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The structure of nonseparable Banach spaces with
uncountable unconditional bases

Carlos Finol and Marek Wójtowicz

Abstract. Let X be a Banach space with an uncountable unconditional Schauder basis, and let Y be an
arbitrary nonseparable subspace of X . If X contains no isomorphic copy of `1(J) with J uncountable
then (1) the density of Y and the weak*-density of Y ∗ are equal, and (2) the unit ball of X∗ is weak*
sequentially compact. Moreover, (1) implies that Y contains large subsets consisting of pairwise disjoint
elements, and a similar property holds for uncountable unconditional basic sets in X .

La estructura de los espacios de Banach no separables que tienen bases
incondicionales no numerables

Resumen. Sea X un espacio de Banach con una base incondicional de Schauder no numerable, y
sea Y un subespacio arbitrario no separable de X . Si X no contiene una copia isomorfa de `1(J) con
J no numerable entonces (1) la densidad de Y y la débil*-densidad de Y ∗ son iguales, y (2) la bola
unidad de X∗ es débil* sucesionalmente compacta. Además, (1) implica que Y contiene subconjuntos
grandes formados por elementos disjuntos dos a dos, y una propiedad similar se verifica para las bases
incondicionales no numerables de X .

1 Introduction
Throughout this paper X will denote a Banach space with an unconditional basis (xγ)γ∈Γ, where Γ is an
uncountable set, and Y will be its nonseparable closed linear subspace. The best known examples of such
spacesX are `p(Γ), 1 ≤ p <∞, and c0(Γ) (another examples are addressed in [10, 15, 20, 24]). By `1(ℵ1)
we denote the space `1(Γ) with card(Γ) = ℵ1.

This paper deals with the structure of nonseparable subspaces of X whose study is motivated by the
result below, included implicitly in the proofs of two results by Rodriguez-Salinas ([15, Proposition 2]) and
Granero ([5, Proposition 1]):

(RSG) Let Y be a nonseparable subspace of X with χ(Y ) = χ∗(Y ∗). Then Y contains a set of the cardi-
nality of χ(Y ) consisting of elements of norm one with pairwise disjoint supports.

(Here and in what follows χ(Y ) and χ∗(Y ∗), respectively, denote the density and weak*-density character
of Y and Y ∗, respectively, whose definition is given below.) Since the condition χ(Y ) = χ∗(Y ∗) holds
true for Y reflexive or weakly compactly generated, the above result gives almost immediately a description
of complemented subspaces of `p(Γ), with 1 < p < ∞, and c0(Γ) (see [15, 5]), generalizing Pełczyński’s
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classical theorem asserting that every infinite dimensional complemented subspace of `p, with 1 ≤ p ≤ ∞,
(respectively, c0) is isomorphic to `p (respectively, c0) (see [13, Theorem 2.a.3]). One should mention here
that in 1966 a similar result for `1(Γ) was obtained by Köthe [12].

In the next section we give a characterization of those spaces X where the condition χ(Y ) = χ∗(Y ∗)
holds for all subspaces Y of X (Theorem 1); this appears to be equivalent to the non-containment (by X)
of an isomorphic copy of the space `1(ℵ1) or, under the continuum hypothesis, to the weak* sequential
compactness of the unit ball of X∗ (Proposition 1). The latter equivalence relates to the problem posed in
1977 by Rosenthal [17]: Suppose that the dual unit ball BW∗ of a Banach space W is not weak* sequen-
tially compact; can we then conclude that W contains a subspace isomorphic to `1?, which was answered
in 1978 in the negative by Hagler and Odell [7] (cf. [6, 11]). Moreover, in 1977 Haydon constructed
a Banach space Z (of the type C(K)) not containing isomorphic copies of `1(ℵ1) such that BZ∗ is not
weak* sequentially compact [9]. This shows that our equivalence does depend on the structure of the given
Banach space (for other results concerning the embeddability of `1(ℵ1) into Banach spaces see [19] and
the references given therein). The characterization given in Theorem 1 allows us to generalize, by (RSG),
the cited results of Rodriguez-Salinas and Granero (Theorem 2); it also shows that if X contais no copy
of `1(ℵ1) then Y , containing large (unconditional) basic set consisting of pairwise disjoint elements, has
“big” unconditional structure (see the comment in ([4, p. 396]) on atomic Banach lattices). In Section 3,
complementing the previous theorems, we show that every uncountable unconditional basic set (yj)j∈J

in X contains a subset of the same cardinality as J consisting of pairwise disjoint elements provided that
(yj)j∈J has no uncountable subsets of the `1-type (Theorem 3).

