheaf is still quasi-coherent.
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Finally, when the cohomological dimension of f is finite, and this happens for instance when the di-
mensions of the fibers are bounded, then Rf∗ maps complexes with bounded cohomology to complexes
with bounded cohomology, thus defining a functor

Rf∗ : Db
c(X) → Db

c(Y ) .

Moreover, in this case the derived direct image can be extended to functors

Rf∗ : Dqc(X) → Dqc(Y ) , Rf∗ : Dc(X) → Dc(Y )

between the whole derived categories, which actually map Db
qc(X) to Db

qc(Y ) and Db
c(X) to Db

c(Y ). This
follows essentially because every complex of sheaves, even if infinite on both sides, is still quasi-isomorphic
to a complex of injective sheaves.

This procedure is quite general, and applies with minor changes to other situations. We list a few
relevant cases:

The derived inverse image

Again f : X → Y is a morphism of algebraic varieties. Once we know how the classical definition of
higher direct images can be defined in terms of the derived category, we then also know how to do for the
higher inverse images: The higher inverse images are defined as the cohomology sheaves

Lif∗(F) = H−i(f∗(P )) ,

where

· · · → P−1 → P0 → F → 0

is a resolution of F by locally free sheaves. Then we define the left derived functor of the inverse image as
the functor

Lf∗ : D−(X) → D−(Y )
F 7→ Lf∗(F ) := f∗(P )

where P is a bounded above complex of locally free sheaves quasi-isomorphic to F (it always exists). It is
very easy to check that Lf∗ defines also functors Lf∗ : D−qc(X) → D−qc(Y ) and Lf∗ : D−c (X) → D−c (Y ).

In some cases Lf∗ defines a functor

Lf∗ : Dc(X) → Dc(Y )

that mapsDb
c(X) toDb

c(Y ). One is when every coherent sheaf G on Y admits a finite resolution by coherent
locally free sheaves, a condition that is equivalent to the smoothness of Y (by the Serre criterion,cf. [104]).
In such a case, every object in Db

c(Y ) can be represented as a bounded complex of coherent locally free
sheaves3.

Note that, when f is of finite Tor-dimension, that is, when for every coherent sheaf G on Y there are only
a finite number of non-zero derived inverse images Lif∗(G) = Torf

−1OY

i (f−1(G),OX). This happens
of course when f is flat, because no Tor can arise. In this case, if F is a bounded complex of coherent
sheaves and P is a bounded above complex of locally free sheaves quasi-isomorphic to F , then f∗(F ) is
quasi-isomorphic to f∗(P ), so that L∗F = f∗F in Db(X).

3The complexes that are quasi-isomorphic to a bounded complex of coherent locally free sheaves are known as perfect complexes.
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Deriving the tensor product

Recall that given two complexes F , G of sheaves, the tensor product complex F ⊗G is defined by

(F ⊗G)n = ⊕p+q=nF p ⊗Gq

with the differential d that acts on F p ⊗Gq as dF ⊗ 1 + (−1)p1⊗ dG.
Take a fixed bounded above complex of sheaves on an algebraic variety X . If G is another bounded

above complex of sheaves and P , P̄ are two bounded above complexes of locally free sheaves quasi-
isomorphic to G, then the simple complexes

F ⊗ P , F ⊗ P̄

associated to the bicomplexes whose (p, q) terms are respectively F p ⊗ P q and F p ⊗ P̄ q, are quasi-
isomorphic. We can then define a left-derived functor

F⊗ : D−(X) → D−(X)
G 7→ F⊗G := F ⊗ P

where P is a bounded above complex of locally free sheaves quasi-isomorphic to G (it always exists). One
can now prove that if we fix the complex P and consider two different bounded above complexes Q, Q̄ of
locally free sheaves quasi-isomorphic to F , then the simple complexes

Q⊗ P , Q̄⊗ P

associated to the bicomplexes whose (p, q) terms are, respectively, Qp ⊗ P q and Q̄p ⊗ P q, are quasi-
isomorphic. In this way we can define the total left-derived functor of the tensor product as the functor

⊗L : D−(X)×D−(X) → D−(X)

(F,G) 7→ F ⊗L G := Q⊗ P

where P is a bounded above complex of locally free sheaves quasi-isomorphic to G and Q is a bounded
above complex of locally free sheaves quasi-isomorphic to F .

The total derived functor of the tensor product can be defined as well as a functor ⊗L : D−qc(X) ×
D−qc(X) → D−qc(X) and also as a functor ⊗L : D−c (X) × D−c (X) → D−c (X), analogously to what
happens for the inverse image. Also as in this case, sometimes the derived tensor product can be extended
as a functor between bigger derived categories; for instance, if F is quasi-isomorphic to a bounded complex
of coherent locally free sheaves (a perfect complex), then one can define

F⊗L : D(X) → D(X)

G 7→ F ⊗L G

and similarly for Dqc(X) and Dc. These functors preserve the categories Db(X), Db
qc(X) and Db

c(X).

Deriving the homomorphisms

We have here two types of complexes of homomorphisms, the global and the local ones.
Let us consider first the global case. Recall that given two complexes F , G of sheaves, the complex of

(global) homomorphisms is the defined as the complex of abelian groups given by

Homn
X(F,G) =

∏
p

HomX(F p, Gp+n)
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with differential df = f ◦ dF + (−1)n+1dG ◦ f . Here the key point is that if I ,Ī are two quasi-isomorphic
bounded below complexes of injective sheaves, then the complexes of homomorphisms Hom•

X(F, I) and
Hom•

X(F, Ī) are quasi-isomorphic as well whatever the complex F is. Also, if we fix a bounded below
complex I of injective sheaves and F , F̄ are quasi-isomorphic, then Hom•

X(F, I) and Hom•
X(F̄ , I) are

still quasi-isomorphic. We can then define a right derived functor

RHomX : D(X)0 ×D+(X) → D(Ab)
(F ,G) 7→ RHomX(F,G) := Hom•

X(F, I)

where I is any bounded below complex of injective sheaves quasi-isomorphic to G. Here D(Ab) stands for
the derived category of abelian groups. We can also define a left derived functor

LHomX : D−(X)0 ×D(X) → D(Ab)
(F ,G) 7→ LHomX(F,G) := Hom•

X(P,G)

where P is any bounded above complex of locally-free sheaves quasi-isomorphic to F . Both functors
coincide over D−(X)0 ×D+(X).

One can define the Ext groups for objects F , G of the derived category, they are defined as the groups

ExtiX(F,G) := Hi(RHomX(F,G)) for every i ∈ Z ,

and they are defined whenever the second right hand has a sense. There is a nice formula which allow to
compute those Ext’s and most of their properties:

Proposition 1 Assume that either F is in D(X) and G in D+(X) or F is in D−(X) and G in D(X).
Then one has

ExtiX(F,G) = HomD(X)(F,G[i]) for every i ∈ Z .

We can derive the homomorphism sheaves as well. The procedure is the same, considering now the
complex of sheaves

Homn
OX

(F,G) =
∏
p

HomOX
(F p, Gp+n)

with differential df = f ◦ dF + (−1)n+1dG ◦ f as above. The result here is a right derived functor

RHomOX
: D(X)0 ×D+(X) → D(X)

(F ,G) 7→ RHomOX
(F,G) := Hom•

OX
(F, I)

where I is any bounded below complex of injective sheaves quasi-isomorphic to G.
On readily checks that the derived homomorphism sheaves preserve the categories Dqc(X) and Dc(X)

in the sense one naturally thinks of. In some more precise terms it induces functors

RHomOX
: Dqc(X)0 ×D+

qc(X) → Dqc(X) , RHomOX
: Dc(X)0 ×D+

c (X) → Dc(X).

We can now define the “dual” of an object F in any of the derived categoriesD(X),Dqc(X) orDc(X).
It is the object RHomOX

(F,OX). Of course even if F reduces to a sheaf F , the dual RHomOX
(F ,OX)

may fail to be a sheaf. It is represented by a complex whose (−i)-th cohomology sheaf is the Ext-sheaf
ExtiOX

(F ,OX).
The relationship between derived homomorphism sheaves and groups is very easy, and it is a particular

case of what is known as Grothendieck theorem on the composition functor. One simply has that

RHom(F,G) = RΓ(X,RHomOX
(F,G))

when F , G reduce to single sheaves F , G, the above equality means that there exists a spectral sequence
whose term Epg2 is Hp(X, ExtqOX

(F ,G)) converging to Ep+q∞ = Extp+qX (F ,G).
Many formulae like the above one, relating different ordinary derived functors by means of spectral

sequences, can be also stated in a very clean way by the aid of derived categories. We have base change
theorems, projection formulae and many others. The reader is referred for instance to [68].
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Chern classes in derived category

When X is a smooth projective variety, any complex M in the derived category D(X) is isomorphic to a
bounded complex

M ' E ≡ Es → Es+1 → · · · → Es+n

of locally free sheaves (i.e. it is perfect or of finite Tor-dimension).
The Chern characters of M are then defined by

chj(M) =
∑
i

(−1)i chj(E i) ∈ Aj(X)⊗Q ,

where Aj(X) is the j-th component of the Chow ring (when k = C, the group Aj(X)⊗Q is the algebraic
part of the rational cohomology group H2j(X,Q)). This definition is well posed since it is independent of
the choice of the bounded complex E of locally free sheaves.

By definition the rank of M is the integer number

rk(M) = ch0(M). (2)

We shall see however a different definition of rank of a sheaf, namely the polarized rank (Definition 10),
and we will find the relationship between both.

3 Geometric integral functors and Fourier-Mukai transforms

We now define Fourier-Mukai transforms, or more generally geometrical integral functors.
We will always refer to algebraic varieties as a synonymous for the more technical “shemes of finite

type over an algebraically closed field k”. You may think that k is the field of complex numbers if you feel
more comfortable; however, the characteristic of k does not play any roll and then can be arbitrary. A sheaf
on X is always assumed to be coherent.

For a scheme X we denote by OX it structure sheaf and by OX,x or Ox the local ring of OX at x. The
ideal sheaf of x will be denoted by mx and κ(x) = Ox/mx is the residue field at the point.

By the sake of simplicity we will simply write D(X) for the bounded derived category of coherent
sheaves.

3.1 Geometric integral functors

Let X , X̂ be proper algebraic varieties; the projections of the cartesian product X × X̂ onto the factors X ,
X̂ are denoted, respectively, by π, π̂. We can put this information into a diagram

X × X̂

π

||yy
yy

yy
yy

y
π̂

""E
EE

EE
EE

EE

X X̂

LetE be an object in the derived categoryD(X×X̂). We shall call it a “kernel” and define a geometric
integral functor between the derived categories by

ΦE : D(X) → D(X̂) , F 7→ ΦE(F ) = Rπ̂∗(Lπ∗F ⊗ E)

(the tensor product is made in the derived category). That is, we first pull back F to X × X̂ , then twist with
the kernel E and push forward to X̂ .
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We shall call Fourier-Mukai functors those geometric integral functors that are equivalences of cate-
gories between D(X) and D(X̂) and Fourier-Mukai transforms, the Fourier-Mukai functors whose kernel
E is a single sheaf.

If ΦE : D(X) → D(X̂) is a Fourier-Mukai functor, it preserves the homomorphism groups. Since the
Ext groups in derived category are defined as

ExtiX(F,G) = HomD(X)(F,G[i]

by Proposition 1, we get

Proposition 2 (Parseval formula) ΦE : D(X) → D(X̂) is a Fourier-Mukai functor, then for every F and
G in D(X) one has

ExtiX(F,G) ' ExtibX(ΦE(F ),ΦE(G))

for all indexes i.

WIT and IT conditions

An important feature of geometric integral functors is that they are exact as functors of triangulated cate-
gories. In more familiar terms we can say that for any exact sequence 0 → N → F → G → 0 of coherent
sheaves in X we obtain an exact sequence

· · · → Φi−1(G) → Φi(N ) → Φi(F) → Φi(G) → Φi+1(N ) → . . . (3)

where we have written Φ = ΦE and Φi(F ) = Hi(Φ(F )).

Definition 1 Given an geometric integral functor ΦE , a complex F in D(X) satisfies the WITi condition
(or is WITi) if there is a coherent sheaf G on X̂ such that ΦE(F ) ' G[i] in D(X̂), where G[i] is the
associated complex concentrated in degree i. We say that F satisfies the ITi condition if in addition G is
locally free.

When the kernelE is simply a sheafQ onX×X̂ flat over X̂ , by cohomology and base change theorem
[69, III.12.11] one has

Proposition 3 A coherent sheaf F on X is ITi if and only if Hj(X,F ⊗Qξ) = 0 for all ξ ∈ X̂ and for
all j 6= i, where Qξ denotes the restriction of Q to X × {ξ}. Furthermore, F is WIT0 if and only if it is
IT0.

The acronym “IT” stands for “index theorem”, while “W” stands for “weak”. This terminology comes
from Nahm transforms for connections on tori in complex differential geometry.

A systematic and comprehensive treatment of geometric integral functors and Fourier-Mukai transforms
is to appear in the book [20].

The original Fourier-Mukai transform

Mukai introduced the first Fourier-Mukai transform in the framework of abelian varieties, we refer to [93] or
[82] for very readable accounts on abelian varieties. Abelian varieties are simply proper algebraic groups;
however, properness implies commutativity which explains the terminology. From a differential geometric
viewpoint, a complex abelian variety X of dimension g is a complex torus, X ∼→ Cg/Λ, with Λ ∼→ Zg
being a lattice.

The play of the second variety X̂ is played by the “dual” abelian variety. This is described algebraically
as the variety parametrizing line bundles of degree zero on X , or analytically as X̂ = Cg/Λ∨, where Λ∨ is
the dual lattice.
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The kernel is the Poincaré line bundle P onX×X̂ . This is the universal line bundle of degree zero, and
it is characterized by the property that its restriction to X × {ξ} where ξ ∈ X̂ is precisely the line bundle
Pξ on X defined by ξ. This characterization determines P only up to tensor products by inverse images
of line bundles on X̂ . It is customary to normalize P such that its restricition to {0} × X̂ is trivial (here 0
denotes the origein of the abelian variety X).

Mukai’s seminal idea [91] was to use the normalized Poincaré bundle P to define an integral functor
between the derived categories

ΦP : D(X) → D(X̂)

which turns out to be an equivalence of triangulated categories, or in our terminology, a Fourier-Mukai
transform.

