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The Peano curves as limit of α-dense curves

G. Mora

Abstract. In this paper we present a characterization of the Peano curves as the uniform limit of
sequences of α-dense curves contained in the compact that it is filled by the Peano curve. These α-dense
curves must have densities tending to zero and coordinate functions with variation tending to infinite as
α tends to zero.

Las curvas de Peano como lı́mite de curvas α-densas

Resumen. En este artı́culo presentamos una caracterización de las curvas de Peano como lı́mite
uniforme de sucesiones de curvas α-densas en el compacto que es llenado por la curva de Peano. Estas
curvas α-densas deben tener densidades tendiendo a cero y sus funciones coordenadas deben de ser de
variación tendiendo a infinito cuando α tiende a cero.

1 Introduction

In a metric space (E, d), given a compact set K and a real number α ≥ 0, an α-dense curve (more
information on these curves may be found in [4]) in K is a continuous mapping γα : I → E, with
I = [0, 1], satisfying

i) the image γα(I), from now on noted γ∗α, is contained in K,

ii) for any x ∈ K, the distance d(x, γ∗α) ≤ α.

Whenever α = 0, one has a Peano curve provided that the interior of K to be non-void. The minimal α
verifying the two preceding properties is, strictly speaking, the density of the curve in K, which coincides
with the Hausdorff distance dH(K, γ∗α) (see [2]).

A compact subset K in (E, d) is said to be densifiable if it contains α-dense curves for arbitrary α > 0.
For example, in RN , N ≥ 1, any cube

∏N
i=1 [ai, bi] is densifiable. Any Peano Continuum, that is, a

connected and locally connected compact set, is also densifiable. However, there exist densifiable sets
which are not Peano Continua; for instance

K =
{(

x, sin
1
x

)
: 0 < x ≤ 1

}
∪

{
(0, y) : −1 ≤ y ≤ 1

}
.

Therefore, the α-density concept produces a new class, the densifiable sets, which is strictly between
the class of Peano Continua and the class of connected and precompact sets.
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Let f be a function defined on a real interval, for brevity we take the unit interval I , and valued on a
metric space (E, d). We recall that the total variation of f , noted VI(f), is defined as

VI(f) ≡ sup
σ

{
n∑

i=1

d(f(ti), f(ti−1)) : σ ≡ {t0, t1, . . . , tn} ⊂ I ; t0 < t1 < · · · < tn

}
.

Whenever VI(f) < ∞, it is well-known that f is called of bounded variation on I (detailed properties
of these functions can be found, for instance, in [1] or also in [6, Vol. I]). In particular, given a continuous
mapping γ : I → RN , i.e., a curve γ, the total variation VI(γ) is also called the length, written L(γ).
Whether VI(γ) is finite, the curve is said to be rectifiable and its length may be determined (see [1, theorem
24-6]) by

L(γ) = lim
|Π|→0

n∑
i=1

‖γ(ti)− γ(ti−1))‖ ,

Π being the partition
Π = {t0, t1, . . . , tn} ; 0 = t0 < t1 < · · · < tn = 1

with norm
|Π| ≡ max {ti − ti−1 ; i = 1, . . . , n} .

The variation of a curve may be infinite even for very regular one, such as the following example shows
(see [8, p. 53]).

Example 1 The coordinate functions γ1, γ2 of the spiral γ = (γ1, γ2) : I → I2 defined by

γ1(t) =

{
t cos 2π

t if 0 < t ≤ 1
0 if t = 0

γ2(t) =

{
t sin 2π

t if 0 < t ≤ 1
0 if t = 0

are both of infinite variation.

2 The theorem of characterization
The Hahn-Mazurkiewicz theorem (see [7]) assures that every Peano Continuum set in a metrizable space is
the continuous image of the unit interval, and reciprocally. Since the unit square I2 is a Peano Continuum,
it may be taken as a good prototype of the image of a Peano curve, so we shall state our theorem of
characterization in that set.

Theorem 1 A continuous mapping γ = (γ1, γ2) : I → I2 is a Peano curve filling I2 if and only γ if is the
uniform limit of a sequence of α-dense curves γ(n) = (γ(n)

1 , γ
(n)
2 ) in I2 with densities αn → 0, for which

there is no constant K such that the variation VI(γ
(n)
i ) ≤ K, for all n, for some i = 1, 2.

PROOF. First we prove the sufficiency. Let P be an arbitrary point of I2; because of the density, for
each n there exists tn ∈ I such that the euclidean distance

d(P, γ(n)(tn)) ≤ αn.