The restrictive role of `1(J), with J uncountable, in Theorems 1, 2, and 3 explains the following result
obtained in 1975 by Troyanski [21]

(T ) Let the basis (xγ)γ∈Γ of X be symmetric. If X has a subspace isomorphic to `1(J) [resp., c0(J)] for
some uncountable set J , then the basis is equivalemt to the natural basis of `1(Γ) [resp., c0(Γ)],

and generalized in 1988 by Drewnowski [3] who showed that if the basis in (T ) is merely unconditional
then it contains “large” subbases of the `1-[resp., c0-]type. Therefore, in the context of Troyanski’s result,
the last section is devoted only to the structure of nonseparable subspaces of X = `1(Γ), and the basic tool
we use in our studies is the notion of ε-disjoint systems. In Theorem 4 we prove the existence, for every
ε > 0, of such systems in X , which allows one to strengthen the above-cited result of Köthe (Corollary 6)
and to give its shorter proof (Corollary 7).

Our terminology and notation is that of [13] and [20]. All subspaces are assumed to be linear and closed.
Recall that a family (xγ)γ∈Γ in X is said to be an (unconditional) basis of X if, for every x ∈ X there is a
unique family of scalars (tγ)γ∈Γ such that x =

∑
γ∈Γ tγxγ (unconditional convergence). By (x∗γ)γ∈Γ we

denote the dual family, biorthogonal to (xγ)γ∈Γ; then

x =
∑
γ∈Γ

x∗γ(x)xγ for every x ∈ X, (1)

and the support of x ∈ X is defined as supp(x) := {γ ∈ Γ : x∗γ(x) 6= 0}. We say that two elements
u, v ∈ X are disjoint if their supports, supp(u) and supp(v), are disjoint subsets of Γ. From (1) it follows
that every element x∗ ∈ X∗ has the representation

x∗ =
∑
γ∈Γ

x∗(xγ)x∗γ (weak*-convergence), (2)

which allows one to define the support of x∗ as supp(x∗) := {γ ∈ Γ : x∗(xγ) 6= 0}. The basis (xγ)γ∈Γ

is called symmetric if, for every sequence (γn) in Γ the basic sequence (xγn) is symmetric in the usual
sense ([13, p. 113]). We say that a family (vj)j∈J is a basic set in X if it is a basis of the closed linear
span of this family (denoted by [vj ]j∈J ). Two basic sets (uj)j∈J , (vj)j∈J in a Banach space W are said
to be equivalent if the linear operator G : [uj ]j∈J → [vj ]j∈J of the form G(uj) = vj is an isomorphism.
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An isomorphism T between two Banach spaces V and W is said to be an (1 + ε)-isometry provided that
‖T‖ ‖T−1‖ ≤ 1 + ε.

A subspace W0 of a Banach space W is said to be complemented [k-complemented for some k ≥ 1,
resp.] in W if it is the range of a continuous projection P [with ‖P‖ = k, resp.]. If F is a nonempty subset
of Γ, then XF denotes the subspace of X consisting of the elements with supports included in F , and PF

denotes the continuous projection fromX ontoXF of the form PFx = x·1F , where 1F is the characteristic
function of F . Notice that if X = `p(Γ), then the spaces XF and `p(F ) are isometric. From (2) it easily
follows that for every x∗ ∈ X∗ the element x∗F :=

∑
γ∈F x

∗(xγ)x∗γ (weak*-convergence) is well defined,

and hence the operator P̂F onX∗ of the form P̂F (x∗) := x∗F is a continuous projection (in fact, P̂F = P ∗F ).
If Y is a subspace of X then SY denotes its unit sphere, supp(Y ) stands for the support of Y (=

∪y∈Y supp(y)), and χ(Y ) [resp., χ∗(Y ∗)] denotes the density character of Y [resp., the weak*-density
character of Y ∗], i.e., the smallest cardinal α such that Y [resp., Y ∗] contains a subset A with card(A) = α
and such that A is linearly norm-dense in Y [resp., weak*-dense in Y ∗]. Recall that χ∗(Y ∗) equals also
min{card(F) : F ⊂ Y ∗ and F is total over Y }, and that χ∗(Y ∗) ≤ χ(Y ) ([20, p. 599]).