Compostion of geometric integral functors

The composition of two geometric integral functors is still a geometric integral functor whose kernel can
be expressed as a kind of “convolution product” of the two original kernels. If X̃ is a third proper variety,
let us take a kernel Ẽ in D(X̂ × X̃) and consider the geometric integral functor

Φ eE : D(X) → D(X̂) , G 7→ Φ eE(G) = Rπ̃∗(Lπ̂∗G⊗ Ẽ)

We now consider the diagram

X × X̂ × X̃
π1,2

xxqqqqqqqqqq
π2,3

��

π1,3

&&MMMMMMMMMM

X × X̂ X̂ × X̃ X × X̃

Proposition 4 The composition of the geometric integral functors

ΦE : D(X) → D(X̂) , Φ eE : D(X̂) → D(X̃)

is the geometric integral functor D(X) → D(X̃) with kernel Rπ13,∗(Lπ∗12E ⊗ Lπ∗23Ẽ), that is,

Φ eE(ΦE(F )) = Rπ2,∗(π∗1(F )⊗Rπ13,∗(Lπ∗12E ⊗ Lπ∗23Ẽ)) .

The proof (see [91] for the original Fourier-Mukai transform or the book [20]) is an standard exercise in
derived category (base-change and projection formula).

Fourier-Mukai functors

We now give a few elementary examples of geometric integral functors and Fourier-Mukai functors:

1. LetE be the complex inD(X×X) defined by the the structure sheafO∆ of the diagonal ∆ ⊂ X×X .
Then it is easy to check that ΦE : D(X) → D(X) is isomorphic to the identity functor on D(X).

If we shift degrees by n taking E = O∆[n] (a complex with only the sheaf O∆ placed in degree n),
then ΦE : D(X) → D(X) is the degree shifting functor G 7→ G[n].

2. More generally, given a proper morphism f : X → X̂ , by taking as E the structure sheaf of the
graph Γf ⊂ X × Y , one has isomorphisms of functors ΦE ' Rf∗ as functors D(X) → D(X̂) and
ΦE ' f∗ now as functors D(X̂) → D(X).
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3. Take X̂ = X and let L be a line bundle on X . If E = π̂∗L, then ΦE(G) = G ⊗ L for any G in
D(X).

Actually we can not find examples of equivalences of derived categories other than Fourier-Mukai
functors. This is due to the following Orlov’s crucial result [97].

Theorem 1 Let X and X̂ be smooth projective varieties. Any fully faithful functor D(X) → D(X̂) is a
geometric integral functor. In particular, any equivalence of categoriesD(X) ∼→ D(X̂) is a Fourier-Mukai
functor.

It is very interesting to characterize for which kernels E in D(X × X̂) the corresponding geometric
integral functor ΦE is an equivalence of categories, or in our current terminology, a Fourier-Mukai functor.

For simplicity, we consider only the case of kernels that reduce to a single sheaf Q. This covers an
important number of relevant situations, including the original Fourier-Mukai transform whose kernel is
the Poincaré line bundle P on the product of an abelian variety X and it dual variety X̂ .

Bridgeland-Maciocia [83] extracted the properties of the kernel P that make the geometric integral
functor ΦP : D(X) → D(X̂) into a Fourier-Mukai transform and introduced strongly simple sheaves.

Definition 2 A coherent sheaf P on X × X̂ is strongly simple over X if it is flat over X and satisfies the
following two conditions

1. Exti
D( bX)

(Px1 ,Px2) = 0 for every i ∈ Z whenever x1 6= x2;

2. Px is simple for every x ∈ X , i.e., all its automorphisms are constant multiples of the identity,
HomOX

(P,P) = k.

The relevant result is

Proposition 5 Let X , X̂ be smooth proper algebraic varieties and let ω bX be the canonical line bundle
of X̂ . If P is a sheaf on X × X̂ strongly simple over X , then ΦP : D(X) → D(X̂) is a Fourier-Mukai
transform if dimX = dim X̂ and Px ⊗ ω bX ' Px for all x ∈ X . Moreover, P is strongly simple over X̂
as well and ΦP : D(X̂) → D(X) is also a Fourier-Mukai transform.

The inverse of the geometric integral functor ΦP : D(X) → D(X̂) with kernel P is the Fourier-Mukai
functor ΦQ : D(X̂) → D(X) whose kernel is the complex

Q = P∗ ⊗ π∗ωX [n]

where n = dimX . The proof of the above Proposition is based on the description of the composition
of two geometric integral functors given by Proposition 4 plus a technical argument that ensures that the
convolution P ∗ Q is actually the structure sheaf O∆ of the diagonal on X ×X (see [33] or [20]).

Earlier results about the invertibility of certain geometric integral functors can be proved in much sim-
pler way using Proposition 5. We mention here just the two who historically came first:

1. The original Fourier-Mukai transform already described in a precedent section. It is very easy to
see that the Poincaré line bundle P is strongly simple over X̂ . Since both the canonical bundles of
X and X̂ are trivial, Proposition 5 gives that P is also strongly simple over X and that the original
Fourier-Mukai transform

ΦP : D(X) → D(X̂)

is indeed a Fourier-Mukai transform, that is, an equivalence of categories.

2. The Fourier-Mukai transform for reflexive K3 surfaces ([19]). Here X is a K3 surface with a polar-
ization H and a divisor ` such that H2 = 2, H · ` = 0, `2 = −12, and ` + 2H is not effective. We
take X̂ as the fine moduli space of stable sheaves (with respect to H) of rank 2, c1 = ` and Euler
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characteristic equal to −1. This topological invariants are selected so that earlier theorems of Mukai
([92]) ensure that X̂ is another K3 surface (which turns out to be isomorphic with X). The kernel of
the geometric integral functoris the universal rank 2 sheaf P on X × X̂ (suitably normalized).

As in the former example, one can readily prove, using that Pξ is a rank 2 stable vector bundle of
degree zero on X for every point ξ nX̂ , that P is strongly simple over X̂ . Again the canonical
bundles of X and X̂ are trivial, so that again by Proposition 5 one has that the geometric integral
functor

ΦP : D(X) → D(X̂)

is a Fourier-Mukai transform.

3.2 Relative geometric integral functors

From the old days of Grothendieck, algebraic geometers use to consider the “relative” situation, that is, they
study problems for families rather than for single varieties. As we said before, we can then better encode
base-change properties into the problem.

We can do that for geometric integral functors as well. To this end, we consider two morphisms p : X →
B, p̂ : X̂ → B of algebraic varieties. We shall define a relative geometric integral functor in this setting by
means of a “kernel” E in the derived category D(X ×B X̂), just by mimicking the “abosulte” definition
we already gave.

And since we want geometric integral functors for families, we don’t content ourselves with this setting
and go beyond allowing further changes in the base space B, that is, we consider base-change morphisms
g : S → B we denote all objects obtained by base change to S by a subscript S, like XS = S ×B X etc. In
particular, the kernel E defines an object ES = Lg∗E ∈ D((X ×B X̂)S) = D(XS ×S X̂S).

There is then a diagram

XS ×S X̂S(X ×B X̂)S '

πS

��

π̂S // X̂S

p̂S

��
XS

pS // S

and the relative geometric integral functor associated to E is the functor between the derived categories of
quasi-coherent sheaves given by

ΦES : D(XS) → D(X̂S) , F 7→ ΦES (F ) = Rπ̂S∗(Lπ∗SF ⊗ ES)

(the tensor product is made in the derived category). When p̂ is a flat morphism, πS is flat as well and we
can simply write π∗SF instead of Lπ∗SF .

We should not be scared by this new definition, because we immediately note that the the relative
geometric integral functor with respect to E ∈ D(X ×B X̂) is nothing but the absolute geometric integral
functor with kernel i∗E ∈ D(X × X̂), where i : X ×B X̂ ↪→ X × X̂ is the immersion. The gain is that we
can state neatly the following base-change property:

Proposition 6 Assume that p̂ is flat and let F be an object in D(X̂S). For every morphism g : S′ → S
there is an isomorphism

Lg∗bX(ΦES (F )) ' ΦES′ (Lg∗XF )

in the derived category D−(X̂S′), where gX : XS′ → XS , g bX : X̂S′ → X̂S are the morphisms induced by
g.

PROOF. We give the proof as an easy example of standard properties of derived categories. We have

Lg∗bX(ΦES (F )) = Lg∗bX(Rπ̂S∗(Lπ∗SF ⊗ ES)) = Rπ̂S′∗(Lg∗X×B
bX(Lπ∗SF ⊗ ES))
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by base-change in the derived category, and then

Lg∗
X×B

bX(Lπ∗SF ⊗ ES) = Lπ∗S′(Lg
∗
XF )⊗ Lg∗

X×B
bX(ES) = Lπ∗S′(Lg

∗
XF )⊗ ES′ .

�

Due to this property we shall very often drop the subscript S and refer only to X → B.

Base change and WITi-conditions

In this paragraph we assume that the kernel is a single sheaf P flat over B and that both p and p̂ are proper
flat morphisms of relative dimension n. We study the relationship between the WIT condition for a sheaf
F on X with respect to the relative geometric integral functor defined by E in D(X ×B X̂) and the WIT
condition for the restrictions Fs of F to the fibers Xs = p−1(s) (s ∈ B) with respect to the restriction.

Let us write Φ = ΦE and Φs = ΦEs .

Corollary 1 Let F be a sheaf on X , flat over B.

1. The formation of Φn(F) is compatible with base change, that is, one has Φn(F)s ' Φn
s (Fs), for

every point s ∈ B.

2. There is a convergent spectral sequence

E−p,q2 = T orOS
p (Φq(F), κ(s)) =⇒ Φq−p(Fs) .

3. Assume that F is WITi and let F̂ = Φi(F) be its Fourier-Mukai transform. Then for every s ∈ B
there are isomorphisms

T orOS
j (F̂ , κ(s)) ' Φi−j

s (Fs) , j ≤ i

of sheaves over X̂s. In particular F̂ is flat over B if and only if the restriction Fs to the fiber Xs is
WITi for every point s ∈ B.

PROOF. (1) follows from the fact that the highest direct image is compatible with base change ([69]). (2)
is a consequence of Proposition 6 and implies (3). �

Corollary 2 Let F be a sheaf on X , flat over B. There exists an open subscheme V ⊆ B which is the
largest subscheme V fulfilling one of the following equivalent conditions hold:

1. FV is WITi on XV and the geometric integral functor F̂V is flat over V .

2. The sheaves Fs are WITi for every point s ∈ V .

4 Elliptic fibrations
An elliptic fibration is a proper flat morphism p : X → B of schemes whose fibers are Gorenstein curves
of arithmetic genus 1. We also assume that p has a section σ : B ↪→ X taking values in the smooth
locus X ′ → B of p. The generic fibers are then smooth elliptic curves whereas some singular fibers are
allowed. If the base B is a smooth curve, elliptic fibrations were studied and classified by Kodaira [80],
who described all the types of singular fibers that may occur, the so-called Kodaira curves. When the base
is a smooth surface, more complicated configuration of singular curves can occur (see Miranda [89]).

When X is a Calabi-Yau threefold, the presence of the section imposes constraints to the base surface
B; it is known that it has to be of a particular kind, namelyB has to be a Del Pezzo surface (a surface whose
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anticanonical divisor −KB is ample), a Hirzebruch surface (a rational ruled surface), a Enriques surface (a
minimal surface with 2KB numerically equivalent to zero) or a blow-up of a Hirzebruch surface (see for
instance [49] or [90]).

We denote by Θ = σ(B) the image of the section, by Xt the fiber of p over t ∈ B and by it : Xt ↪→ X
the inclusion. ωX/B is the relative dualizing sheaf and we write ω = R1p∗OX ∼→ (p∗ωX/B)∗, where the
isomorphism is Grothendieck-Serre duality for p (cf. [45]).

The sheaf L = p∗ωX/B is a line bundle and ωX/B ∼→ p∗L. We write K̄ = c1(L). Adjunction formula
for Θ ↪→ X gives that Θ2 = −Θ · p−1K̄ as cycles on X .

4.1 Weiestrass models and Todd classes

We now recall some facts about the Weierstrass model for an elliptic fibration p : X → B with a section σ.
If B is a smooth curve, then from Kodaira’s classification of possible singular fibers [80] one finds that the
components of reducible fibers of p which do not meet Θ form rational double point configurations disjoint
from Θ. Let X → X̄ be the result of contracting these configurations and let p̄ : X̄ → B be the induced
map. Then all fibers of p̄ are irreducible with at worst nodes or cusps as singularities. In this case one refers
to X̄ as the Weierstrass model of X . The Weierstrass model can be constructed as follows: the divisor 3Θ
is relatively ample and if E = p∗OX(3Θ) ∼→ OB ⊕ ω⊗2 ⊕ ω⊗3 and p̄ : P = P(E∗) = Proj(S•(E)) → B
is the associated projective bundle, there is a projective morphism of B-schemes j : X → P such that
X̄ = j(X).

By the sake of simplicity we shall refer to a particular kind of elliptic fibrations, namely elliptic fibra-
tions with a section as above whose fibers are all geometrically integral. This means that the fibration is
isomorphic with its Weierstrass model. Now, special fibers can have at most one singular point, either a
cusp or a simple node. Thus, in this case 3Θ is relatively very ample and gives rise to a closed immersion
j : X ↪→ P such that j∗OP (1) = OX(3Θ). Moreover j is locally a complete intersection whose normal
sheaf is

N (X/P ) ∼→ p∗ω−⊗6 ⊗OX(9Θ) . (4)

This follows by relative duality since

ωP/B =
∧

ΩP/B ∼→ p̄∗ω⊗5(−3) ,

due to the Euler exact sequence

0 → ΩP/B → p̄∗E(−1) → OP → 0 .

The morphism p : X → B is then a l.c.i. morphism in the sense of [62, 6.6] and has a virtual relative
tangent bundle TX/B = [j∗TP/B ] − [NX/P ] in the K-group K•(X). Even if TX/B is not a true sheaf, it
still has Chern classes; in particular, it has a Todd class which one can readily compute [71].

Proposition 7 The Todd class of the virtual tangent bundle TX/B is

td(TX/B) = 1− 1
2 p

−1K̄ +
1
12

(12Θ · p−1K̄ + 13p−1K̄2)− 1
2
Θ · p−1K̄2 + terms of higher degree.

Since td(B) = 1 + 1
2c1(B) + 1

12 (c1(B)2 + c2(B)) + 1
24c1(B)c2(B) + . . . , we obtain the expression
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for the Todd class of X

td(X) = 1 +
1
2
p−1(c1(B)− K̄)

+
1
12

(12Θ · p−1K̄ + 13p−1K̄2 − 3p−1(c1(B) · K̄) + p−1(c1(B)2 + c2(B)))

+
1
24

[p−1(c1(B)c2(B))− p−1(K̄ · (c1(B)2 + c2(B))) + 12Θ · p−1(K̄ · c1(B))

+ p−1(c1(B) · K̄2)− 6Θ · p−1(K̄2 · c1(B))]

+ terms of higher degree.