By the Bolzano-Weierstrass theorem, given the sequence (tn)n there exists a subsequence, noted in the
same way, that converges to some t ∈ I . For arbitrary n, we consider the inequality

d(P, γ(t)) ≤ d(P, γ(n)(tn)) + d(γ(n)(tn), γ(n)(t)) + d(γ(n)(t), γ(t)) . (1)

Thus, since αn → 0 and γ is the uniform limit of γn, from the continuity of the curves and taking the
limit in (1) when n → ∞, the distance d(P, γ(t)) = 0. Therefore, the point P = γ(t) and so γ is a Peano
curve that fills I2.
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For proving the necessity, observe that if γ = (γ1, γ2) is a Peano curve filling I2, then each coordinate
function γ1, γ2 is necessarily surjective onto I . We assume firstly that γ(n) = (γ(n)

1 , γ
(n)
2 ), n = 1, 2, . . ., is

a sequence of curves in I2 uniformly convergent

lim
n→∞

γ(n) = γ, (2)

and prove that latter. �

Denoting by αn the density in I2 of each curve γ(n) = (γ(n)
1 , γ

(n)
2 ), one has

lim
n→∞

αn = 0. (3)

Indeed, if (3) is not true, then there exists ε > 0 such that for any k there is an integer Nk so that
αNk

> ε. Thus we can select a subsequence of curves of densities αNk
> ε for k = 1, 2, 3, . . .. From (2)

the limit of this subsequence is also γ, so denoting the subsequence in the same way, we determine, for each
n, a point Pn such that

ε < d(Pn, γ∗n) ≤ αn. (4)

Since (Pn)n belongs to the compact I2, there exists a subsequence, noted in the same way, that con-
verges to some point P ∈ I2. Because of the continuity of the distance function, and taking into account
that γ is the uniform limit of γn, given 0 < δ < ε, there exists a sufficiently large n such that

|d(P, γ∗n)− d(Pn, γ∗n)| <
δ

2
; |d(P, γ∗)− d(P, γ∗n)| <

δ

2
. (5)

From (5) and (4), one has

d(P, γ∗) = d(P, γ∗)− d(P, γ∗n) + d(P, γ∗n)− d(Pn, γ∗n) + d(Pn, γ∗n) > −δ

2
− δ

2
+ d(Pn, γ∗n) > ε− δ,

which is absurd because d(P, γ∗) = 0. Therefore (3) is showed.

For each i = 1, 2, consider the Banach indicatrix Φγi
of each coordinate function γi on the interval

[0, 1], that is, the function on I defined by

Φγi
(y) =

{
+∞ if card(γ−1

i (y)) ≥ ω

card(γ−1
i (y)) if card(γ−1

i (y)) < ω

ω being the first infinite cardinal. Φγi is measurable and satisfies the integral formula∫ 1

0

Φγi(y)dy = VI(γi) (6)

(a proof can be found in [3] or [6]). Nevertheless Φγi is identically equal to +∞ on I , so from (6)

VI(γi) = ∞, i = 1, 2. (7)

Suppose the existence of a constant K such that VI(γ
(n)
i ) ≤ K, for all n, for some i = 1, 2. Thus, as

0 ≤ γ
(n)
i (t) ≤ 1 for any t ∈ I , by applying the Helly’s first theorem (see [6, Vol. I, p.222]), γi would be of

finite variation and it contradicts (7).
Now, it only remains to prove that, given a Peano curve γ = (γ1, γ2) filling I2 there exists a sequence

γ(n) = ( γ
(n)
1 , γ

(n)
2 ), n = 1, 2, . . ., of curves in I2 verifying (2). For that, consider the class C of all

rectangles C = J1 × J2 of I2, where J1, J2 are intervals contained in I , and define on this class the set
function µ by

µ(C) = Λ1

[
γ−1
1 (J1) ∩ γ−1

2 (J2)
]
, (8)
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Λ1 being the Lebesgue measure on the real line R.
One can easily check that formula (8) defines a Borel measure on the unit square, wich will be also

denoted µ. This measure, associated to the Peano curve γ, satisfies

a) µ(C) > 0 for any rectangle C with interior non-void,

b) µ(I2) = 1.

Now, for each n = 1, 2, . . . consider a partition Πn =
{

C
(n)
k : k = 1, 2, . . . , 22n

}
formed by 22n equal

and disjoint subsquares of I2, arranged in such a way that C
(n)
k to be adjacent to C

(n)
k−1 for k = 2, . . . , 22n.

Furthermore, inductively, given the partition Πn, the next one Πn+1 =
{

C
(n+1)
k : k = 1, 2, . . . , 22(n+1)

}
,

obtained by dividing each square C
(n)
k into four new squares C

(n)
k,i , i = 1, . . . , 4, is arranged by defining

C
(n+1)
4(k−1)+i = C

(n)
k,i , k = 1, 2, . . . , 22n, i = 1, . . . , 4.

From the properties a), b), the 22n subintervals

I
(n)
1 =

[
0, µ(C(n)

1 )
)

I
(n)
2 =

[
µ(C(n)

1 ), µ(C(n)
1 ) + µ(C(n)

2 )
)

...