2 The weak* cardinality property and weak* sequential com-
pactness

Following Vašak [22], we say that a Banach space W has the weak* cardinality property (W*CP, for
short) if, for every subspace V of W we have χ(V ) = χ∗(V ∗). In [22, Corollary 2] Vašak proved that
every weakly countably determined (in particular, every weakly compactly generated (WCG)) Banach space
possesses this property. In the theorem below we give a characterization of the class of those X’s which
have the W*CP.

Theorem 1 Let X be a Banach space with an uncountable unconditional basis (xγ)γ∈Γ. Then X has the
W*CP if and only if one of the following equivalent conditions is satisfied:

(i) X contains no isomorphic copy of the space `1(ℵ1).

(ii) No subbasis (xγ)γ∈J , with card(J) = ℵ1, is equivalent to the standard basis of `1(ℵ1).

(iii) Every element of X∗ has countable support.

PROOF. (i) ⇒ (ii). Obvious.
non-(iii) ⇒ non-(ii). Let J := supp(x∗) be uncountable. From (2) it follows there exist an uncountable

subset J0 of J and ε0 > 0 such that |x∗(xγ)| > ε0 for all γ ∈ J0, whence we obtain (since the basis
(xγ)γ∈Γ is unconditional) that the series

∑
γ∈J0

x∗γ(x) converges unconditionally for every x ∈ X and
defines an element x∗0 of X∗. Put W := [xγ ]γ∈J0 . For every w ∈W of the form w =

∑
γ∈J0

tγxγ we thus
have x∗0(w) =

∑
γ∈J0

tγ (unconditional convergence), and so
∑

γ∈J0
|tγ | <∞. It follows that the basis of

W and the standard basis of `1(J) are equivalent, and hence W is an isomorphic copy of `1(J0), with J0

uncountable.
(iii) implies X has W*CP. We may assume that a subspace Y of X is nonseparable. Let Λ denote the

class {F ⊂ X∗ : F is total over Y }. By the Hahn-Banach theorem, χ∗(Y ∗) = min{card(F) : F ∈ Λ} =
card(F0) for some F0 ∈ Λ. Now we define two subsets of Γ:

A =
⋃

x∗∈F0

supp(x∗), ΓY = supp(Y ).

From (iii) we obtain that
card(A) ≤ card(F0) = χ∗(Y ∗), (3)
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and from the defintion of the sets A and ΓY we get x∗(PΓY \Ay) = 0, and hence x∗(PAy) = x∗(y) for
every y ∈ Y and x∗ ∈ F0. It follows that the set F0 is total over PA(Y ); thus the operator PA restricted to
Y is injective which, together with (3), gives

χ(Y ) ≤ card(Y ) = card(PA(Y )) = card(ΓY ∩A) ≤ χ∗(Y ∗).

Finally, χ(Y ) = χ∗(Y ∗), as claimed.
If X has W*CP then (i) holds. Assume thatX contains an isomorphic copy of `1(J) with card(J) = ℵ1.

The remaining part of the proof depends on the observation that if W is a separable Banach space then
for every infinite dimensional subspace Y of W ∗ we have χ∗(Y ∗) = ℵ0, which we apply to the space
W = C[0, 1] whose dual contains Y := `1([0, 1]). �

As a by-product of the equivalence of (i) and (ii) in Theorem 1 we obtain the Troyanski’s result (T ) (see
Introduction) which immediately gives

Corollary 1 Let X be a Banach space with an uncountable symmetric basis (xγ)γ∈Γ. Then X has the
W*CP if and only if the basis is not equivalent to the standard basis of `1(Γ).

The above Corollary applies to “big” Orlicz spaces hϕ(Γ), where ϕ is an Orlicz function (for exact
definition of hϕ(Γ) see e.g. [10]), giving that hϕ(Γ) has the W*CP if and only if ϕ is not equivalent to the
linear function ψ(t) = t at 0.

The next theorem is an immediate consequence of Theorem 1 and the result (RSG); it applies to the
spaces hϕ(Γ), in particular to `p(Γ), 1 < p < ∞, and c0(Γ) (cf. [5, 15]). It also complements a similar
result obtained in [15, Proposition 2] for Y reflexive.

Theorem 2 If X contains no isomorphic copies of `1(ℵ1), then every nonseparable subspace Y of X
contains a set of the cardinality of χ(Y ) consisting of pairwise disjoint elements of norm one.