(5)

4.2 Relative geometric integral functors for elliptic fibrations

There is an algebraic variety p̂ : X̂ → B (the Altman-Kleiman compactification of the relative Jacobian)
whose points parametrize torsion-free, rank one and degree zero sheaves on the fiber ofX → B. Moreover,
the natural morphism of B-schemes

X → X̂

x 7→ mx ⊗OXs(e(s))

is an isomorphism. Here mx is the ideal sheaf of the point x in Xs.
The variety X̂ is a fine moduli space. This means that there exists a coherent sheaf P on X ×B X̂ flat

over X̂ , whose restrictions to the fibers of π̂ are torsion-free, and of rank one and degree zero, such that for
every morphism f : S → B and every sheaf L on X×B S flat over S and whose restrictions to the fibers of
pS are torsion-free, of rank one and degree zero, there exists a unique morphism φ : X → X̂ of S-schemes
such that L and (1× φ)∗P are isomorphic when restricted to every fiber of XS → S.

The sheaf P is defined up to tensor product by the pullback of a line bundle on X̂ , and is called the
universal Poincaré sheaf.

Hereafter we identify X ∼→ X̂ . Now P is a sheaf on X ×B X that we can normalize by letting

P|Θ×B
bX ' OX . (6)

We shall henceforth assume that P is normalized in this way so that

P = I∆ ⊗ π∗OX(Θ)⊗ π̂∗OX(Θ)⊗ q∗ω−1 (7)

where π, π̂ and q = p ◦ π = p̂ ◦ π̂ refer to the diagram

X ×B X

π

��

π̂ //

q

$$H
HHHHHHHH X

p̂

��
X

p // B

(8)

and I∆ is the ideal sheaf of the diagonal immersion X ↪→ X ×B X .
Here we consider an elliptic fibration p : X → B as above and the associated “dual” fibration p̂ : X̂ =

X → B; we assume also that X is smooth. We shall consider the relative geometric integral functor in this
setting starting with the diagram 8 and whose kernel is the normalized relative universal Poincaré sheaf P
on the fibered product X ×B X .

We then have a geometric integral functor

Φ = ΦP : D(XS) → D(XS) , F 7→ Φ(F ) = Rπ̂S∗(π∗SF ⊗ PS)

for every morphism S → B.
Using our earlier invertibility result (Proposition 5) or proceeding directly as in [21, Theorem 3.2] (the

latter was the first given proof), we easily obtain
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Proposition 8 The geometric integral functor Φ is an equivalence of categories, (or a Fourier-Mukai
transform). The inverse Fourier-Mukai functor is ΦQ[1], where

Q = P∗ ⊗ π∗p∗ω−1 .

We shall denote by Φ̂ the Fourier-Mukai transform ΦQ : D(X) → D(X). The previous Proposition
implies that if a sheaf F on X is WITi with respect to Φ (i = 0, 1), then Φi(F) is WIT1−i with respect to
Φ̂ and Φ̂1−i(Φi(F)) ' F . The analogous statement intertwining Φ and Φ̂ is also true.

4.3 The spectral cover
We are going to see how the construction of vector bundles out of spectral data, first considered in [72]
and [25] can be easily described in the case of elliptic fibrations my means of the Fourier-Mukai transform
we have defined. This construction was widely exploited by Friedman, Morgan and Witten [58, 59, 61] to
construct stable bundles on elliptic Calabi-Yau threefolds. We shall come again to this point.

To start with, we think of things the other way round. We take a sheafF of rank n on an elliptic fibration
X → B with certain properties on the fibers and construct its spectral data, namely, a pair (C,L) where
C ↪→ X is a closed subvariety projecting with finite fibers (generically of length n) onto B (the spectral
cover) and a torsion free rank one sheaf L on C (in many case actually a line bundle), such that F can be
recovered via the inverse Fourier-Mukai transform out of (C,L).

We take F as a good parametrization of semistable sheaves of rank n and degree 0 on the fibers of
X → B. Here good means that F is flat over the base B. The reason for doing so is twofold; first we
know the structure of the semistable sheaves of rank n and degree 0 on a fiber as we report in Proposition 9,
second we can easily compute the Fourier-Mukai transform of torsion free rank one sheaves of degree cero
on Xs (Proposition 10).

Let us then fix a fiberXs of the elliptic fibration (s ∈ B). We denote by Φs the Fourier-Mukai transform
on the fiber with kernel Ps.

The structure of the semistable sheaves of rank n and degree 0 on Xs is due to Atiyah [18] and Tu [111]
in the smooth case and to Friedman-Morgan-Witten [61] for Weierstrass curves and locally free sheaves.
The result we need is

Proposition 9 Every torsion-free semistable sheaf of rank n and degree 0 on Xs is S-equivalent (see
Appendix A) to a direct sum of torsion-free rank 1 and degree 0 sheaves:

F ∼
r⊕
i=0

(Li ⊕ ni. . .⊕ Li) .

If Xs is smooth all the sheaves Li are line bundles. If Xs is singular, at most one of them, say L0, is
nonlocally-free; the number n0 of factors isomorphic to L0 can be zero.

Now, let L be a rank-one, zero-degree, torsion-free sheaf on Xs.

Proposition 10 L is WIT1 and Φ1
s(L) = κ(ξ∗), where ξ∗ = [L∗] is the point of Xs ' X̂s defined by L∗.

We derive a few consequences of the two previous results. First is that a zero-degree torsion-free sheaf
of rank n ≥ 1 and semistable on a fiber Xs has to be WIT1 because this is what happens when the rank is
1. We can state something stronger:

Proposition 11 Let F be a zero-degree sheaf of rank n ≥ 1 on a fiber Xs. Then F is torsion-free and
semistable on Xs if and only if it is WIT1.
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A second consequence is that the unique Fourier-Mukai transform Φ1
s(F) is supported by a finite num-

ber of points, again because Proposition 10 tell us so in the rank one case.
If we go back to our elliptic fibration p : X → B and our sheaf Fs moves in a flat family F on X → B,

the support of Φ1
s(Fs) moves as well giving a finite covering C → B. We notice, however, that the fiber

over s of the support of Φ1(F) may fail to be equal to the support of Φ1
s(Fs). To circumvent this problem

we consider the closed subscheme defined by the 0-th Fitting ideal of ΦF (see for instance [100] for a
summary of properties of the Fitting ideals). The precise definition (see [58, 59, 61, 14, 71]) is

Definition 3 Let F be a sheaf on X . The spectral cover of F is the closed subscheme C(F) of X̂ defined
by the 0-the Fitting ideal F0(Φ1(F)) of Φ1(F).

The fibered structure of the spectral cover is a consequence of:

Lemma 1 Let F be a zero-degree torsion-free semistable sheaf of rank n ≥ 1 on a fiber Xs.

1. The 0-th Fitting ideal F0(F̂) of F̂ = Φ1
s(F) only depends on the S-equivalence class of F .

2. One has F0(F̂) =
∏r
i=0 mni

i , whereF ∼
⊕r

i=0(Li⊕ ni. . .⊕Li) is the S-equivalence given by Proposi-
tion 9 and mi is the ideal of the point ξ∗i ∈ X̂s = Xs defined by L∗i . Then, length(O bXt

/F0(F̂)) ≥ n
with equality if either n0 = 0 or n0 = 1, that is, if the only possible nonlocally-free rank 1 torsion-
free sheaf of degree 0 occurs at most once.

Then we have the structure of the spectral cover for a relatively semistable sheaf of degree zero on
fibers.

Proposition 12 If F is relatively torsion-free and semistable of rank n and degree zero on X → B, then
the spectral cover C(F) → B is a finite morphism with fibers of degree ≥ n. If in addition F is locally
free, then all the fibers of the spectral cover C(F) → B have degree n.

PROOF. Since the spectral cover commutes with base changes, C(F) → S is quasi-finite with fibers of
degree ≥ n by Lemma 1; then it is finite. The second statement follows from (2) of the same Lemma. �

We can also give information about the spectral cover in some other cases. Take for instance a sheaf
F on X flat over B and of fiberwise degree zero. We don’t need to assume that Fs is semistable for every
point s ∈ B. If this is true only for all the points s of a dense open subset U (i.e. any non-empty open
subset if B is irreducible), then as a consequence of Corollary 2 and Proposition 11 we have that F is still
globally WIT1 (that is, Φ0(F) = 0) even if for s /∈ U we have Φ0

s(Fs) 6= 0. In this case, the spectral cover
C(F) contains the whole fiber Xs.

Let’s go back to the case of a relatively torsion-free sheaf F semistable of rank n and degree zero on
X → B. We then have that the unique Fourier-Mukai transform of F is of the form

Φ1(F) = i∗L

where i : C(F) ↪→ X is the immersion of the spectral cover and L is a sheaf on C(F). What can be said
about L?

A first look at Proposition 10 seems to say that L has rank one at every point. And this is actually
what happens though one has to be careful because the spectral cover can be pretty singular. If C(F) is
irreducible and reduced, then one can see quite easily that L is torsion-free of rank one. When C(F) is
reducible (it can even have multiple components), torsion-freeness has to be substituted with another notion;
people familiar with moduli problems won’t be surprised to hear that the relevant notion is the one of pure
sheaf of maximal dimension introduced by Simpson [107]. We have described for the reader’s convenience
the definition of pure sheaf, polarized rank and Simpson stability in Appendix A. Using the definitions
given there we have
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Proposition 13 Let m = dimB and let F be a relatively torsion-free and semistable of rank n and
degree zero on X → B. Assume that all fibers of the spectral cover C(F) → B have degree n (this
happens for instance if F is locally free). Then the restriction L of the unique Fourier-Mukai transform
Φ1(F) is a pure sheaf of dimension m and polarized rank one on the spectral cover C(F).

Conversely, given a closed subscheme i : C(F) ↪→ such that C(F) → B is a finite covering of degree n
and a sheaf L on C(F) of pure dimension m and polarized rank one, the sheaf i∗(L) is WIT0 with respect
to Φ̂ and the sheaf F = Φ̂(i∗L) is a sheaf on X → B relatively torsion-free and semistable sheaf of rank
n and degree zero.

The most interesting case is when the base B is a smooth curve, that is, when X is an elliptic surface.
Let then F be a sheaf on X flat over B and fiberwise of degree zero. Assume that the restriction of F to
the generic fiber is semistable, so that it is F is WIT1 by Corollary 2.

Proposition 14 Let V ⊆ B be the relative semistability locus of F .

1. The spectral cover C(F) → B is flat of degree n over V ; then C(FV ) is a Cartier divisor of XV .

2. If s /∈ V is a point such that Fs is unstable, then C(F) contains the whole fiber X̂s.

Thus C(F) → B is finite (and automatically flat of degree n) if and only if Fs is semistable for every
s ∈ B.

5 Topological invariants of the Fourier-Mukai transform
Let E be an object of D(X). We can compute the topological invariants of the geometric integral functor
Φ(E) = Rπ̂∗(π∗E ⊗ P) by using the Riemann-Roch theorem for π̂. There is a technical point here: even
if we assume that X and B are smooth, X ×B X may be not. However, Fulton established the so-called
singular Riemann-Roch and it turns out that our morphism π̂ is what is called a l.c.i. morphism. By ([62],
Cor.18.3.1), we have

ch(Φ(E)) = π̂∗[π∗(chE) · ch(P) td(TX/B)] . (9)

The Todd class td(TX/B) is readily determined from Proposition 7 and the Chern character of P is com-
puted from (7).

The Chern character ch(Φ(E)) has as many components chi(Φ(E)) as the dimension of X . We give
here the precise expressions of chi(Φ(E)) in two low dimensional cases, when X is a smooth elliptic
surface [19, 71] and when X is an elliptic Calabi-Yau [10, 9].

We can also compute the effect of the geometric integral functor Φ on the relative Chern character of
E. This is specified by the relative rank n and the relative degree d, that is, the Chern character of the
restriction of E to a fiber Xs

4. This is independent on the fiber, so we can apply Grothendieck-Riemann-
Roch on a smooth curve to obtain that the relative Chern character of the Fourier-Mukai transform ΦS(E)
is (d,−n), that is:

(rk(ΦS(E)), d(ΦS(E)) = (d(E),− rk(E)) (10)

If we denote by µrel(E) = d/n the relative slope, we have

Proposition 15 If F is a WITi sheaf on X and d 6= 0, then µrel(F̂) = −1/µ(F). Moreover

1. If F is WIT0, then d(F) ≥ 0, and d(F) = 0 if and only if F = 0.

2. If F is WIT1, then d(F) ≤ 0.

4This restriction is the derived inverse image Lj∗s E where js : Xs ↪→ X is the immersion of the fiber. When E is a sheaf flat
over s, then Lj∗s E = E|Xs
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5.1 The case of elliptic surfaces
Let us denote by e the degree of the divisor K̄ onB; we have Θ·p∗K̄ = e = −Θ2 andKX/B = p∗K̄ ≡ e f.

By Proposition 7 the Todd class of the virtual relative tangent bundle of p is given by

td(TX/B) = 1− 1
2 p

−1K̄ + ew , (11)

where w is the fundamental class of X .
Now, if E is an object of D(X), the Chern character of the Fourier-Mukai transform Φ(E) is given by

ch(Φ(E)) =π∗[π∗(chE) · (1− δ∗(1)− 1
2 δ∗(p

∗K̄) + e δ∗(w)) · (1 + π∗H − 1
2ew)

· (1− 1
2p
∗K̄ + ew)] · (1 + Θ− 1

2w) · (1 + e f) .

