RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
Vol. 99 (1), 2005, pp. 23-28
Análisis Matemático / Mathematical Analysis

The Peano curves as limit of α-dense curves

G. Mora

Abstract

In this paper we present a characterization of the Peano curves as the uniform limit of sequences of α-dense curves contained in the compact that it is filled by the Peano curve. These α-dense curves must have densities tending to zero and coordinate functions with variation tending to infinite as α tends to zero.

Las curvas de Peano como límite de curvas α-densas

Resumen. En este artículo presentamos una caracterización de las curvas de Peano como límite uniforme de sucesiones de curvas α-densas en el compacto que es llenado por la curva de Peano. Estas curvas α-densas deben tener densidades tendiendo a cero y sus funciones coordenadas deben de ser de variación tendiendo a infinito cuando α tiende a cero.

1 Introduction

In a metric space (E, d), given a compact set K and a real number $\alpha \geq 0$, an α-dense curve (more information on these curves may be found in [4]) in K is a continuous mapping $\gamma_{\alpha}: I \rightarrow E$, with $I=[0,1]$, satisfying
i) the image $\gamma_{\alpha}(I)$, from now on noted γ_{α}^{*}, is contained in K,
ii) for any $x \in K$, the distance $d\left(x, \gamma_{\alpha}^{*}\right) \leq \alpha$.

Whenever $\alpha=0$, one has a Peano curve provided that the interior of K to be non-void. The minimal α verifying the two preceding properties is, strictly speaking, the density of the curve in K, which coincides with the Hausdorff distance $d_{\mathcal{H}}\left(K, \gamma_{\alpha}^{*}\right)$ (see [2]).

A compact subset K in (E, d) is said to be densifiable if it contains α-dense curves for arbitrary $\alpha>0$. For example, in $\mathbb{R}^{N}, N \geq 1$, any cube $\prod_{i=1}^{N}\left[a_{i}, b_{i}\right]$ is densifiable. Any Peano Continuum, that is, a connected and locally connected compact set, is also densifiable. However, there exist densifiable sets which are not Peano Continua; for instance

$$
K=\left\{\left(x, \sin \frac{1}{x}\right): 0<x \leq 1\right\} \cup\{(0, y):-1 \leq y \leq 1\} .
$$

Therefore, the α-density concept produces a new class, the densifiable sets, which is strictly between the class of Peano Continua and the class of connected and precompact sets.

[^0]Let f be a function defined on a real interval, for brevity we take the unit interval I, and valued on a metric space (E, d). We recall that the total variation of f, noted $V_{I}(f)$, is defined as

$$
V_{I}(f) \equiv \sup _{\sigma}\left\{\sum_{i=1}^{n} d\left(f\left(t_{i}\right), f\left(t_{i-1}\right)\right): \sigma \equiv\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subset I ; t_{0}<t_{1}<\cdots<t_{n}\right\}
$$

Whenever $V_{I}(f)<\infty$, it is well-known that f is called of bounded variation on I (detailed properties of these functions can be found, for instance, in [1] or also in [6, Vol. I]). In particular, given a continuous mapping $\gamma: I \rightarrow \mathbb{R}^{N}$, i.e., a curve γ, the total variation $V_{I}(\gamma)$ is also called the length, written $L(\gamma)$. Whether $V_{I}(\gamma)$ is finite, the curve is said to be rectifiable and its length may be determined (see [1, theorem 24-6]) by

$$
\left.L(\gamma)=\lim _{|\Pi| \rightarrow 0} \sum_{i=1}^{n} \| \gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right) \|
$$

Π being the partition

$$
\Pi=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} ; \quad 0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

with norm

$$
|\Pi| \equiv \max \left\{t_{i}-t_{i-1} ; i=1, \ldots, n\right\} .
$$

The variation of a curve may be infinite even for very regular one, such as the following example shows (see [8, p. 53]).

Example 1 The coordinate functions γ_{1}, γ_{2} of the spiral $\gamma=\left(\gamma_{1}, \gamma_{2}\right): I \rightarrow I^{2}$ defined by

$$
\gamma_{1}(t)=\left\{\begin{array}{ll}
t \cos \frac{2 \pi}{t} & \text { if } 0<t \leq 1 \\
0 & \text { if } t=0
\end{array} \quad \gamma_{2}(t)= \begin{cases}t \sin \frac{2 \pi}{t} & \text { if } 0<t \leq 1 \\
0 & \text { if } t=0\end{cases}\right.
$$

are both of infinite variation.