The proposition below deals with weak* sequential compactness of the dual unit ball of X∗. The proof
of the first implication is a discrete version of the proof given in 1968 by Lozanovskii [14] for a class of
Banach lattices (cf. [23, Theorem 4.4]), and is included here for the convenience of the reader who is
not familiar with the theory of Banach lattices (one should also note that the original proof works for real
Banach lattices).

Proposition 1 Let X be a Banach space with an uncountable unconditional basis. Then statement (iii)
in Theorem 1 implies that

(iv) the dual unit ball BX∗ of X∗ is weak* sequentially compact.

Moreover, under the continuum hypothesis (CH) statements (i) and (iv) are equivalent.

PROOF. (iii)⇒ (iv) Let (x∗n) be a sequence in BX∗ , and put V := {x∗ ∈ X∗ : supp(x∗) ⊂ A}, where
A =

⋃∞
n=1 supp(x∗n). We obviously have V = P̂A(X∗), and x∗n ∈ V for all n’s. We set Y := PA(X).

SinceA is countable, the space Y is separable. It is easy to check that the annihilator Y ⊥ of Y inX∗ equals
P̂Γ\A(X∗), and hence Y ∗ can be identified with P̂A(X∗)(= V ). The separability of Y implies that the
ball BY ∗ is σ(Y ∗, Y )-sequentially compact, and using the above identification of Y ∗ and V , we can find a
σ(X∗, X)-convergent subsequence (x∗nk

) of (x∗n).
(iv)⇒(i) (under CH; cf [23, pp. 78–79]). It is known that condition (iv) implies X cannot contain

isomorphic copies of `1(R), where R denotes the set of all real numbers (see e.g. [1, p. 226]), and hence,
under CH, the space X cannot contain any copy of `1(ℵ1). �

From Corollary 1 and Proposition 1 we immediately obtain

Corollary 2 Let the basis (xγ)γ∈Γ ofX be symmetric. Under the continuum hypothesis, the dual unit ball
of X is weak* sequentially compact if and only if the basis is not equivalent to the standard basis of `1(Γ).
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3 Uncountable unconditional basic sets in X

In the theorem below we show that large unconditional basic sets in X have “nice” structure (the conclu-
sion (i) below was obtained in [15, Proposition 6] under more restrictive assumption); its application is
given in three corollaries following it.

Theorem 3 Let X be a Banach space with an uncountable unconditional basis, and let (yj)j∈J be an
uncountable unconditional normalized basic set in X . Then the following alternative holds:

(i) There is a subset J0 of J with card(J0) = card(J) such that the elements of (yj)j∈J0 are pairwise
disjoint.

(ii) For every infinite cardinal number α0 < card(J) there exists a subset J0 of J with card(J0) > α0

such that (yj)j∈J0 is equivalent to the unit vector basis of `1(J0).

In particular, the conclusion of part (i) holds if (yj)j∈J is equivalent to the unit vector basis of c0(J) or
`p(J), with 1 < p <∞.

We would like to comment on the above property (ii) in Theorem 3. One should note that it is impossi-
ble, in general, to choose a pairwise disjoint subsequence even from a sequence (yn) in X equivalent to the
unit vector basis of `1: it is enough to take any γ0 ∈ Γ \

⋃∞
n=1 supp(yn) and consider the sequence (y′n),

equivalent to (yn), of the form y′n = yn + xγ0 , n = 1, 2, . . .. On the other hand, it is known that a Banach
space with an unconditional Schauder basis contains a copy of `1 iff it contains a normalized block basic
sequence of the basis equivalent to the unit vector basis of `1 (see e.g. [13, Theorem 1.c.9]).

The proof of Theorem 3 depends essentially on Lemma 1 below and it is a modification of the arguments
used in the proof of [2, Lemma 3]. To shorten the text we say that a family (yj)j∈J of non-null elements of a
Banach space W is totally non-`1(α), where α is an infinite cardinal number with α ≤ card(J) (TN`1(α),
for short) if, for every subset C of J with card(C) = α there is a family (tj)j∈C of scalars such that the
series

∑
j∈C tjyj converges unconditionally, but

∑
j∈C |tj | = ∞. (For α = ℵ0 this notion coincides with

the notion of a totally non-`1 family considered by Drewnowski in [2].) If (yj)j∈J is a basic set in X then
it is totally non-`1(α) whenever, for every subset C of J with card(C) = α, the basic set (yj)j∈C is not
equivalent to the standard basis of `1(C). We have that if α1 < α2, then TN`1(α1) implies TN`1(α2);
thus, if (yj)j∈J is totally non-`1 then it is TN`1(α) for every infinite α ≤ card(J).