Thus, the Chern characters of Φ(E) are

ch0(Φ(E)) = d

ch1(Φ(E)) = −c1(E) + d p∗K̄ + (d− n)Θ + (c− 1
2 ed+ s) f

ch2(Φ(E)) = (−c− de+ 1
2 ne)w

(12)

where n = ch0(E), d = c1(E) · f is the relative degree, c = c1(E) ·H and ch2(E) = sw.
Similar calculations can be done for the inverse Fourier-Mukai transform giving rise to the formulae

ch0(Φ̂(E)) = d

ch1(Φ̂(E)) = (c1(E))− np∗K̄ − (d+ n)H + (s+ ne− c− 1
2 ed)f

ch2(Φ̂(E)) = −(c+ de+ 1
2 ne)w

(13)

5.2 The case of elliptic Calabi-Yau threefolds
When X is an elliptic Calabi-Yau threefold and B is a smooth surface (with the restrictions mentioned in
section 4), the formula given in Proposition 7 for the Todd class of the relative tangent bundle takes the
form

td(TX/B) = 1− 1
2
c1 +

1
12

(13c21 + 12Θc1)−
1
2
Θc21 (14)

with c1 = p∗c1(B) = −p∗(KB) and equation (7) is

P = I∆ ⊗ π∗OX(Θ)⊗ π̂∗OX(Θ)⊗ q∗ω−1
B (15)

where ωB = OB(KB) is the canonical line bundle of B and δ is the diagonal immersion. Note first that
ch(I∆) = 1− ch(δ∗OX). Singular Riemann-Roch gives

ch(δ∗OX) td(X ×B X) = δ∗(ch(OX) td(X))

where one has the expressions for td(X) (see (5)) and td(X ×B X) given by

td(X) = 1 +
1
12

(c2 + 11c21 + 12Θc1)

td(X ×B X) = π̂∗ td(X)π∗1 td(TX/B)

with c2 = p∗(c2(B)). The Chern character of the ideal sheaf I∆ is then given by (with the diagonal class
∆ = δ∗(1))

ch(I∆) = 1−∆− 1
2
∆ · π̂∗c1 + ∆ · π̂∗(Θ · c1) +

5
6
∆ · π̂∗(c21) +

1
2
∆ · π̂∗(Θc21)
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and one can compute ch(P) form that expression and find the general formula for Φ(E) form (9).
We shall consider for simplicity objects E in D(X) whith Chern characters given by

ch0(E) = nE

ch1(E) = xEΘ + p∗SE

ch2(E) = Θp∗ηE + aEf

ch3(E) = sE

(16)

where ηE , SE ∈ A1(B) ⊗Z Q, se ∈ A3(X) ⊗Z Q ' Q) anf f ∈ A2(X) ⊗Z Q is the class of a fiber
of p. This cover the most important applications. Now (9) and the corresponding formula for the inverse
Fourier-Mukai transform Φ̂ provide the first Chern characters of Φ(E) and Φ̂(E). They are

ch0(Φ(E)) = xE

ch1(Φ(E)) = −nEΘ + p∗ηE −
1
2
xEc1

ch2(Φ(E)) = (
1
2
nEc1 − p∗SE)Θ + (sE −

1
2
p∗ηEc1Θ +

1
12
xEc

2
1Θ)f

ch3(Φ(E)) = −1
6
nEΘc21 − aE +

1
2
Θc1p∗SE

(17)

and
ch0(Φ̂(E)) = xE

ch1(Φ̂(E)) = −nEΘ + p∗ηE +
1
2
xEc1

ch2(Φ̂(E)) = (−1
2
nEc1 − p∗SE)Θ + (sE +

1
2
p∗ηEc1Θ +

1
12
xEc

2
1Θ)f

ch3(Φ̂(E)) = −1
6
nEΘc21 − aE −

1
2
Θc1p∗SE + xEΘc21

(18)

Many nice geometrical properties and applications to Physics can be derived from Fourier-Mukai func-
tor theory, and in particular from the formulae above.

6 Applications to moduli problems
In this section we report some applications of the geometric integral functor theory to moduli problems.
The material is taken mostly from [71, 22].

6.1 Moduli of relatively semistable sheaves on elliptic fibrations
The structure of relatively semistable sheaves on an elliptic fibration p : X → B can be described in terms
of the relative Fourier-Mukai transform introduced in section 4. The techniques and results are of quite
different nature when the degree on fibers of the sheaves are zero or not, so we consider separately the two
cases.

The case of relative degree equal to zero

If we start with a single fiberXs, then Proposition 9 means that S-equivalence classes of semistable sheaves
of rank n and degree 0 on Xs are equivalent to families of n torsion-free rank one sheaves of degree zero,
Fs ∼

⊕r
i=0(Li ⊕ ni. . .⊕ Li). This gives a one-to-one correspondence

M(Xs, n, 0) ↔ SymnXs

Fs 7→ n0x
∗
0 + · · ·+ nrx

∗
r ,

(19)
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(where x∗i is the point of Xs that corresponds to [L∗i ] under $ : Xs
∼→ X̂s) between the moduli space of

torsion-free and semistable sheaves of rank n and degree 0 on Xs and the n-th symmetric product of the
compactified Jacobian X̂s ' Xs. The reason for taking duals comes from Proposition 10 and Lemma 1:
the skyscraper sheaf κ([ξ∗i ]) is the Fourier-Mukai transform of Li, and if n0 = 0, then n1x

∗
1 + · · ·+ nrx

∗
r

is the spectral cover C(Fs).
As we have seen, when Fs moves in a flat family, C(Fs) moves to give the spectral cover of F defined

in 3. We can then extend (19) to the whole elliptic fibration X → B under some technical assumptions
(namely, that B is normal of dimension bigger than zero and the generic fiber is smooth).

There are two different varieties that parametrize flat families of clusters of points on the fibers. The
first one is the Hilbert scheme Hilbn(X/B) → B of B-flat subschemes of X̂ of fiberwise dimension 0 and
length n. The second one is the relative symmetric n-product Symn

B X ofX → B. They are not isomorphic
in general, only birational; actually, there is a Chow morphism Hilbn(X/B) → Symn

B X mapping a
cluster of length n to the n points defined by the culster, which induces an isomorphism Hilbn(X ′/B) '
Symn

B X
′, where X ′ → B is the smooth locus of p : X → B.

Let us denote by M(n, 0) the (coarse) moduli scheme of torsion-free and semistable sheaves of rank
n and degree 0 on the fibers of X → B, by M(n, 0) the open subscheme of M(n, 0) defined by those
sheaves on fibers which are S-equivalent to a direct sum of line bundles (see [107] or Appendix A).

If F is a sheaf on X → B defining a B-valued point of M(n, 0), then the spectral cover C(F) is
flat of degree n over B, and then defines a B-valued point of Hilbn(X ′/B) which depends only on the
S-equivalence class of F . One easily deduce that we can define in that way a morphism of B-schemes

C′ : M(n, 0) → Hilbn(X ′/B) ' Symn
B X

′

[F ] 7→ C(F)

where [F ] is the point of M(n, 0) defined by F .
We now have [71, Theorem 2.1]

Theorem 2 C′ is an isomorphism C′ : M(n, 0) ∼→ Hilbn(X ′/B) ' Symn
B X

′ and extends to an iso-
morphism of B-schemes C : M(n, 0) ∼→ Symn

B X̂ . For every geometric point F ∼
⊕

i(Li⊕ ni. . .⊕Li) the
image C([F ]) is the point of Symn

B X̂ defined by n1ξ
∗
1 + · · ·+ nrξ

∗
r .

We denote by Jn → B the relative Jacobian of line bundles on p : X → B fiberwise of degree n. We
have an isomorphism τ : Jn ∼→ J0 which is the translation τ(L) = L⊗OX(−nΘ), and also the the natural
involution ι : J0 ∼→ J0 mapping a line bundle to its inverse. Let γ : Jn ∼→ J0 be the composition γ = ι◦ τ ,
so that if x1 + · · ·+ xn is a positive divisor in X ′

s, then γ[OXs
(x1 + · · ·+ xn)] = [L∗1 ⊗ · · · ⊗ L∗n], where

[Li] corresponds to x under $ : X → X̂ .

Theorem 3 There is a commutative diagram of B-schemes

M(n, 0)
C∼ //

det

��

Symn
B(X̂ ′)

φn

��
J0 Ĵn

γ∼oo

where det is the “determinant” morphism and φn is the Abel morphism of degree n.

The previous Theorem generalizes [57, Theorem 3.14] and can be considered as a global version of the
results obtained in Section 4 of [61] about the relative moduli space of locally free sheaves on X → B
whose restrictions to the fibers have rank n and trivial determinant. Theorem 3 leads to these results by
using standard structure theorems for the Abel morphism.
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Let Ln be a universal line bundle over q : X̂×B Jn → Jn. The Picard sheaf Pn = R1q∗(L−1
n ⊗ω bX/B)

is a locally free sheaf of rank n and then defines a projective bundle P(P∗n) = ProjS•(Pn). We now have
a diagram

MU (n, 0) ∼ //
� _

��

Symn
U XU

∼ //
� _

��

P(P∗n|U )
� _

��
M(n, 0)

C∼ //

det

��

Symn
B(X ′)

Abel

��

� � dense // P(P∗n)

uukkkkkkkkkkkkkkkkk

J0 Jn
γ∼oo

where U ↪→ B is the open subset supporting the smooth fibers of p : X → B and XU = p−1(U). The
immersions of the symmetric products into the projective bundles follow from the structure of the Abel
morphism (cf. [1]).

Corollary 3 P̃n ∼→ (det)∗OM(n,0)(Θn,0).

Since e∗(P̃n) ∼→ (p∗OX(nH))∗, we obtain the structure theorem proved in [61]: Let M(n,OX) =
(det)−1(ê(B)) be the subscheme of those locally free sheaves in M(n, 0) with trivial determinant and
MU (n,OX) = M(n,OX) ∩MU (n, 0).

Corollary 4 There is a dense immersion ofB-schemesM(n,OX) ↪→ P(Vn), where Vn = p∗(OX(nH)).
Moreover, this morphism induces an isomorphism of U-schemes MU (n,OX) ∼→ P(Vn|U ).

The case of nonzero relative degree

The study of relatively stable sheaves of positive degree on elliptic fibrations was done in [22, 37]. The first
thing to do is to characterize WIT0 sheaves. We need a preliminary result (cf. also [32]), whose proof is
given to show the techniques employed.

Lemma 2 A coherent sheaf F on X is WIT0 if and only if

HomX(F ,Pξ) = 0

for every ξ ∈ X̂ ' X .

PROOF. By Proposition (10), Pξ is WIT1 and Φ1(Pξ) = κ(ξ∗), where ξ∗ is the point of X̂t corresponding
to P∗ξ (t = p(x)). Then, Parseval formula (Proposition 2 implies that

HomX(F ,Pξ) ' HomD( bX)(Φ(F), κ(ξ∗)[1]) .

If F is not WIT0, there is a point ξ∗ ∈ X̂ such that a nonzero morphism Φ1(F) → κ(ξ∗) exists. This gives
rise to a non-zero morphism Φ(F) → κ(ξ∗)[1] in the derived category, so that HomX(F ,Pξ) 6= 0. The
converse is straightforward. �

Proposition 16 Let F be a relatively (semi)stable sheaf on X , with d(F) > 0. Then F is WIT0 and its
Fourier-Mukai transform F̂ is relatively (semi)stable.

We don’t give a complete proof (it can be founded in [22]). The idea is to use the previous Lemma to
show that the sheaf is WIT0 and to apply the invertibility of the Fourier-Mukai transform to get a contra-
diction from the assumption that F̂ could be destabilized.
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Corollary 5 Let F be a torsion-free semistable sheaf on Xt of degree d > 0. Then H1(Xt,F ⊗ Pξ) = 0
for every ξ ∈ X̂t.

Proposition 16 also gives the characterization of semi(stable) sheaves of relative negative degree. They
are WIT1 and their Fourier-Mukai transforms are also (semi)stable.

As a side result of these results, we see that the relative Fourier-Mukai transform provides a characteri-
zation of some moduli spaces of relatively stable bundles. Let Jn → B be the relative Jacobian of invertible
sheaves of relative degree n and J̄n → B the natural compactification of Jn obtained by adding to Jn the
B-flat coherent sheaves on p : X → B whose restrictions to the fibers of are torsion-free, of rank one and
degree n [1]. Proposition 16 gives (cf. [22, 37]):

Theorem 4 LetN be an invertible sheaf on X of relative degree m, and letM(n, nm− 1) be the moduli
space of rank n relatively µ-stable sheaves on X → B of degree nm − 1. The Fourier-Mukai transform
induces an isomorphism of B-schemes

J̄n
Φ0⊗N−−→ M(n, nm− 1)

L 7→ Φ0(L)⊗N .

6.2 Absolutely semistable sheaves on an elliptic surface
In this section we apply the theory so far developed to the study of the moduli space of absolutely stable
sheaves on an elliptic surface.

We relay on the computation of the Chern character of the Fourier-Mukai transforms provided by (12).
This enable us to the study of the preservation of stability. We shall see that stable sheaves on spectral
covers transform to absolutely stable sheaves on the surface and prove that in this way one obtains an open
subset of the moduli space of absolutely stable sheaves on the surface.

In the whole section the base B is a projective smooth curve.
The elliptic surface is polarized by H = aΘ + bf for suitable positive integers a and b. Any effective

divisor it : C ↪→ X is then polarized by the restricition HC = H ·C of H . Then, even if the curve C is not
integral, we can define rank, degree and Simpon stability for pure sheaves concentrated on C as discused in
Appendix A.

Moreover, a pure sheaf Q of dimension 1, with support contained in C is Simpson (semi)stable with
respecto to HC if and only if i∗Q is Simpson (semi)stable with respecto to H

Preservation of absolute stability

Let F be a sheaf on X flat over B with Chern character (n,∆, s) with n > 1. Assume that the restrictions
of F to the fibers Xs are semistable of degree 0. Then F is WIT1 and the spectral cover C(F) is a Cartier
divisor finite of degree n over B (Proposition 14). Moreover F̂ is a sheaf of pure dimension 1 whose
support is contained in C(F).

Proposition 17 For any integer a > 0 there is b0 > 0 depending only on the numerical invariants
(n, c, s), such that for any b > 0 the following is true: F is (semi)stable on X with respect to H = aΘ + bf

if and only if F̂ is (semi)stable on X with respect to H = aΘ + bf, and then, if and only if L = F̂|C(F) is
(semi)stable as pure dimension 1 sheaf on the spectral cover C(F).

PROOF. By (12), one has

χ(X, F̂(mH)) = (nb− nae− as)m+ c− ne+
1
2
nc1 (20)
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where n = ch0(F), c = c1(F) ·Θ, ch2(F) = sw, e = −Θ2 and c1 = c1(B). The Simpson slope of F̂ is

µ(F̂) =
c− ne+ 1

2nc1

nb− nae− as
.

Let now
0 → G → F̂ → K → 0 (21)

be an exact sequence. Then G is concentrated on C(F), so that it is WIT0 and the Fourier-Mukai transform
F̄ = Ĝ has relative degree 0 and it is WIT1 by Proposition 13. Reasoning as above, the Simpson slope of G
is

µ(G) =
c̄− n̄e+ 1

2 n̄c1

n̄b− n̄ae− as̄
,

where bars denote the topological invariants of F̄ . Moreover one has the exact sequence

0 → F̄ → F → K̂ → 0 .