2 The theorem of characterization

The Hahn-Mazurkiewicz theorem (see [7]) assures that every Peano Continuum set in a metrizable space is the continuous image of the unit interval, and reciprocally. Since the unit square I^{2} is a Peano Continuum, it may be taken as a good prototype of the image of a Peano curve, so we shall state our theorem of characterization in that set.

Theorem 1 A continuous mapping $\gamma=\left(\gamma_{1}, \gamma_{2}\right): I \rightarrow I^{2}$ is a Peano curve filling I^{2} if and only γ if is the uniform limit of a sequence of α-dense curves $\gamma^{(n)}=\left(\gamma_{1}^{(n)}, \gamma_{2}^{(n)}\right)$ in I^{2} with densities $\alpha_{n} \rightarrow 0$, for which there is no constant K such that the variation $V_{I}\left(\gamma_{i}^{(n)}\right) \leq K$, for all n, for some $i=1,2$.

Proof. First we prove the sufficiency. Let P be an arbitrary point of I^{2}; because of the density, for each n there exists $t_{n} \in I$ such that the euclidean distance

$$
d\left(P, \gamma^{(n)}\left(t_{n}\right)\right) \leq \alpha_{n}
$$

By the Bolzano-Weierstrass theorem, given the sequence $\left(t_{n}\right)_{n}$ there exists a subsequence, noted in the same way, that converges to some $t \in I$. For arbitrary n, we consider the inequality

$$
\begin{equation*}
d(P, \gamma(t)) \leq d\left(P, \gamma^{(n)}\left(t_{n}\right)\right)+d\left(\gamma^{(n)}\left(t_{n}\right), \gamma^{(n)}(t)\right)+d\left(\gamma^{(n)}(t), \gamma(t)\right) \tag{1}
\end{equation*}
$$

Thus, since $\alpha_{n} \rightarrow 0$ and γ is the uniform limit of γ_{n}, from the continuity of the curves and taking the limit in (1) when $n \rightarrow \infty$, the distance $d(P, \gamma(t))=0$. Therefore, the point $P=\gamma(t)$ and so γ is a Peano curve that fills I^{2}.

For proving the necessity, observe that if $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is a Peano curve filling I^{2}, then each coordinate function γ_{1}, γ_{2} is necessarily surjective onto I. We assume firstly that $\gamma^{(n)}=\left(\gamma_{1}^{(n)}, \gamma_{2}^{(n)}\right), n=1,2, \ldots$, is a sequence of curves in I^{2} uniformly convergent

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \gamma^{(n)}=\gamma, \tag{2}
\end{equation*}
$$

and prove that latter.
Denoting by α_{n} the density in I^{2} of each curve $\gamma^{(n)}=\left(\gamma_{1}^{(n)}, \gamma_{2}^{(n)}\right)$, one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}=0 . \tag{3}
\end{equation*}
$$

Indeed, if (3) is not true, then there exists $\epsilon>0$ such that for any k there is an integer N_{k} so that $\alpha_{N_{k}}>\epsilon$. Thus we can select a subsequence of curves of densities $\alpha_{N_{k}}>\epsilon$ for $k=1,2,3, \ldots$. From (2) the limit of this subsequence is also γ, so denoting the subsequence in the same way, we determine, for each n, a point P_{n} such that

$$
\begin{equation*}
\epsilon<d\left(P_{n}, \gamma_{n}^{*}\right) \leq \alpha_{n} . \tag{4}
\end{equation*}
$$

Since $\left(P_{n}\right)_{n}$ belongs to the compact I^{2}, there exists a subsequence, noted in the same way, that converges to some point $P \in I^{2}$. Because of the continuity of the distance function, and taking into account that γ is the uniform limit of γ_{n}, given $0<\delta<\epsilon$, there exists a sufficiently large n such that

$$
\begin{equation*}
\left|d\left(P, \gamma_{n}^{*}\right)-d\left(P_{n}, \gamma_{n}^{*}\right)\right|<\frac{\delta}{2} ; \quad\left|d\left(P, \gamma^{*}\right)-d\left(P, \gamma_{n}^{*}\right)\right|<\frac{\delta}{2} \tag{5}
\end{equation*}
$$