Lemma 1 LetX be a Banach space with an uncountable unconditional basis, let α0 be an infinite cardinal
number, and let J be a set with card(J) > α0. If, for every cardinal α with α0 < α ≤ card(J) a family
(yj)j∈J of non-null elements of X is TN`1(α), then there exists a subset J0 of J with card(J0) = card(J)
such that the elements of the subfamily (yj)j∈J0 are pairwise disjoint.

PROOF. It is an immediate consequence of the following combinatorial fact, the proof of which is similar
to the proof of [2, Lemma 2] and therefore omitted:

Let J be an uncountable set, and let m be an infinite cardinal number with m < card(J). Let
(Sj)j∈J be a family of subsets of a set Γ such that:

(a) for every j ∈ J we have card(Sj) ≤ m, and

(b) for every γ ∈ Γ we have card{j ∈ J : γ ∈ Sj} ≤ m.

Then there exists a subset J0 of J with card(J0) = card(J) such that the elements of the family
(Sj)j∈J0 are pairwise disjoint. �

THE PROOF OF THEOREM 3. Assume condition (ii) is false. Then (yj)j∈J is TN`1(α) for all cardinal
numbers α with α0 < α ≤ card(J). Now we apply Lemma 1. �
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The two below corollaries of Theorem 3 show that uncountable unconditional basic sets in the spaces
`p(Γ) and c0(Γ) contain long symmetric subsets. (One should note here that subspaces with symmetric
uncountable bases in Orlicz spaces `ϕ(Γ) were described by Rodriguez-Salinas [16]; see also [10].)

The first corollary is now obvious (the case X = c0(Γ) and X = `p(Γ), with 1 < p <∞, was studied
in [5] and [15], respectively).

Corollary 3 Let X be a Banach space with an uncountable unconditional basis, and let (yj)j∈J be an
uncountable unconditional normalized basic set in X . If X contains no isomorphic copy of the space
`1(ℵ1), then there exists a subset J0 of J with card(J0) = card(J) such that the elements of (yj)j∈J0 are
pairwise disjoint.

Each of the either cases of Theorem 3 proves the next corollary.

Corollary 4 Let (yj)j∈J be an uncountable unconditional normalized basic set in `1(Γ). Then for every
infinite cardinal number α0 < card(J) there exists a subset J0 of J with α0 < card(J0) and such that the
basic subset (yj)j∈J0 is equivalent to the natural symmetric basis of `1(J0).

It is known that every symmetric basic sequence in the sequence space `p (or c0) is equivalent to the
unit vector basis of the given space [13, Remark following Proposition 3.b.5]. From Corollaries 3 and 4 we
immediately obtain a similar property for the spaces `p(Γ) and c0(Γ).

Corollary 5 Let X(Γ) denote the space `p(Γ), 1 ≤ p <∞, or c0(Γ). Every uncountable, normalized and
symmetric basic set (yj)j∈J in X(Γ) is equivalent to the natural basis of X(J).

4 ε-disjoint systems in X

The main result of this section is motivated by the remark following Theorem 3 (see also the proof of
Theorem 1 in [3]). Here we show that the structure of infinite dimensional subspaces of X can also be
studied effectively by the use of “almost” disjoint elements.

Let ε ∈ [0, 1), and let Y be a subspace of X . We say that two elements y1, y2 ∈ X \ {0} are ε-disjoint
if there exist disjoint elements u1, u2 ∈ X \{0} such that ‖xi−ui‖ ≤ ε, i = 1, 2. A system (yj)j∈J ⊂ SY

is said to be ε-disjoint provided that there exists a system (uj)j∈J of pairwise disjoint elements of X with
‖yj −uj‖ ≤ ε for all j ∈ J . A concrete ε-disjoint system (yj)j∈J with the corresponding pairwise disjoint
system (uj)j∈J will be denoted by (yj , uj)j∈J .

Remark 1 It is obvious that every 0-disjoint system is pairwise disjoint.