Assume thatF is semistable with respect toH and that (21) is a destabilizing sequence. Then µ(G) > µ(F̂).
Since the family of subsheaves of F is bounded, there is a finite number of possibilities for the Hilbert
polynomial of F̄ . Since the denominators of µ(G) and µ(F̂) are positive, the condition µ(G) > µ(F̂) is
equivalent to

(n̄c− nc̄)b+ a(nc̄− n̄c+ cs̄− c̄s+ e(n̄s− ns̄) + 1
2c1(ns̄− n̄s)) > 0

Again because there is a finite number of possibilities for the Hilbert polynomial of F̄ , there is a finite
number of possibilities for nc̄ − n̄c + cs̄ − c̄s + e(n̄s − ns̄) + 1

2c1(ns̄ − n̄s). Thus, for fixed a > 0 and
b� 0 the destabilizing condition is

nc̄− n̄c > 0 .

On the other hand, the semistability of F implies that

c1(F̄) · (aΘ + bf)
n̄

≤ c1(F) · (aΘ + bf)
n

that is, nc̄ − n̄c ≤ 0, which is a contradiction. The corresponding semistability statement is proven analo-
gously.

For the converse, assume that F̂ is semistable on X with respect to H = aΘ + bb for b� 0 and that

0 → F̄ → F → Q→ 0

is a destabilizing sequence. We can assume that n̄ < n and that Q is torsion free and H-semistable;
moreover one has nc1(F̄) ·H > n̄c1(F) ·H , that is, n(ac̄+ bd̄) > n̄ac.

The sheaf F̄ is WIT1 so that d̄ ≤ 0 by Proposition 15. Assume first that d̄ < 0 and let ρ be the maximum
of the integers nc1(F̃) ·Θ−rk(F̃)c for all nonzero subsheaves F̄ of F . Then n(ac̄+bd̄)− n̄ac ≤ aρ+nbd̄
is strictly negative for b sufficiently large, which is absurd. It follows that d̄ = 0 and the destabilizing
condition is

nc̄− n̄c > 0 .

Moreover d(Q) = 0. Since Q is torsion free, for every s ∈ B there is an exact sequence

0 → F̄s → Fs → Qs → 0

so that Qs is semistable of degree 0. Then Q is WIIT1 and one has an exact sequence of Fourier-Mukai
transforms:

0 → ̂̄F → F̂ → Q̂ → 0 .
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Proceeding as above we see that the semistability of F for b � 0 implies that nc̄ − n̄c ≤ 0, which is a
contradiction. �

Then absolute stability with respect to aΘ+ bb is preserved for b� 0 depending on a and on the Chern
character (n,∆, s). This was proved in a different way in [71]; similar results can be founded in [78, 120].

Notice that (20) is deduced from the formula

χ(C(F),L(mH)) = χ(X, F̂(mH)) = (C(F) ·H)m+
1
2
C(F) · c1(X) + ch2(i∗L)

where i : C(F) ↪→ X is the immersion, so that the polarized rank of L is 1 in agreement with Proposition
17, and its Euler characteristic is

χ(C(F),L) =
1
2
C(F) · c1(X) + ch2(i∗L) =

1
2
n(c1 − e) + ch2(i∗L)

We then see that given a Cartier divisor i : C ↪→ X flat of degree n over B and a pure dimension one sheaf
L of C of polarized rank 1 and we write ` = C · Θ and r = χ(C,L), then the numerical invariants of
F = Φ̂(i∗L) are given according to (13) by

rk(F) = n , d = 0 c = ne+ r − 1
2nc1 , s = `− ne (22)

Moduli of absolutely stable sheaves and compactified Jacobian of the universal spectral
cover

In this subsection we shall prove that there exists a universal spectral cover over a Hilbert scheme and that
the geometric integral functor embeds the compactified Jacobian of the universal spectral cover as an open
subspace the moduli space of absolutely stable sheaves on the elliptic surface (cf. [71]). Most of what is
needed has been proven in the preceding subsection.

We start by describing the spectral cover of a relatively semistable sheaf in terms of the isomorphism
M(n, 0) ∼→ Symn

B X̂ provided by Theorem 2. There is a “universal” subscheme

C ↪→ X̂ ×B Symn
B X̂

defined as the image of the closed immersion X̂×B Symn−1
B X̂ ↪→ X̂×B Symn

B X̂ , (ξ, ξ1 + · · ·+ξn−1) 7→
(ξ, ξ + ξ1 + · · · + ξn−1). The natural morphism g : C → Symn

B X̂ is finite and generically of degree n.
Let A : S → Symn

B X̂ be a morphism of B-schemes and let C(A) = (1 × A)−1(C) ↪→ X̂S be the
closed subscheme of X̂S obtained by pulling the universal subscheme back by the graph 1 × A : X̂S ↪→
X̂ ×B Symn

B X̂ of A. There is a finite morphism gA : C(A) → S induced by g.
By Theorem 2, a S-flat sheaf F on XS fiberwise torsion-free and semistable of rank n and degree 0

defines a morphism A : S → Symn
S(X̂S); we easily see from Lemma 1 that

Proposition 18 C(A) is the spectral cover associated to F , C(A) = C(F).

When S = B, A is merely a section of Symn
B X̂ ' M(n, 0) → B. In this case, C(A) → B is flat of

degree n because it is finite and B is a smooth curve. The same happens when the base scheme is of the
form S = B × T , where T is an arbitrary scheme:

Proposition 19 For every morphism A : B× T → Symn
B X̂ of B-schemes, the spectral cover projection

gA : C(A) → B × T is flat of degree n.

If the section A takes values in Symn
B X̂

′ ' M(n, 0) → B, then gA : C(A) → B coincides with the
spectral cover constructed in [61].

Let now H be the Hilbert scheme of sections of the projection π̂n : Symn
B X̂ → B. If T is a k-scheme,

a T -valued point ofH is a sectionB×T ↪→ Symn
B X̂×T of the projection π̂n×1: Symn

B X̂×T → B×T ,
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that is, a morphismB×T → Symn
B X̂ ofB-schemes. There is a universal sectionA : B×H → Symn

B X̂ .
It gives rise to a “universal” spectral cover C(A) ↪→ X̂ ×H. By Proposition 19, the “universal” spectral
cover projection gA : C(A) → B × H is flat of degree n. It is endowed with a relative polarization Ξ =
H ×H) where H = aΘ + bf for a > 0 and b� 0.

Let J̄r → H be the functor of sheaves of pure dimension one, polarized rank one, Euler characteristics
r and semistable with respect to Ξ on the fibers of the flat family of curves ρ : C(A) → H.

Let H` be the subscheme of those points h ∈ H such that ρ−1(h) · Θ = `. The subscheme H` is
a disjoint union of connected components of H and then we can decompose ρ as a union of projections
ρ` : C(A)` → H`. We decompose J̄r accordingly into functors J̄r` .

By Theorem 1.21 of [107] (cf. Theorem 6) there exists a coarse moduli scheme J̄ r
` for J̄r` . It is

projective over H` and can be considered as a “compactified” relative Jacobian of the universal spectral
cover ρ` : C(A)` → H`. The open subfunctor Jr` of J̄r` corresponding to stable sheaves has a fine moduli
space J r

` and it is an open subscheme of J̄ r
` .

On the other side we can consider the coarse moduli scheme M(a, b) torsion-free sheaves on X that
are semistable with respect to aH + bµ and have Chern character (n,∆, s w) where d = ∆ · f = 0, and the
values of c = ∆ ·Θ and s are giving by (22). We also have the corresponding moduli functor M(a, b) (see
again [107]). LetM(a, b) ⊂M(a, b) the open subscheme defined by the stable sheaves. It is a fine moduli
scheme for its moduli functor M(a, b).

Given a > 0, let us fix b0 so that Proposition 17 holds for ` and (n, c, s), and take b > b0.

Lemma 3 The geometric integral functor induces morphisms of functors

Φ̂0 : J̄rp,` ↪→ M(a, b) , Φ̂0 : Jrp,` ↪→ M(a, b)

that are representable by open immersions.

Theorem 5 The geometric integral functor gives a morphism Φ̂0 : J̄ r
p,` → M(a, b) of schemes that in-

duces an isomorphism
Φ̂0 : J r

p,`
∼→M′

p,`(a, b) ,

where M′
p,`(a, b) is the open subscheme of those sheaves in M(a, b) whose spectral cover is finite over

S = B × T and verifies χ(Ct) = 1− p, Ct ·Θ = ` for every t ∈ T .

Remark 1 A similar result to Proposition 17 about preservation of absolute stability is also true for elliptic
Calabi-Yau threefolds [8]. Similar results to Theorem 5 are true as well.

7 Applications to string theory and mirror symmetry
We describe here a few applications of Fourier-Mukai functor theory to string theory and mirror symmetry.

7.1 Generalities on D-branes on Calabi-Yau manifolds
The name D-brane is a contraction of Dirichlet brane. D-branes occur in type IIA, type IIB and type I
string theory as dynamical objects on which strings can end. The coordinates of the attached strings satisfy
Dirichlet boundary conditions in the directions normal to the brane and Neumann boundary conditions in
the directions tangent to the brane. Further, a Dp-brane is p dimensional, where p is even for type IIA
strings, odd for type IIB strings and 1, 5 or 9 for type I strings.

One typically distinguishes between two types of D-branes on Calabi-Yau manifolds called A-type or
B-type D-branes. A-type D-branes occur in IIB string theory and B-type D-branes in IIA string theory. All
topological invariants of B-type D-brane are given by an element of a particular K-theory group [88, 118].
The D-brane RR-charge can then be written [88] as:

Q(E) = ch(i!E)
√
Â(X) . (23)
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where Â(X) denotes the A-roof genus; note that on a Calabi-Yau manifold Â(X) = td(X). Furthermore,
in order to give a supersymmetric configration the mass M of a D-brane and its central charge have to
satisfy the inequality M ≥ |Z(Q)|. Here Z(Q) is the Bogomolnyi-Prasad-Sommerfield (BPS)5 central
charge is defined in terms of the prepotential F (a function on the complexified Kähler moduli space) and
Q(E).

Definition 4 (B-type at large volume). A holomorphic D-brane on a Calabi-Yau manifold X is given by
a triple (C,E,∇) where C is a holomorphic submanifold of X and ∇ is a holomorphic connection on E
and so E a holomorphic vector bundle.

If C = X , that is, if the D-brane is wrapped over X then supersymmetry requires that ∇ has to satisfy the
hermitian Yang-Mills equations and thus E has to be a µ-stable vector bundle. If the branes are wrapped
around holomorphic submanifolds of X then the hermitian Yang-Mills equations must be replaced by a
generalization of the Hitchin equations [70]. More precisely, the gauge fields which are polarized transverse
to C are replaced by “twisted” scalars Φ; these are one forms in the normal bundle of C in X [28].

The above point of view can be generalized if one takes into account that a holomorphic vector bundle
defined on a holomorphic submanifold C defines a coherent sheaf G = i∗E (with i : C ↪→ X being the
inclusion map).

Moreover, Kontsevich’s homological mirror symmetry conjecture, tachyon condensation [102] and
the fact that K-theory [118] classifies D-brane charges has led to the proposal that Kontsevich’s mirror
conjecture could be physically realized via off-shell states in the open string B-model; this suggested to
consider D-branes as objects in the derived category of coherent sheaves [52, 53] are then to represent
those objects the D-brane/anti-D-brane configurations (whereas maps between objects is the derived cat-
egories are represented by tachyons and localization on quasi-isomorphisms is expected to be realized by
renormalization-group flow). By all progress, there are still many open problems in identifying open string
B-model boundary states with objects in Db(X), for instance, it is hard to confirm that the localization
on quasi-isomorphisms is actually realized physically by renormalization-group flow. For a recent review
on these developments see [11]. Formulating a general definition of D-branes is still an open problem,
however, a preliminary definition can be given as follows:

Definition 5 (B-type). A B-type BPS brane on a Calabi-Yau manifold X is a Π-stable object in the
bounded derived category Db(X) on X .

At the large volume limit where D-branes are represented by coherent sheaves, we can choose any of
the available stability notions for them, like slope stability, Gieseker stability or in the generalized Simpson
approach. However, we know that as we move away from the large volume limit, D-branes are no longer
represented by sheaves but rather they are objects of the derived category. Indeed, the transformation mir-
roring certain symplectic automorphisms on the sLag side (like Kontsevich monodromies) are conjecturally
the automorphisms of the derived category, and there are evidences in this direction [9, 51, 10, 73]. Then a
stable sheaf is transformed in an object of the derived category and we need a notion of stability for those
new objects. Douglas made the first attempt to define a notion of stability for D-branes, called Π-stability
[53, 52, 54] so that stable branes correspond to BPS states. Π-stability has been originally introduced in [55]
as a generalization of µ-stability; in particular, it has been shown that in the large volume limit Π-stability
reduces to µ-stability, respectively, to the θ-stability notion at the orbifold point at which the description
of D-branes involves supersymmetric gauge theories constructed from quivers. Since Π-stability depends

5Note that a BPS state is a state that is invariant under a nontrivial subalgebra of the full supersymmetry algebra. BPS states carry
conserved charges. The supersymmetry algebra determines the mass of the state in terms of its charges. Formally speaking, the central
charge is an operator (or constant) that appears on the right-hand side of a Lie algebra and commutes with all operators in the algebra
(for example Virasoro algebra or supersymmetry algebras). In N = 2 supersymmetric Seiberg-Witten theory it has been shown
that the central charge becomes geometrically; depending there on the periods of a particular elliptic curve and electric and magnetic
charges. For details see for example [119]. This concept carries over for N = 2 type II string theories on Calabi-Yau threefolds; the
central charge depending now on the periods of the holomorphic three-form and the RR-charges.
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on the periods of the Calabi-Yau manifold, it can be used to predict the lines of marginal stability in the
compactification moduli space, at which the BPS spectrum is expected to jump. This has been analyzed
in [15, 12].

There have been many attempts to make this notion rigourous from a mathematical point of view. It
seems that one cannot define when an object is stable, but define all the stable objects as a whole. In other
words, one can define certain special subcategories of the derived category whose objects would corre-
spond to the BPS branes. The key references are Bridgeland papers [30, 31] where the notion of stability
for a triangulated category D is established and it is shown that there is a complex manifold Stab(D)
parametrizing stability conditions on D. When D = Db(X) is the derived category of a Calabi-Yau man-
ifold, then Stab(Db(X)) is a finite dimensional complex manifold on which Aut(X) acts naturally. The
points of Stab(Db(X)) correspond to t-structures on Db(X) together with some extra data defined by
Harder-Narasimhan filtrations.