From (5) and (4), one has

$$
d\left(P, \gamma^{*}\right)=d\left(P, \gamma^{*}\right)-d\left(P, \gamma_{n}^{*}\right)+d\left(P, \gamma_{n}^{*}\right)-d\left(P_{n}, \gamma_{n}^{*}\right)+d\left(P_{n}, \gamma_{n}^{*}\right)>-\frac{\delta}{2}-\frac{\delta}{2}+d\left(P_{n}, \gamma_{n}^{*}\right)>\epsilon-\delta,
$$

which is absurd because $d\left(P, \gamma^{*}\right)=0$. Therefore (3) is showed.
For each $i=1,2$, consider the Banach indicatrix $\Phi_{\gamma_{i}}$ of each coordinate function γ_{i} on the interval $[0,1]$, that is, the function on I defined by

$$
\Phi_{\gamma_{i}}(y)= \begin{cases}+\infty & \text { if } \operatorname{card}\left(\gamma_{i}^{-1}(y)\right) \geq \omega \\ \operatorname{card}\left(\gamma_{i}^{-1}(y)\right) & \text { if } \operatorname{card}\left(\gamma_{i}^{-1}(y)\right)<\omega\end{cases}
$$

ω being the first infinite cardinal. $\Phi_{\gamma_{i}}$ is measurable and satisfies the integral formula

$$
\begin{equation*}
\int_{0}^{1} \Phi_{\gamma_{i}}(y) d y=V_{I}\left(\gamma_{i}\right) \tag{6}
\end{equation*}
$$

(a proof can be found in [3] or [6]). Nevertheless $\Phi_{\gamma_{i}}$ is identically equal to $+\infty$ on I, so from (6)

$$
\begin{equation*}
V_{I}\left(\gamma_{i}\right)=\infty, \quad i=1,2 . \tag{7}
\end{equation*}
$$

Suppose the existence of a constant K such that $V_{I}\left(\gamma_{i}^{(n)}\right) \leq K$, for all n, for some $i=1,2$. Thus, as $0 \leq \gamma_{i}^{(n)}(t) \leq 1$ for any $t \in I$, by applying the Helly's first theorem (see [6, Vol. I, p.222]), γ_{i} would be of finite variation and it contradicts (7).

Now, it only remains to prove that, given a Peano curve $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ filling I^{2} there exists a sequence $\gamma^{(n)}=\left(\gamma_{1}^{(n)}, \gamma_{2}^{(n)}\right), n=1,2, \ldots$, of curves in I^{2} verifying (2). For that, consider the class \mathcal{C} of all rectangles $C=J_{1} \times J_{2}$ of I^{2}, where J_{1}, J_{2} are intervals contained in I, and define on this class the set function μ by

$$
\begin{equation*}
\mu(C)=\Lambda_{1}\left[\gamma_{1}^{-1}\left(J_{1}\right) \cap \gamma_{2}^{-1}\left(J_{2}\right)\right] \tag{8}
\end{equation*}
$$

Λ_{1} being the Lebesgue measure on the real line \mathbb{R}.
One can easily check that formula (8) defines a Borel measure on the unit square, wich will be also denoted μ. This measure, associated to the Peano curve γ, satisfies
a) $\mu(C)>0$ for any rectangle C with interior non-void,
b) $\mu\left(I^{2}\right)=1$.

Now, for each $n=1,2, \ldots$ consider a partition $\Pi_{n}=\left\{C_{k}^{(n)}: k=1,2, \ldots, 2^{2 n}\right\}$ formed by $2^{2 n}$ equal and disjoint subsquares of I^{2}, arranged in such a way that $C_{k}^{(n)}$ to be adjacent to $C_{k-1}^{(n)}$ for $k=2, \ldots, 2^{2 n}$. Furthermore, inductively, given the partition Π_{n}, the next one $\Pi_{n+1}=\left\{C_{k}^{(n+1)}: k=1,2, \ldots, 2^{2(n+1)}\right\}$, obtained by dividing each square $C_{k}^{(n)}$ into four new squares $C_{k, i}^{(n)}, i=1, \ldots, 4$, is arranged by defining

$$
C_{4(k-1)+i}^{(n+1)}=C_{k, i}^{(n)}, k=1,2, \ldots, 2^{2 n}, i=1, \ldots, 4 .
$$

