
RACSAM
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 99 (1), 2005, pp. 1–13
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Regularity, barrelledness and dual strong unions in locally
convex spaces

B. Tsirulnikov

Abstract. Let Fn(k′,0) = ∪{Fm : m ∈ N} be a dual strong union of E. In Section 3 we study
the regularity properties of bounded sets of Fn(k′,0). In Section 4 we consider the duality 〈E, Fn(k′,0)〉
and prove that Fn(k′,0) with its Mackey, resp. Arens, resp. Schwartz, topology is an inductive limit of a
Mackey, resp. Arens, resp. Schwartz, countable spectrum. In Section 5 we impose weak barrelledness
conditions on Fn(k′,0) and investigate their connection to the associated barrelled topology of E.

Regularidad, tonelación y uniones de duales fuertes en espacios
localmente convexos

Resumen. Sea Fn(k′,0) = ∪{Fm : m ∈ N} una unión de duales fuertes de E. En la sección 3 estudia-
mos las propiedades de regularidad de los conjuntos acotados de Fn(k′,0). En la sección 4 consideramos
la dualidad 〈E, Fn(k′,0)〉 y demostramos que Fn(k′,0) con su topologı́a Mackey, Arens, o Schwartz,
respectivamente es un lı́mite inductivo de espectro numerable de Mackey, Arens, Schwartz, respecti-
vamente. En la sección 5 imponemos condiciones de tonelación débiles en Fn(k′,0) e investigamos su
conexión con la topologı́a tonelada asociada de E.

1 Introduction

Let E be a nonbarrelled locally convex space. A generalized dual strong sequence of E is an increasing
sequence of bidual enlargements of E′, directed upward the dual of the barrelled topology associated to
E (Definition 1). The concept of a generalized dual strong sequence was introduced in [34] and [35].
It includes two basic elements: dual strong sequences and their unions. In this article we investigate the
duality connection between a nonbarrelled space and its dual strong union. We focus our attention to general
nonbarrelled spaces, continuing the comprehensive overall approach of [34] and [35].

Albeit being generic in the sense that it applies to any nonbarrelled space, the concept of a generalized
dual strong sequence seems to be of great promise in the application-oriented research. We prove that a
dual strong union is a resource of naturally arising “nice” properties, such as compactness, localization,
regularity (Propositions 1, 2, 3, 5, Theorems 1, 2, 3). The rich structure of a dual strong union allows the
generalized limits/mixed topologies approach, as well as the use of homological methods (see [2, 11, 12,
14, 23, 24, 39] for bibliography and insights). Representations of a dual strong union and its bounded disks
used in this article resemble the generalized limits approach (Definitions 2 and 3).

The duality connection between a nonbarrelled space E and its dual strong union is perceptive to bar-
relledness, that is to say, a very weak barrelledness condition imposed on E by a dual strong union evokes
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the associated barrelled topology of E (Theorem 6). It is known that weak barrelledness topologies are
difficult to reveal, unless they are Mackey or have some other distinguished features (see the enlightening
introduction and references of [20]). More than thirty years ago Buchwalter and Schmets investigated in [4]
the weak barrelled topologies on a DF -space of continuous functions, raising the question of discerning
two weak barrelledness conditions that seemed ungraspably subtle. Recently Ka̧kol, Saxon and Todd an-
swered their question by constructing a fine-grained example of two different non-Mackey weak barrelled
topologies on the space of continuous functions, compatible with the same duality ([20, Example 5.4]).

Observing the sensitivity of the dual strong union to weak barelledness, we evoke the wb-topology,
introduced by Roelcke in [25], identifying it as the strong topology, imposed on E by its dual strong union
(Definition 4, Theorem 4). Then we actualize the notion of countable barrelledness, categorizing different
weak barrellednes properties on E and investigating the conditions under which the wb-topology becomes
weakly barrelled (Definition 5, Theorem 5). As a consequence of Theorem 5, we obtain that if E is l∞-
barrelled ([22, 8.2.13]), then E equipped with its weakest wb-topology σwb(E,E′) is ℵ0-barrelled ([22,
8.2.1]). We suggest that the wb-topology is a fairly reasonable tool for identifying different weak barrelled
conditions within the same duality (Proposition 7).