The space Stab(Db(X))/Aut(X) is proposed by Bridgeland as the first approximation to the stringy
Kähler moduli space. The problem of computing this space its very hard; in the case of K3 surfaces,
Bridgeland has computed Stab(Db(X)) [30]. However, the group Aut(X) is still unknown. Very recently
stability conditions for projective spaces and del Pezzo surfaces has been also founded [84]. The very
interesting case of open Calabi-Yau threefolds is in progress.

Definition 6 (A-type). A special Lagrangian D-brane in a Calabi-Yau manifold Y is given by a triple
(Σ, E,∇) where Σ is a special Lagrangian submanifold of Y and E a flat vector bundle on Σ with a flat
connection ∇.

Remark 2 Note that Σ is said to be special Lagrangian if the following conditions hold:

ω|Σ = 0

Re(eiθΩ|Σ) = 0

where Ω is the holomorphic three-form, ω the Kähler form and θ is an arbitrary phase. Equivalently to the
second equation, one can require that Ω pulls back to a constant multiple of the volume element on Σ.

Remark 3 A more precise definition of A-type branes has to take as well into account destabilizing quan-
tum effects arising from open string tadpoles [11]. Also one expects A-type branes to be objects of the
Fukaya category of Y , and so B-type branes should be mapped to A-type branes, using the homological
mirror symmetry conjecture of Kontsevich, Furthermore, for A-type branes the central charge is the integral
of the holomorphic three-form over the Lagrangian submanifold Σ.

Remark 4 A given A-type or B-type D-brane can be deformed by deforming the submanifold and the
bundle with its connection such that the deformations respect the BPS-condition, i.e., a given D-brane stays
supersymmetric (the submanifold is holomorphic or special Lagrangian and the bundle holomorphic or flat,
respectively). So the space of all continues deformations of the triple, say (C,E,∇), is the D-brane moduli
space, denoted byMhol for B-type branes andMslag for A-type branes. If we map a A-type brane inMslag

to its submanifold Σ, we can define a fibration p : Mslag(Σ, E,∇) → Mslag(Σ, Y ), where Mslag(Σ, Y )
denotes the space of all continues deformations of the submanifold Σ. Having defined this fibration, one
can ask whether the space of one-forms on Σ can be identified with the tangent space of Mslag(Σ, Y )
(preserving thereby the special Lagrangian condition). A theorem by McLean [87] states that first-order
deformations of a special Lagrangian map f : Σ → Y are canonically identified with H1

DR(Σ,R) and
that all first-order deformations of f : Σ → Y can be extended to actual deformations implying that the
moduli space Mslag(Σ, Y ) of special Lagrangian maps from Σ to Y is a smooth manifold of dimension
b1(Σ). McLean’s result together with the generalized mirror conjecture of Kontsevich suggests [113] the
identification of the number h1(Σ) of complex moduli (assuming here a pairing of the number b1(Σ) of real
moduli with the same number of real moduli of the U(1) bundle) with the number h1(C, Ext(E)) of moduli
of the vector bundle over C on the holomorphic side. So one expects that actually the dimensions of A-type
and B-type D-brane moduli spaces agree.
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7.2 T-duality as a relative Fourier-Mukai transform

Let us now discuss how the relative Fourier-Mukai transformation acts on D-branes on elliptic Calabi-Yau
threefolds. It is known that T-duality on the elliptic fiber maps in general (the subscripts indicate whether
fiber f or base B is contained (resp. contains) the wrapped world-volume)

D6 → D̃4B
D4B → D̃6 , D4f → D̃2B
D2B → D̃4f̃ , D2f → D̃0

D0 → D̃2f̃ (24)

One can describe T-duality on the T 2 fiber maps given in 24 at the sheaf level. For this let us consider
the skyscraper sheaf C(x) at a point x ofX . It is a WIT0 sheaf and its FM transform Φ0(C(x)) is a torsion-
free rank one sheaf Lx on the fiber of X over p(x), because with the identification X ' X̃ the point x
corresponds precisely to Lx (see [21] or [71]) as we expect from 24 and thus we see D0 → D̃2f̃.

For the topological invariants we have indeed n = x = a = 0, S = η = 0, s = 1 and then

chi(Φ0(C(x))) = 0, i = 0, 1, 3, ch2(Φ0(C(x))) = f (25)

If we start with OΘ; proceeding as in (3.16) of [71] we have6

Φ0(OΘ) = OX , Φ1(OΘ) = 0
Φ0(OX) = 0 , Φ1(OX) = OΘ ⊗ p∗ωB (26)

Then OΘ transforms to the structure sheaf of X and OX transforms to a line bundle on Θ as we expect
from 24 since D4B ↔ D̃6. We have as before the transformations at the cohomology level;

n = 0, x = 1, S = 0, η =
1
2
c1, a = 0, s =

1
6
Θc21

and then we get

ch0(Φ0(OΘ)) = 1, chi(Φ0(OΘ)) = 0, i = 1, 2, 3

Finally, let us consider a sheaf F on B; by 26 we have

Φ0(Oσ ⊗ p∗F) = p∗F , Φ1(OΘ ⊗ p∗F) = 0
Φ0(p∗F) = 0 , Φ1(p∗F) = OΘ ⊗ p∗F ⊗ p∗ωB (27)

Then, a sheaf OΘ ⊗ p∗F = σ∗F supported on a curve C̃ in B embedded in X via the section σ transforms
to a sheaf on the elliptic surface supported on the inverse image of C̃ in X and vice versa. This is what we
expected form the map D2B ↔ D̃4f̃ of 24.

Then at the sheaf level we have the relations 24 appropriate for the fiberwise T-duality on D-branes

D4B → D̃6
D2B → D̃4f̃

D0 → D̃2f̃ (28)

6The formulae differ from those in [71] because we are using a different Poincaré sheaf
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Adiabatic character of T-duality

T-duality on fibers has an adiabatic character, that is, by using a decomposition of the cohomology into
base and fiber parts the operation of the fiberwise duality on the cohomology will be seen to take the
form one gets from an adiabatic extension of the same operation on the cohomology of a torus of complex
dimension 1 (an elliptic non-singular curve), fulfilling the expectations from the interpretation as T-duality
on D-branes.

Let us see that the action of the Fourier-Mukai transform in cohomology, that is the expressions for
ch(Φ(E)) and ch(Φ̂(E)) as described in (17) and (18), once an appropriated twisted charge is introduced,
shows the desired adiabatic character of T-duality.

We now modify the action of Fourier-Mukai transform in cohomology by twisting with an appropriate
charge. To this end, we introduce the effective charge of a D-brane state G ∈ D(X) by

Q(G) = ch(G) ·
√

td(X) (29)

in agreement with (23) and consider the so-called f -map. This is the map f : H(X,Q) → H(X,Q) given
by

f(x) = π̂∗(π∗(x) · Z) ,where Z =
√
π̂∗ td(X) · ch(P) ·

√
π∗ td(X)

If x = 0 (G has degree zero on fibers) and its Chern characters ch1(G) and ch2(G) belong respectively
to QΘ⊕H2(B,Q) and H2(B,Q)Θ⊕Q,7 one sees from (17) that the effective charge of G transforms to

f̄(Q(G)) = M ·Q(G)

where

M =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


Then the map between the effective charges of the D-brane state defined by G and its FM transform can be
exhibited as the transformation matrix given by the adiabatic extension M of the usual T-duality matrix(

0 1
−1 0

)
on the fiber. The proof that the latter matrix is the matrix for T-duality on one non-singular fiber, that is,
for the Fourier-Mukai transform on a non-singular elliptic curve was stated in that form by the first time in
[32].

7.3 D-branes and homological mirror symmetry

We recall here that Kontsevich proposed a homological mirror symmetry [81] for a pair (X,Y ) of mirror
dual Calabi-Yau manifolds; it is conjectured that there exists a categorical equivalence between the bounded
derived categoryD(X) and Fukaya’sA∞ categoryF(Y ) which is defined by using the symplectic structure
on Y . An object of F(Y ) is a special Lagrangian submanifolds with a flat U(1) bundle on it. If we consider
a family of manifolds Y the object of F(Y ) undergoes monodromy transformations. On the other side,
the object of D(X) is a complex of coherent sheaves on X and under the categorical equivalence between
D(X) and F(Y ) the monodromy (of three-cycles) is mapped to certain self-equivalences in D(X). We

7For many families of elliptic Calabi-Yau threefolds for which a mirror family has been constructed (cf. [40, 43], all elements in
H2(X, Q) and H4(X, Q) are of this form
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listed in subsection 3.1 some examples of D(X) self-equivalences provided by Fourier-Mukai functors and
mentioned Orlov’s theorem 1 saying that any self-equivalence of D(X) is a Fourier-Mukai functor.

Now since all elements in D(X) may be represented by suitable complexes of vector bundles on X ,
we can consider the topological K-group and the image Khol(X) of D(X). The Fourier-Mukai trans-
form ΦE : D(X) → D(X) induces then a corresponding automorphism Khol(X) → Khol(X) and also
an automorphism on Heven(X,Q) if one uses the Chern character ring homomorphism ch : K(X) →
Heven(X,Q). With this in mind one can now introduce various kernels and their associated monodromy
transformations.

For instance, let D be a divisor in X and consider the kernel O∆(D) with ∆ being the diagonal in
X × X; the corresponding Fourier-Mukai transform acts on an object G ∈ D(X) as twisting by a line
bundle G ⊗ O(D), this automorphism is then identified with the monodromy about the large complex
structure limit point (LCSL-point) in the complex structure moduli space MC(Y ).

Furthermore, considering the kernel given by the ideal sheaf I∆ on ∆ one has that the effect of ΦI∆ on
Heven(X) can be expressed by taking the Chern character ring homomorphism:

ch(ΦI∆(G)) = ch0(ΦOX×X (G))− ch(G) =
(∫

ch(G) · td(X)
)
− ch(G) (30)

Kontsevich proposed that this automorphism should reproduce the monodromy about the principal com-
ponent of the discriminant of the mirror family Y . At the principal component we have vanishing S3 cycles
(and the conifold singularity) thus this monodromy may be identified with the Picard-Lefschetz formula.

Now given a pair of mirror dual Calabi-Yau threefolds, like the examples given by Candelas and others
[42, 41, 40, 43, 26], and using the fact that A-type and B-type D-branes get exchanged under mirror sym-
metry, we can make Kontsevich’s correspondence between automorphisms of D(X) and monodromies of
three-cycles explicit.

For this we first choose a basis for the three-cycles Σi ∈ H3(Y,Z) such that the intersection form
takes the canonical form Σi · Σj = δj,i+b2,1+1 = ηi,j for i = 0, ..., b2,1. It follows that a three-brane
wrapped about the cycle Σ =

∑
i niΣ

i has an (electric,magnetic) charge vector n = (ni). The periods of
the holomorphic three-form Ω are then given by

Πi =
∫

Σi

Ω (31)

and can be used to provide projective coordinates on the complex structure moduli space; more precisely, if
we choose a symplectic basis (Ai, Bj) of H2(Y,Z) then the Ai periods serve as projective coordinates and
the Bj periods satisfy the relations Πj = ηi,j∂F/∂Πi where F is the prepotential which has near the large
radius limit the asymptotic form (cf. [43, 75, 74])

F =
1
6

∑
abc

kabctatbtc +
1
2

∑
ab

cabtatb −
∑
a

c2(X)Ja
24

ta +
ζ(3)

2(2πi)3
χ(X) +O(q).

where χ(X) is the Euler characteristic of X , cab are rational constants (with cab = cba) reflecting an
Sp(2h11 + 2) ambiguity and kabc is the classical triple intersection number given by

kabc =
∫
X

Ja ∧ Jb ∧ Jc.

The periods determine the central charge Z(n) of a three-brane wrapped about the cycle Σ =
∑
i ni[Σi]

Z(n) =
∫

Σ

Ω =
∑
i

niΠi, (32)
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following the conventions used in the literature, we will write
∑
i niΠi = n6Π1 +n1

4Π2 +n2
4Π3 +n0Π4 +

n1
2Π5 + n2

2Π6. The Π’s are given by the associated period vector
Π1

Π2

Π3

Π4

Πa

 =


1
6kabctatbtc + c2(X)Ja

24 ta
− 1

2kabc + cabtb + c2(X)Ja

24
1
ta

 .

On the other side, the central charge associated with an object E of D(X) is given by [70]

Z(E) = −
∫
X

e−taJa ch(E)(1 +
c2(X)

24
). (33)

The two central charges are to be identified under mirror symmetry thus by comparing the expressions 32
with 33, one obtains a map relating the Chern-classes of E to the D-brane charges n. We find

ch0(E) = n6

ch1(E) = na4Ja

ch2(E) = nb2 + cabn
a
4

ch3(E) = −n0 −
c2(X)Jb

12
nb4.

If we insert the expressions for ch(E) in 30, we find the linear tranformation acting on n

n6 → n6 + n0 (34)

which agrees with the monodromy transformation about the conifold locus.
Similarly one finds that the monodromy transformation about the large complex structure limit point

corresponds to automorphisms
[E] → [E ⊗OX(D)] (35)

where D is the associated divisor defining the large radius limit in the Kähler moduli space. Using the
central charge identification, the automorphism/monodromy correspondence has been made explicit [47, 9,
10] for various dual pairs of mirror Calabi-Yau threefolds (given as hypersurfaces in weighted projective
spaces). This identification provides evidences for Kontsevich’s proposal of homological mirror symmetry.

Fiberwise T-duality as a Kontsevich monodromy

Another striking consequence of the identification of T-duality for an elliptic Calabi-Yau threefold b : X →
B with the relative Fourier-Mukai transform Φ : D(X) → D(X) with kernel the Poincaré relative sheaf
P , is that we can describe T-duality as a composition of self-equivalences of D(X) that correspond to
Kontsevich monodromies. We can then derive the matrix of the action of T-duality on cohomology.