Remark 2 From inequality min{|a| + |b|, |c|} ≤ min{|a|, |c|} + min{|b|, |c|}, for all scalars a, b, c (see
[18, Corollary, p. 53]), we easily obtain that min{|a|, |b|} ≤ 2|a − u| + |b − v| + min{|u|, |v|} for all
a, b, u, v. Hence, if the elements yi =

∑
γ∈Γ t

(i)
γ xγ , i = 1, 2, are ε-disjoint, with corresponding disjoint

elements ui =
∑

γ∈Γ s
(i)
γ xγ , i = 1, 2, then ‖

∑
γ∈Γ min{|tγ |, |sγ |}xγ‖ ≤ 2K‖y1 − u1‖+K‖y2 − u2‖ ≤

3Kε, where K is the basis constant. It follows that the supports of two ε-disjoint elements intersect at
“norm-min-small” subsets.

Remark 3 Let ε ∈ (0, 1/2), and let a system (yj , uj)j∈J be ε-disjoint in `1(Γ). Then (yj)j∈J is equivalent
to the standard basis of `1(J), with ‖uj‖ ∈ (1− ε, 1 + ε) for all j’s, and similarly for (yj)j∈J :∑

j∈J

|tj | ≥ ‖
∑
j∈J

tjyj‖ ≥ (1− 2ε)
∑
j∈J

|tj |,

for all (tj)j∈J ∈ `1(J). Proving as in [13, Proposition 1.a.9 and Theorem 2.a.3], we obtain that for
ε ∈ (0,

√
2− 1), the spaces [yj ]j∈J and [uj ]j∈J are (1+ ε)-isometric and δ-complemented in `1(Γ), where

δ ≤ 1 + 2ε
1−2ε−ε2 .
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The main result of this section reads as follows.

Theorem 4 Let Y be an infinite dimensional subspace of X . Then for every ε ∈ (0, 1) the space Y
contains an ε-disjoint system (yj , uj)j∈J with card(J) = χ(Y ) and such that supp(uj) ⊂ supp(yj) for
all j ∈ J .

PROOF. Put F = supp(Y ). We first consider the case χ(Y ) = ℵ0. Then F is countable, and hence Y
is a subspace of the spaceXF with the countable unconditional basis (xγ)γ∈F . By [13, Proposition 1.a.11],
Y contains an ε-disjoint countable infinite system (yn, un)n≥1 with supp(un) ⊂ supp(yn) for all n’s.

Now assume χ(Y ) > ℵ0, and let E be the class of all ε-disjoint systems (yj , vj)j∈J with card(J) ≥ ℵ0

and supp(uj) ⊂ supp(yj) for all j ∈ J . By the previous case, E 6= ∅. We introduce the following partial
ordering in E : (y′j , u

′
j)j∈J � (y′′l , u

′′
l )l∈L iff J ⊂ L and y′j = y′′j and u′j = u′′j for all j ∈ J , and let

(yM
j , uM

j )j∈JM
be a maximal element in E . We define the cardinal number λM := card(JM ), and we put

IM :=
⋃

j∈JM
supp(uM

j ). Then we have

λM = card(IM ) ≤ χ(Y ). (4)

We claim we have two equalities in (4). Assume this is not so, i.e., λM < χ(Y ). Then we must have:

for every η > 0 there is yη ∈ SY with ‖PIM
yη‖ < η (*)

(in the oposite case the number infy∈SY
‖PIM

y‖ were positive, and hence the operator PIM
restricted to Y

would be injective; this and (4) would then imply that χ(Y ) ≤ card(Y ) = card(PIM
(Y )) = card(F ∩

IM ) ≤ λM < χ(Y ), a contradiction). Now choose yη ∈ SY fulfilling (*) with η = ε, and put wη =
PF\IM

yη; we see that supp(wη) ⊂ supp(yη). Next, from (*) we obtain ‖yη − wη‖ < ε, and since
supp(wη) ∩ IM = ∅, we also have that for every j ∈ JM the elements uη and uj are disjoint. It follows
that for the set Jη := JM ∪ {η} the system (yj , uj)j∈Jη is ε-disjoint, and it strictly dominates (yj , uj)j∈J .
This contradiction proves our claim and finishes the proof. �

From Theorem 4 and Remark 3 we get

Corollary 6 Let Y be a nonseparable subspace of `1(Γ). Then for every ε ∈ (0,
√

2 − 1) the space
Y contains an (1 + ε)-isometric and δ-complemented copy of `1(J), where card(J) = χ(Y ) and δ ≤
1 + 2ε

1−2ε−ε2 .

Consequently, from Corollary 6 and Pełczyński’s decomposition method we obtain Köthe’s result ([12,
Theorem (6), p. 187]):

Corollary 7 Every complemented subspace of `1(Γ) is isomorphic to `1(J) for some J ⊂ Γ.
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