From the properties a), b), the $2^{2 n}$ subintervals

$$
\begin{aligned}
I_{1}^{(n)} & =\left[0, \mu\left(C_{1}^{(n)}\right)\right) \\
I_{2}^{(n)} & =\left[\mu\left(C_{1}^{(n)}\right), \mu\left(C_{1}^{(n)}\right)+\mu\left(C_{2}^{(n)}\right)\right) \\
\quad & \\
I_{2^{2 n}}^{(n)} & =\left[\mu\left(C_{1}^{(n)}\right)+\mu\left(C_{2}^{(n)}\right)+\cdots+\mu\left(C_{2^{2 n}-1}^{(n)}\right), 1\right]
\end{aligned}
$$

define a partition of I.
Given n, for each $k=1,2, \ldots, 2^{2 n}$, we distinguish an arbitray interior point of each square $C_{k}^{(n)}$, for instance its center, noted $P_{k}^{(n)}=\left(x_{k}^{(n)}, y_{k}^{(n)}\right)$, and define on I the functions

$$
\begin{array}{ll}
h_{1}^{(n)}(t)=x_{k}^{(n)}, & t \in I_{k}^{(n)}, \\
h_{2}^{(n)}(t)=y_{k}^{(n)}, & t \in I_{k}^{(n)} .
\end{array}
$$

Observe that, for each $n, h_{1}^{(n)}, h_{2}^{(n)}$ are, possibly, discontinuous at the points $t_{j}=\sum_{i=1}^{j} \mu\left(C_{i}^{(n)}\right.$, $j=1,2, \ldots, 2^{2 n}-1$. However, the sequences $\left(h_{1}^{(n)}\right)_{n},\left(h_{2}^{(n)}\right)_{n}$ are uniformly convergent to two continuous functions, say $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}$, respectively (consult [5]). Therefore one defines a curve $\gamma^{\prime}=\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$ which coincides with $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$, if we take into account that, for each n, the mapping $\gamma^{\prime(n)}(t)=\left(h_{1}^{(n)}(t), h_{2}^{(n)}(t)\right)$, $t \in I$, coincide with $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right), t \in I$, at least at $2^{2 n}$ values for t, corresponding to the $2^{2 n}$ centers of the subsquares $C_{k}^{(n)}$ of the partition Π_{n}.

To eliminate the discontinuity of $h_{1}^{(n)}, h_{2}^{(n)}$, we proceed to make a linear interpolation. Hence, consider a partition of I formed by the subintervals

$$
\begin{aligned}
J_{1}^{(n)} & =\left[0, \frac{2^{2 n}-1}{2^{2 n}} \mu\left(C_{1}^{(n)}\right]\right. \\
K_{1}^{(n)} & =\left[\frac{2^{2 n}-1}{2^{2 n}} \mu\left(C_{1}^{(n)}\right), \mu\left(C_{1}^{(n)}\right)+\frac{1}{2^{2 n}} \mu\left(C_{2}^{(n)}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
J_{2}^{(n)}= & {\left[\mu\left(C_{1}^{(n)}\right)+\frac{1}{2^{2 n}} \mu\left(C_{2}^{(n)}\right), \mu\left(C_{1}^{(n)}\right)+\frac{2^{2 n}-1}{2^{2 n}} \mu\left(C_{2}^{(n)}\right)\right] } \\
K_{2}^{(n)}= & {\left[\mu\left(C_{1}^{(n)}\right)+\frac{2^{2 n}-1}{2^{2 n}} \mu\left(C_{2}^{(n)}\right), \mu\left(C_{1}^{(n)}\right)+\mu\left(C_{2}^{(n)}\right)+\frac{1}{2^{2 n}} \mu\left(C_{3}^{(n)}\right)\right], } \\
\vdots & \\
K_{2^{2 n}-1}^{(n)}= & {\left[\mu\left(C_{1}^{(n)}\right)+\mu\left(C_{2}^{(n)}\right)+\cdots+\frac{2^{2 n}-1}{2^{2 n}} \mu\left(C_{2^{2 n}-1}^{(n)}\right),\right.} \\
& \left.\mu\left(C_{1}^{(n)}\right)+\mu\left(C_{2}^{(n)}\right)+\cdots+\mu\left(C_{2^{2 n}-1}^{(n)}\right)+\frac{1}{2^{2 n}} \mu\left(C_{\left.2^{2 n}\right)}^{(n)}\right)\right] \\
J_{2^{2 n}}^{(n)}= & {\left[\mu\left(C_{1}^{(n)}\right)+\mu\left(C_{2}^{(n)}\right)+\cdots+\mu\left(C_{2^{2 n}-1}^{(n)}\right)+\frac{1}{2^{2 n}} \mu\left(C_{2^{2 n}}^{(n)}\right), 1\right] . }
\end{aligned}
$$