As a consequence of the expression of the Poincaré sheaf (7), the relative Fourier-Mukai transform or
T-duality can be expressed as a composition

Φ = ΦO∆(2c1) ◦ΦO∆(Θ) ◦Φj∗I ◦Φj∗O∆(Θ)

where j : X×BX ↪→ X×X is the immersion and I is the ideal of the “relative” diagonal X ↪→ X×BX .
All the geometric integral functors in the above formula correspond to Kontsevich monodromies, with the
possible exception of Φj∗I . Since I = ideal of “relative” diagonal X ↪→ X ×B X and I∆ = ideal of
diagonal X ↪→ X ×X , Φj∗I is not Kontsevich’s conifold ΦI∆ , but it is somehow similar.
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7.4 Application to heterotic string theory

A compactification of the ten-dimensional heterotic string is given by a holomorphic, stable G-bundle
V over a Calabi-Yau manifold X . The Calabi-Yau condition, the holomorphy and stability of V are a
direct consequence of the required supersymmetry in the uncompactified space-time. We assume that the
underlying ten-dimensional space M10 is decomposed as M10 = M4 ×X where M4 (the uncompactified
space-time) denotes the four-dimensional Minkowski space and X a six-dimensional compact space given
by a Calabi-Yau threefold. Now let us be more precise: supersymmetry requires that the connection A on
V satisfies

F 2,0
A = F 0,2

A = 0, F 1,1 ∧ J2 = 0 .

It follows that the connection has to be a holomorphic connection on a holomorphic vector bundle and in
addition to satisfy the Donaldson-Uhlenbeck-Yau equation that has a unique solution if the vector bundle is
µ-stable. The first topological condition the vector bundle has to satisfy, is

c1(V ) = 0 (mod 2)

to ensure that the bundle V admits a spin-structure.
In addition toX and V one has to specify aB-field onX of field strengthH . In order to get an anomaly

free theory, the Lie group G is fixed to be either E8×E8 or Spin(32)/Z2 or one of their subgroups and H
has to satisfy the identity

dH = trR ∧R− TrF ∧ F

where R and F are the associated curvature forms of the spin connection on X and the gauge connection
on V . Also tr refers to the trace of the composite endomorphism of the tangent bundle to X and Tr denotes
the trace in the adjoint representation of G. For any closed four-dimensional submanifold X4 of the ten-
dimensional space-time M10, the four form TrF ∧R− TrF ∧ F must have trivial cohomology since∫

X4

dH =
∫
X4

trR ∧R− TrF ∧ F = 0.

The identity simplifies to trR ∧R = TrF ∧ F and can be written in terms of Chern classes of the tangent
bundle TX and V . Thus the second topological condition V has to satisfy is

c2(TX) = c2(V ).

A physical interpretation of the third Chern-class can be given as a result of the decomposition of the
ten-dimensional space-time into a four-dimensional flat Minkowski space and X . The decomposition of
the corresponding ten-dimensional Dirac operator with values in V shows that: massless four-dimensional
fermions are in one to one correspondence with zero modes of the Dirac operator DV on X .

More precisely, the spectrum of charged matter is directly related to properties of X and V . So, let us
obtain the spectrum of massless fermions! We start in ten dimensions with the Dirac equation iD10Ψ = 0 =
i(D4 +DX)Ψ further making the ansatz Ψ = ψ(x)φ(y) where x and y are coordinates on X respectively
M4. If ψ is an eigenspinor of eigenvalue m then it follows iDXψ = mψ and so we get (iD4 +m)φ = 0.
So we learn that ψ looks like a fermion of mass m, to a four-dimensional observer. Thus, massless four-
dimensional fermions are in one to one correspondence with zero modes of the Dirac operator on X . The
charged four-dimensional fermions are obtained from ten-dimensional ones, which transform under the
adjoint of E8.

Now since massless fermions in four dimensions are related to the zero modes of the Dirac operator
on X , they can be related to the cohomology groups Hk(X,V ). The index of the Dirac operator can be
written as

index(D) =
∫
X

td(X)ch(V ) =
1
2

∫
X

c3(V ) ,
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equivalently, one can write the index as index(D) =
∑3
i=0(−1)k dimHk(X,V ). For stable vector bundles

one has H0(X,V ) = H3(X,V ) = 0 and so

dimH2(X,V )− dimH1(X,V ) =
1
2

∫
X

c3(V )

whose absolute value gives the net-number of fermion generationsNgen. It has been observed in nature that
Ngen = 3 thus one would like to find vector bundles with c3(V ) = ±6. In case V = TX , one has to search
for Calabi-Yau threefolds of Euler characteristic ±6. This inspired an earlier work by Tian and Yau [110].

Note 1 For a detailed introduction to string theory and further aspects of the heterotic string we refer to
[65, 64, 98] and [99]. For a recent discussion of world-sheet stability issues see [106, 24] and [23]. Some
aspects of vector bundles and bundle cohomology, in the context of string theory, have been studied for
example in [17, 14, 46, 49] and in [50].

The inclusion of background five-branes changes the topological constrain [101, 56, 59]. Now from
classical Maxwell theory it is known that in four dimensions the magnetic dual of the electron is the
monopol. In the same way one obtains that the magnetic dual of the fundamental heterotic string in ten
dimensions is the heterotic five-brane. Various five-brane solutions of the heterotic string equations of
motion have been discussed in [39, 38]: the gauge five-brane, the symmetric five-brane and the neutral
five-brane. It has been shown that the gauge and symmetric five-brane solution involve finite size instantons
of an unbroken non-Abelian gauge group. In contrast, the neutral five-branes can be interpreted as zero size
instantons of the SO(32) heterotic string [117].

The magnetic five-brane contributes a source term to the Bianchi identity for the three-form H ,

dH = trR ∧R− TrF ∧ F − n5

∑
five−branes

δ
(4)
5

and integration over a four-cycle in X gives

c2(TX) = c2(V ) + [W ] .

The new term δ
(4)
5 is a current that integrates to one in the direction transverse to a single five-brane whose

class is denoted by [W ]. The class [W ] is the Poincaré dual of an integer sum of all these sources and
thus [W ] should be a integral class, representing a class in H2(X,Z). [W ] can be further specified taking
into account that supersymmetry requires that five-branes are wrapped on holomorphic curves thus [W ]
must correspond to the homology class of holomorphic curves. This fact constraints [W ] to be an algebraic
class. Further, algebraic classes include negative classes, however, these lead to negative magnetic charges,
which are un-physical, and so they have to be excluded. This constraints [W ] to be an effective class. This
is actualy the unique constrain because, as mentioned above, supersymmetry implies that TX and V are
holomorphic bundles and since the characteristic classes of holomorphic bundles are algebraic, it follows
that [W ] = c2(TX) − c2(V ) is algebraic. Thus for a given Calabi-Yau threefold X the effectivity of [W ]
constraints the choice of vector bundles V .

In summary, we are looking for stable holomorphic vector bundles on Calabi-Yau threefolds whose
characteristic classes satisfy the constraints

c1(V ) = 0 (mod 2), [W] = c2(TX) + ch2(V) .

However, to follow the spirit of the present paper we will restrict to the discussion of vector bundles on
elliptically fibered Calabi-Yau threefolds.

Three approaches to construct holomorphic vector bundles on elliptically fibered Calabi-Yau three-
folds, with structure group the complexification GC of a compact Lie group G, have been introduced in
[59]. The parabolic bundle approach applies for any simple G. One considers deformations of certain
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minimally unstable G-bundles corresponding to special maximal parabolic subgroups of G. The spectral
cover approach (i.e., a relative Fourier-Mukai transformation) applies for SU(n) and Sp(n) bundles. The
del Pezzo surface approach applies for E6, E7 and E8 bundles and uses the relation between subgroups of
G and singularities of del Pezzo surfaces. Various aspects of these approaches have been further explored
in [27, 61, 60, 48, 14, 49, 51, 32, 35, 21, 19, 83, 2, 44, 46].

In what follows we require, as in other parts of this work, that our elliptically fibered Calabi-Yau three-
fold π : X → B has a section σ (in addition to the smoothness of B and X). Remember than this (and the
Calabi-Yau condition) restricts the base B to be a Hirzebruch surface (Fm, m ≥ 0), a del Pezzo surface
(dPk, k = 0, ..., 8), a rational elliptic surface (dP9), blown-up Hirzebruch surfaces or an Enriques surface
[49, 90].

Now following our above discussion we can define a sheaf on X in two ways

V = Φ0(i∗L) πC∗L = σ∗V

Ṽ = Φ̂0(i∗L) πC∗L = σ∗Ṽ ⊗ ωB

where i : C ↪→ X is the closed immersion of C into X where Ṽ is related to V by [6] Ṽ = τ∗V ⊗ π∗ωB .
We can now determine the topological invariants of the Fourier-Mukai transform of a general complex G in
the derived category using the expressions derived in 16. So if we start with the sheaf E = i∗L with Chern
characters given by

ch0(i∗L) = 0, ch1(i∗L) = nΘ + π∗η, ch2(i∗L) = Θπ∗ηE + aEF, ch3(i∗L) = sE

with ηE , η ∈ H2(B,Q), then the Chern characters of the Fourier-Mukai transform V = Φ0(i∗L) of i∗L
are given by

ch0(V ) = n

ch1(V ) = π∗(ηE −
1
2
nc1)

ch2(V ) = (−π∗η)Θ + (sE −
1
2
π∗ηEc1Θ +

1
12
nc21Θ)F

ch3(V ) = −aE +
1
2
Θc1π∗η.

Now ηE , aE and sE are not completely arbitrary. Also we have not given an explicit expression for c1(L) so
far. For this we analyze the Grothendieck-Riemann-Roch theorem applied to the n-sheeted cover πC : C →
B which gives

ch(πC∗L) td(B) = πC∗(ch(L) td(C))

and so we find

c1(σ∗V ) +
1
2
c1(B) = πC∗

(
c1(L) +

c1(C)
2

)
.

For (1, 1) classes α on B we have πC∗π∗Cα = nα and σ∗ applied to V gives c1(σ∗V ) = ηE − 1
2nc1(B) so

we get

πC∗(c1(L)) = πC∗
(
− c1(C)

2
+
π∗CηE
n

)
which gives

c1(L) = −c1(C)
2

+
π∗CηE
n

+ γ ,

where γ ∈ H1,1(C,Z) is some cohomology class satisfying πC∗γ = 0 ∈ H1,1(B,Z). The general
solution for γ has been derived in [59] and is given by γ = λ(nΘ|C − π∗Cη + nπ∗Cc1(B)) with λ some
rational number which we will specify below. Let us also note γ restricted to S = C ∩ Θ is given by
γ|S = −λπ∗η(π∗η − nπ∗c1(B))Θ.
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Having fixed c1(L) we can now go on and determine aE and sE in terms of ηE . For this apply the
Grothendieck-Riemann-Roch theorem to i : C ↪→ X which gives ch(i∗L) td(X) = i∗(ch(L) td(C)). We
note that i∗(1) = C and using the fact that i∗(c1(B)γ) = 0 a simple computation gives

aE = γ|S +
1
n
ηEη

sE =
1
24
nc21 +

1
2n
η2
E −$

where $ is given by

$ = − 1
24
c1(B)2(n3 − n) +

1
2
(
λ2 − 1

4
)
nη(η − nc1(B)) .

A priori Φ0(i∗L) gives U(n) vector bundles on X whose properties have been analyzed in detail in [7].
To make contact with the work of [59] let us describe the reduction from U(n) to SU(n) and thus recover
the second Chern class of an SU(n) vector bundles originally computed in [59] and the third Chern class
evaluated in [2, 46].

In order to describe the reduction to SU(n) we specify the class ηE = 1
2nc1 giving c1(V ) = 0. If we

insert this into the above expressions for aE and sE we find the new expressions

aE = γ|S +
1
2
c1η

sE =
1
6
nc21Θ−$ ,

and so we find the Chern-classes of an SU(n) vector bundle V on the elliptic fibered Calabi-Yau threefold

r(V ) = n, c1(V ) = 0, c2(V ) = π∗(η)Θ + π∗($), c3(V ) = −2γ|S

in agreement with [59, 2, 46].
Now using the fact that on an elliptically fibered Calabi-Yau threefold we can decompose W = WB +

af f where WB is the class of a curve in B and f the fiber of X , we find

WB = Θπ∗(12c1(B)− η), af = c2(B) + 11c1(B)2 −$ .

Remark 5 Note that in [59] it has been shown that for a vector bundle V with structure group E8 × E8,
the number of five-branes af agrees with the number N of three-branes required for anomaly cancellation
in F -theory on a Calabi-Yau fourfold Y given by χ(Y )

24 . If the structure group G of V is contained in E8

then the observed physical gauge group in four-dimensions corresponds to the commutant H̃ of G in E8,
typically being of ADE-type. This leads to a generalized physical set-up: The heterotic string compactified
on X and a pair of G-bundles is dual to F -theory compactified on a Calabi-Yau fourfold Y with section
and a section θ of ADE singularities. The generalized set-up has been analyzed in [59] and [27, 3, 4, 5].
In particular it has been shown that χ(Y )

24 = aE8 + af where aE8 corresponds to the number of five-branes
associated to the E8 vector bundle and af as given above.

Remark 6 The discussion of stability of V and W depends on the properties of the defining data C and
L. If C is irreducible and L a line bundle over C then V and W will be vector bundles stable with respect
to

J = εJ0 + π∗HB , ε > 0 (36)

if ε is sufficiently small (cf. [61, Theorem 7.1] where the statement is proven under the additional assumption
that the restriction of V to the generic fiber is regular and semistable). Here J0 refers to some arbitrary
Kähler class on X and HB a Kähler class on the base B. It implies that the bundle V can be taken to
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be stable with respect to J while keeping the volume of the fiber f of X arbitrarily small compared to the
volumes of effective curves associated with the base. That J is actually a good polarization can be seen by
assuming ε = 0. Now one observes that π∗HB is not a Kähler class on X since its integral is non-negative
on each effective curve C in X , however, there is one curve, the fiber f, where the integral vanishes. This
means that π∗HB is on the boundary of the Kähler cone and to make V stable, one has to move slightly into
the interior of the Kähler cone, that is, into the chamber which is closest to the boundary point π∗HB . Also
we note that although π∗HB is in the boundary of the Kähler cone, we can still define the slope µπ∗HB

(V )
with respect to it. Since (π∗HB)2 is some positive multiple of the class of the fiber f, semi-stability with
respect to π∗HB is implied by semi-stability of the restrictions V |f to the fibers. Assume that V is not
stable with respect to J , then there is a destabilizing sub-bundle V ′ ⊂ V with µJ(V ′) ≥ µJ(V ). But
semi-stability along the fibers says that µπ∗HB

(V ′) ≤ µπ∗HB
(V ). If we had equality, it would follow that

V ′ arises by the spectral construction from a proper sub-variety of the spectral cover of V , contradicting
the assumption that this cover is irreducible. So we must have a strict inequality µπ∗HB

(V ′) < µπ∗HB
(V ).