I
(n)
22n =

[
µ(C(n)

1 ) + µ(C(n)
2 ) + · · ·+ µ(C(n)

22n−1), 1
]

define a partition of I .
Given n, for each k = 1, 2, . . . , 22n, we distinguish an arbitray interior point of each square C

(n)
k , for

instance its center, noted P
(n)
k = (x(n)

k , y
(n)
k ), and define on I the functions

h
(n)
1 (t) = x

(n)
k , t ∈ I

(n)
k ,

h
(n)
2 (t) = y

(n)
k , t ∈ I

(n)
k .

Observe that, for each n, h
(n)
1 , h

(n)
2 are, possibly, discontinuous at the points tj =

∑j
i=1 µ(C(n)

i ,

j = 1, 2, . . . , 22n−1. However, the sequences
(
h

(n)
1

)
n

,
(
h

(n)
2

)
n

are uniformly convergent to two continu-

ous functions, say γ′1, γ′2, respectively (consult [5]). Therefore one defines a curve γ′ = (γ′1, γ′2) which coin-
cides with γ = (γ1, γ2), if we take into account that, for each n, the mapping γ′(n)(t) =

(
h

(n)
1 (t), h(n)

2 (t)
)

,

t ∈ I , coincide with γ(t) = (γ1(t), γ2(t)), t ∈ I , at least at 22n values for t, corresponding to the 22n

centers of the subsquares C
(n)
k of the partition Πn.

To eliminate the discontinuity of h
(n)
1 , h

(n)
2 , we proceed to make a linear interpolation. Hence, consider

a partition of I formed by the subintervals

J
(n)
1 =

[
0,

22n − 1
22n

µ(C(n)
1

]
,

K
(n)
1 =

[
22n − 1

22n
µ(C(n)

1 ), µ(C(n)
1 ) +

1
22n

µ(C(n)
2 )

]
,
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J
(n)
2 =

[
µ(C(n)

1 ) +
1

22n
µ(C(n)

2 ), µ(C(n)
1 ) +

22n − 1
22n

µ(C(n)
2 )

]
,

K
(n)
2 =

[
µ(C(n)

1 ) +
22n − 1

22n
µ(C(n)

2 ), µ(C(n)
1 ) + µ(C(n)

2 ) +
1

22n
µ(C(n)

3 )
]

,

...

K
(n)
22n−1 =

[
µ(C(n)

1 ) + µ(C(n)
2 ) + · · ·+ 22n − 1

22n
µ(C(n)

22n−1),

µ(C(n)
1 ) + µ(C(n)

2 ) + · · ·+ µ(C(n)
22n−1) +

1
22n

µ(C(n)
22n)

]
,

J
(n)
22n =

[
µ(C(n)

1 ) + µ(C(n)
2 ) + · · ·+ µ(C(n)

22n−1) +
1

22n
µ(C(n)

22n), 1
]

.

and define, for each n, the new functions f
(n)
1 , f

(n)
2 by

f
(n)
1 (t) = h

(n)
1 (t) if t ∈ J

(n)
k , k = 1, 2, . . . , 22n,

f
(n)
1 (t) = x

(n)
j +

x
(n)
j+1 − x

(n)
j

s
(n)
j − r

(n)
j

(t− r
(n)
j ) if t ∈ K

(n)
j , j = 1, 2, . . . , 22n − 1

and

f
(n)
2 (t) = h

(n)
2 (t) if t ∈ J

(n)
k , k = 1, 2, . . . , 22n,

f
(n)
2 (t) = y

(n)
j +

y
(n)
j+1 − y

(n)
j

s
(n)
j − r

(n)
j

(t− r
(n)
j ) if t ∈ K

(n)
j , j = 1, 2, . . . , 22n − 1

where r
(n)
j , s

(n)
j are the end-points of K

(n)
j .

From the uniform convergence of
(
h

(n)
1

)
n

,
(
h

(n)
2

)
n

to γ1, γ2, it follows easily that the sequences(
f

(n)
1

)
n

,
(
f

(n)
2

)
n

also converge uniformly to γ1, γ2, respectively, if we take into account that J
(n)
k ⊂ I

(n)
k ,

for all k = 1, 2, . . . , 22n, and K
(n)
j is a closed neighbourhood of tj of length

1
22n

(
µ(C(n)

j ) + µ(C(n)
j+1)

)
for all j = 1, 2, . . . , 22n − 1. Therefore, by defining, for each n, γ(n) =

(
f

(n)
1 , f

(n)
2

)
we have definitely a

sequence of curves satisfying (2). Now the proof is complete.
Suppose we apply this last theorem, thus the following is immediate.

Corollary 1 Let γ(n) = (γ(n)
1 , γ

(n)
2 ) be an arbitrary sequence of cartesian (for all n is γ

(n)
1 = Id, the

identity) α-dense curves in I2 with densities αn → 0. Thus
(
γ(n)

)
n

has no uniform limit.
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