and define, for each n, the new functions $f_{1}^{(n)}, f_{2}^{(n)}$ by

$$
\begin{array}{ll}
f_{1}^{(n)}(t)=h_{1}^{(n)}(t) & \text { if } t \in J_{k}^{(n)}, k=1,2, \ldots, 2^{2 n} \\
f_{1}^{(n)}(t)=x_{j}^{(n)}+\frac{x_{j+1}^{(n)}-x_{j}^{(n)}}{s_{j}^{(n)}-r_{j}^{(n)}}\left(t-r_{j}^{(n)}\right) & \text { if } t \in K_{j}^{(n)}, j=1,2, \ldots, 2^{2 n}-1
\end{array}
$$

and

$$
\begin{array}{ll}
f_{2}^{(n)}(t)=h_{2}^{(n)}(t) & \text { if } t \in J_{k}^{(n)}, k=1,2, \ldots, 2^{2 n} \\
f_{2}^{(n)}(t)=y_{j}^{(n)}+\frac{y_{j+1}^{(n)}-y_{j}^{(n)}}{s_{j}^{(n)}-r_{j}^{(n)}}\left(t-r_{j}^{(n)}\right) & \text { if } t \in K_{j}^{(n)}, j=1,2, \ldots, 2^{2 n}-1
\end{array}
$$

where $r_{j}^{(n)}, s_{j}^{(n)}$ are the end-points of $K_{j}^{(n)}$.
From the uniform convergence of $\left(h_{1}^{(n)}\right)_{n},\left(h_{2}^{(n)}\right)_{n}$ to γ_{1}, γ_{2}, it follows easily that the sequences $\left(f_{1}^{(n)}\right)_{n},\left(f_{2}^{(n)}\right)_{n}$ also converge uniformly to γ_{1}, γ_{2}, respectively, if we take into account that $J_{k}^{(n)} \subset I_{k}^{(n)}$, for all $k=1,2, \ldots, 2^{2 n}$, and $K_{j}^{(n)}$ is a closed neighbourhood of t_{j} of length $\frac{1}{2^{2 n}}\left(\mu\left(C_{j}^{(n)}\right)+\mu\left(C_{j+1}^{(n)}\right)\right)$ for all $j=1,2, \ldots, 2^{2 n}-1$. Therefore, by defining, for each $n, \gamma^{(n)}=\left(f_{1}^{(n)}, f_{2}^{(n)}\right)$ we have definitely a sequence of curves satisfying (2). Now the proof is complete.

Suppose we apply this last theorem, thus the following is immediate.
Corollary 1 Let $\gamma^{(n)}=\left(\gamma_{1}^{(n)}, \gamma_{2}^{(n)}\right)$ be an arbitrary sequence of cartesian (for all n is $\gamma_{1}^{(n)}=I_{d}$, the identity) α-dense curves in I^{2} with densities $\alpha_{n} \rightarrow 0$. Thus $\left(\gamma^{(n)}\right)_{n}$ has no uniform limit.

Acknowledgement. This article is dedicated to Yves Cherruault for his 65 st birthday

References

[1] Choquet, G. (1971). Cours D'Analyse-Topologie, Masson et Cie, Paris.
[2] Kelley, J. L. (1955). General Topology, D. Van Nostrand, New York.
[3] Kharazishvili, A. B. (2000). Strange Functions in Real Analysis, Dekker, New York.
[4] Mora, G. and Cherruault, Y. (1997). Characterization and Generation of α-Dense Curves, Computers Math. Applic. 33, 9, 83-91.
[5] Mora, G. and Mira, J. A. (2001). A characterization of space-filling curves, Rev. R. Acad. Cien. Serie A. Mat., 96(1), 45-54.
[6] Natanson, I. P. (1964). Theory of Functions of a Real Variable, Vol. I, II, Frederick Ungar Publishing Co., New York.
[7] Sagan, H., (1994). Space-Filling Curves, Springer-Verlag, New York.
[8] Tricot, C. (1995). Curves and Fractal Dimension, Springer-Verlag, New York.
G. Mora

Department of Mathematical Analysis University of Alicante,
03080-Alicante (SPAIN)
gaspar.mora@ua.es

[^0]: Presentado por Jiménez Guerra el 4 de mayo de 2005.
 Recibido: 4 de mayo de 2005. Aceptado: 1 de junio de 2005.
 Palabras clave / Keywords: alpha-dense curves, Peano curves
 Mathematics Subject Classifications: 14H50, 28A12
 (C) 2005 Real Academia de Ciencias, España.