Now taking ε small enough, we can also ensure that µJ(V ′) < µJ(V ) thus V ′ cannot destabilize V .

Let us now consider the case that C is flat over B. If C is not irreducible than there may exist line
bundles such that V = Φ0(i∗L) is not stable with respect to the polarization given by 36, however, the
condition one has to impose to the spectral data in order that V is a stable sheaf on X with respect to 36,
has been derived in [8] (cf. Remark 1). Actually, if C is flat over B and L is a pure dimension sheaf
on C than V is stable with respect to J̄ = ε̄Θ + π∗HB for sufficiently small ε̄ if and only if i∗L is
stable with respect to this polarization. Let us note here that stability with respect to 36 for ε sufficiently
small is equivalent to stability with respect to J̄ for sufficiently small ε̄ if we take J0 = aΘ + bπ∗HB for
some positive a, b. Furthermore, note that if C is irreducible and L is a line bundle the latter condition is
automatically satisfied.

Moreover, V and W are simultaneously stable with respect to J̃ . This is not a surprise because from
chi(τ∗V ) = ch(V ) we know that V and τ∗V are simultaneously stable and from W = τ∗V ⊗ π∗ω−1

B we
know that stability is the same for W and τ∗V .

Note that assuming C is flat and L a pure dimension one sheaf, one finds a larger class of stable sheaves
V (and W ) than originally constructed in [59], because we do not need an irreducible spectral cover and
that the restriction of the bundle (sheaf) to the generic fiber is regular.

Moduli of vector bundles

The number of moduli of V can be determined in two ways, depending on whether one works with V
directly or with its spectral cover data (C,N ). In the direct approach one is restricted to so called τ -
invariant bundles and therefore to a rather special point in the moduli space, whereas the second approach
is not restricted to such a point. We give a brief review of both approaches; the first approach was originally
introduced in [59] making concrete earlier observations in [116]. The issue of τ -invariance has been also
addressed in [50].

The first approach starts with the index of the ∂̄ operator with values in Ext(V ). The index can be
evaluated using

index(∂̄) =
3∑
i=0

(−1)i dimHi(X, Ext(V )).

As this index vanishes by Serre duality on the Calabi-Yau threefold, one has to introduce a further twist to
get a non-trivial index problem. This is usually given if the Calabi-Yau space admits a discrete symmetry
group [116]. In case of elliptically fibered Calabi-Yau manifolds one has such a group G given by the
involution τ coming from the “sign flip” in the elliptic fibers. One assumes that this symmetry can be lifted
to an action on the bundle at least at some point in the moduli space [59]. In particular the action of τ lifts
to an action on the adjoint bundle ad(V ), the traceless endomorphisms of Ext(V ). It follows that the index
of the ∂̄ operator generalizes to a character valued index where for each g ∈ G one defines index(g) =
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∑3
i=0(−1)i+1 TrHi(X,ad(V )) g where TrHi(X,ad(V )) refers to a trace in the vector space Hi(X, ad(V )).

The particular form of this index for elliptic Calabi-Yau threefolds has been determined in [59] (with g =
1 + τ

2 ) one finds index(g) =
∑3
i=0(−1)i+1 dimHi(X, ad(V ))e where the subscript “e” indicates the

projection onto the even subspace of Hi(X, ad(V )). One can compute this index using a fixed point
theorem as shown in [59].

The second approach makes intuitively clear where the moduli of V are coming from, namely, the
number of parameters specifying the spectral cover C and by the dimension of the space of holomorphic
line bundles L on C. The first number is given by the dimension of the linear system |C| = |nΘ + η|.
The second number is given by the dimension of the Picard group Pic(C) = H1(C,O∗C) of C. One thus
expects the moduli of V to be given by [36]

h1(X, Ext(V )) = dim |C|+ dimPic(C).

If C is an irreducible, effective, positive divisor in X one can evaluate h1(X, Ext(V )) using the Riemann-
Roch theorem.

7.5 Feedback to derived categories
The interpretation of (topological) D-branes on a Calabi-Yau threefold as objects of the derived category,
has brought new interest to the old problem of ascertaining to what extent the derived category determines
the geometry of the variety.

A lot of work in that direction has been done and a general answer could be that the derived category
D(X) contains plenty of information about the variety X itself. The first of the number of milestones in
the path that leads from the derived category of an algebraic variety to the variety itself, is due to Bondal
and Orlov [29]:

Proposition 20 Assume that X is a smooth projective variety and let KX be the canonical divisor. If
either KX or −KX is ample (X is of general type or Fano), then X can be reconstructed from D(X).

The result is not true for other kinds of algebraic surfaces. Mukai had proven by that time [91] that
there exist non isomorphic abelian varieties and also non isomorphic K3 surfaces having equivalent derived
categories. In the case of K3 surfaces, Orlov [97] gave a much precise statement, that be thought as a Torelli
type theorem for K3’s. He proved that two complex K3-surfaces have equivalent derived categories if and
only if the trascendental lattices of their cohomology spaces are Hogde-isometric.

Du to the fact that every isomorphism of derived categories is a Fourier-Mukai functor, as we reported
in Theorem 1, two varieties with isomorphic derived categories are also known as Mukai partners or mirror
partners. After Mukai, the problem of finding Fourier-Mukai partners has been considered by Bridgeland-
Maciocia [35] and Kawamata [79]; they have proved that if X is a smooth projective surface, then there
is a finite number of surfaces Y (up to isomorphisms) such that D(X) ' D(Y ). There are recent works
about counting the number of Mukai partners and determining the structure of the finite set of such partners
(cf. [76, 108] for K3 surfaces or [112] for elliptic surfaces). For Calabi-Yau threefolds, Bridgeland [34] has
proven the following result:

Proposition 21 If two Calabi-Yau threefolds X and Y are birational, then they have equivalent derived
categories, D(X) ' D(Y ).

If a given Calabi-Yau manifold X undergoes a “flop-transition” (i.e., if a rational curve C is blown-down
and then blown-up in a transverse direction) one typically finds that the topological type of X changes. In
particular, if one starts fromX and a collection of holomorphic curvesCi onX then the second Chern-class
c2(X) of X changes according to a theorem by Tian and Yau [110] as c2(X ′) = c2(X) + 2

∑
i

∫
D

[Ci]
where D is an arbitrary divisor and [Ci] ∈ H4(X) which is Poincare dual of Ci. From the physics point
of view such transitions have been studied in [16] (for a review see also [66]) where it has been shown
that the conformal field theory associated to the singular target space Xsing is perfectly well defined (i.e.,
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one can “smoothly” go from X to X ′). However, if one includes D-branes one expects certain jumps. For
instance, the Calabi-Yau manifold X can be considered (to some approximation) as the moduli space of
0-branes thus it must undergo some transition during the flop [52]. These transitions have been analyzed
(using Π -stability) in [13], showing that only 0-branes associated to C are affected by the flop transition.
Moreover, from the physics of the B-model one expects that the derived categories of X and X ′ are equal,
in agreement with Proposition 21.

One can make the following conjecture (cf. also [37]):

Conjecture 1 If we have two Calabi-Yau threefoldsX and Y withD(X) ' D(Y ), thenX is deformation
equivalent to a birational model of Y .

This conjecture has great interest in string theory as well, since whenever two Calabi-Yau threefolds
have the same derived category, they should have the same D-branes.

The conjecture is still unproven. Căldăraru [37] has found some explicit models of Fourier-Mukai
partners for three-dimensional Calabi-Yau threefolds. In order to give evidences for the conjecture (or in
the contrary to disprove it), it will be very interesting to exhibit new ones.

When the problem of reconstructing the variety from the derived category is considered for varieties
other than Calabi-Yau threefolds, there are important contributions due to Kawamata. He proved that if
X , Y are smooth projective varieties with D(X) ' D(Y ), then n = dimX = dimY and if moreover
κ(X) = n (that is, X is of general type), then there exist birational morphisms f : Z → X , g : Z → Y
such that f∗KX ∼ g∗KY [79].

A Simpson stability for pure sheaves
Here we give a brief account of Simpson stability for pure sheaves, introduced to construct moduli spaces
of stable and semistable sheaves which may fail to be torsion-free. The interested reader is referred to [107]
for details.

A.1 Simpson’s slope and reduced Hilbert polynomial
The notions of rank, slope, actually the whole Hilbert polynomial, can be extended to arbitrary sheaves.
The definition depends on the choice of a polarization (or an ample divisor in more algebraic geometry
language). Take then a projective scheme Y with a polarization H , that we take very ample by the sake
of simplicity. This means that there is a closed immersion of Y into a projective space PN such that H is
the intersection of Y with a hyperplane class. For every sheaf E on Y there is a polynomial P (E , n) with
rational coefficients and degree s = dim Supp(E) such that

P (E , n) = χ(Y, E(n)) =
∑
i≥0

dimHi(Y, E(n)) , (E(n) = E ⊗ OY (nH))

This is the Hilbert polynomial of E and can be written in the form

P (E , n) =
r(E)
s!

ns +
d(E)

(s− 1)!
ns−1 + . . .

where r(E) and d(E) are integer numbers. These numbers are close relatives to the rank rk(E) and the
degree deg(E) with respect toH when Y is irreducible and E is torsion-free as we shall see in the following
subsection.

Simpson defined the reduced Hilbert polynomial and the slope of E as the polynomial pS(E) defined by

pS(E , n) =
P (E , n)
r(E)

, µS(E) =
d(E)
r(E)
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A.2 Pure sheaves and stability
When Y is irreducible, a sheaf E on Y is torsion-free precisely when it has no subsheaves supported by a
subvariety of smaller dimension. The latter property has a sense for any Y , and this was taken as the notion
that substitutes torsion-freeness when we are on non irreducible varieties. The right definition is

Definition 7 A coherent sheaf E is pure of dimension s = s(E) if the support of any non-zero subsheaf
0 → F → E has dimension s as well.

With this definition, torsion-free sheaves on connected varieties can be understood as pure sheaves of
maximal dimension.

We define p ≤ q for two rational polynomials whenever p(n) ≤ q(n) for n � 0; then Simpson
definition of semistability and stability is as follows

Definition 8 A coherent sheaf E on Y is (Gieseker) semistable if it is pure of dimension s = s(E) and for
every non-zero subsheaf 0 → F → E one has

pS(F) ≤ pS(E) .

A sheaf is (Gieseker) stable if pS(F) < pS(E) for every non-zero subsheaf 0 → F → E with r(F) < r(E).

For slope stability we have

Definition 9 A coherent sheaf E on Y is µS-semistable if it is pure of dimension s = s(E) and for every
non-zero subsheaf 0 → F → E one has

µS(F) ≤ µS(E) .

A sheaf is µS-stable if µ(F) < µ(E) for every non-zero subsheaf 0 → F → E with r(F) < r(E).

A direct computation shows that we have implications

µS-stable +3

��

Gieseker stable

��
µS-semistable Gieseker semistableks

We may wonder whether those stability conditions are equivalent to the usual ones for a torsion-free
sheaf E on an irreducible projective variety Y . In this case, Gieseker (semi)stability is defined as above
though using

p(E , n) =
P (E , n)
rk(E)

as reduced Hilbert plynomial and also µ-(semi)stability is defined as above using the ordinary slope

µ(E) =
deg(E)
rk(E)

.

The answer is that Gieseker (semi)stability for pS(E) and for p(E) are equivalent and also that µS and
µ-(semi)stability are equivalent. The reason is that we have

r(E) = rk(E) · deg(Y ) , d(E) = deg(E) + rk(E)C (37)

where deg(Y ) is the degree of Y in PN and C is a constant. For instance, if Y is a smooth surface and E is
locally free then the Hilbert polynomial is

P (E , n) =
H2 · rk(E)

2
n2 + (deg(E)− 1

2
rk(E)H ·KX)n+ χ(Y, E)
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so that
r(E) = rk(E) ·H2 = rk(E) · deg(Y ) , d(E) = deg(E)− 1

2
rk(E)H ·KX ,

in agreement with (37).
Now, (37) gives the hint of a sensible definition for the rank of a sheaf on its support

Definition 10 Let Y be a projective scheme and H polarization in Y . The polarized rank of a coherent
sheaf E on Y is the rational number

rkH(E) =
r(E)

deg(Y )
.

Note that if Y is irreducible and smooth and Supp(E) is different from Y , then the ordinary rank of E (even
if defined as the Chern character ch0 as in (2) )is zero, but the polarized rank may be not. If Supp(E) is
irreducible, then rkH(E) = rk(E| Supp(E)).

Simpson constructed moduli spaces for stable and semistable sheaves both for µS and Gieseker stability.
Let us talk simply about µS-stability because the analogous results for Gieseker stability are also true. We
first recall the definition of S-equivalence: it is defined to ensure the existence a coarse moduli space
of semistable sheaves with prescribed topological invariants. Actually the moduli space parametrizes S-
equivalence classes of semistable sheaves rather than semistable sheaves themselves.

The precise definition requires the notion of the Jordan-Hölder filtration: every semistable sheaf F has
a filtration F = Fm ⊃ Fm−1 ⊃ · · · ⊃ F0 = 0 whose quotients Fi/Fi−1 are stable with the same slope as
F . The Jordan-Hölder filtration is not unique but the graduate G(F) = ⊕iFi/Fi−1 is uniquely determined
by the sheaf. Two semistable sheaves F , G are then called S-equivalent if G(F) ' G(G).

We then see that two stable sheaves are S-equivalent only when they are isomorphic.
The final existence result is

Theorem 6

1. There exists a coarse moduli scheme Mss(Y, p(n)) for the moduli problem of S-equivalence classes
of semistable pure sheaves with fixed reduced Hilbert polynomial p(n).

2. The moduli scheme Mss(Y, p(n)) is projective.

3. The closed points of Mss(Y, p(n)) represent S-equivalence classes of semiestable sheaves on X with
reduced Hilbert polynomial p(n) E ∼ E ′ if G(E) ' G(E ′).

4. The exists an open subschemeMs(Y, p(n)) ⊆Mss(Y, p(n)) whose points represent the isomorphism
classes of stable sheaves.

Analogous results hold for families, that is for projective morphisms Y → B with a relative polarization
and flat sheaves which are (semi)stable on the fibers.

The first construction of the moduli space of semistable torsion-free sheaves are due to Mumford [94],
Narasimhan and Seshadri [95, 105] for curves (cf. also [96]), to Gieseker for surfaces [63] and to Maruyama
in arbitrary dimension [85, 86]. Simpson construction [107] though still based as the other ones (with the
exception of [95]) on Geometric Invariant Theory, is much simpler and works for singular varieties as well.
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