Despite their elusiveness, weak barrelled topologies associated to the spaces of continuous functions
were defined and studied by Noureddine and Schmets ([21]). A thorough account of the research of the
barrelled topologies associated to the spaces of continuous functions, along with important barrelledness
criteria, can be found in [30] and [31]. A succinct guide on weak barrelledness is given in [10, p.38]. Some
results on associated barrelled topologies for general spaces are obtained in [7, 32] and [33]. A description
of barrelledness conditions is provided in [15, t.I, p.114] and [22, 4.9, 8.9]. The research on very strong
barrelledness, although located outside the scope of this article, is presented in [10] and [22, Chapter 9]. An
exceptionally concise and unique picture of regularity, localization and barrelledness is exhibited in Chapter
One of [38].

Notice that for some nonbarrelled spaces the generalized dual strong sequence is trivial (i.e. the asso-
ciated barrelled topology is reached after a finite number of bidual enlargements, as in (E,µ(E,E′ + H))
of [32], Corollary 4). Other nonbarrelled spaces appear to be quite suitable for starting the search after a
significant dual strong union (see 6.3 or 6.5 of [10] for inspiring examples). We believe that the “size” of
the gap needed between E and its associated barrelled space in order to construct a meaningful generalized
dual strong sequence, is an important research topic per se.

2 Notations and setting

All topologies considered in this article are locally convex and Hausdorff. Let (E, τ) be a vector space
over the field K of the real or complex numbers and E′, resp. E?, its topological, resp. algebraic, dual. We
denote by β(E,E′), µ(E,E′), σ(E,E′) the strong, Mackey, weak topologies on E, respectively, and by
β?(E,E′) the topology on E of uniform convergence on all strongly bounded subsets of E′.

A disk is an absolutely convex set. Given a bounded disk B, we denote by Sp B the linear hull of B.
By EB we denote the Sp B with the norm defined by the gauge of B. A bounded disk B is barrelled, resp.
Banach, if EB is barrelled, resp. a Banach space. A closed absorbing [bornivorous] disk is a [bornivorous]
barrel. We say that E is < dual > locally [quasi-] barrelled, (respectively < dual > locally [quasi-]
complete), if for any [strongly] bounded set A of E < of E′ > there exists a closed [strongly] bounded disk
B in E < in E′ >, such that A ⊆ B and EB is barrelled, (respectively a Banach space).

A locally convex topology on E is called an [infra-]Schwartz topology if for every closed equicontin-
uous disk K in E′ there is another closed equicontinuous disk M such that K is [weakly] compact in the
Banach space EM , (for a Schwartz space see [15, t.I, p. 119] or [38, p. 205]; for an infra-Schwartz space
see [5, III.3.9], or [17, p.91]). We say that (E, τfc) [(E, τwfc)] is the associated [infra-] Schwartz space of
(E, τ) if τfc [τwfc] is the finest [infra-] Schwartz topology coarser than τ , see [17], or [16, p. 62]; fc stands
for fast compact, [22, 6.1.20]. The Arens topology κ(E′, E) on E′ is the topology, formed by the polars of
the compact disks of (E, τ), [1]. Notice that if (E,µ(E,E′)) is a Fréchet space then the Arens topology
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κ(E′, E) and the associated Schwartz topology µfc(E′, E) coincide on E′, [5, III.1.10].
An increasing sequence of disks {An, n ∈ N} in a locally convex space E is called an absorbent

sequence if its union is absorbing, ([6]). It is bounded-absorbent if any bounded set of E is absorbed by
some An, (ibid.). Two well-known classics on absorbent sequences are [36] of Valdivia and the mentioned
previously [6] of De Wilde and Houet. Given an absorbent sequence {Am, m ∈ N} in (E, τ), we denote
by τ(A), [resp. µ(A),σ(A)], the finest locally convex topology on E, agreeing with τ , [resp. µ(E,E′),
σ(E,E′)], on each Am, ([14, 23, 25, 27, 38, 40]). If necessary, the sequence {Am, m ∈ N} may be
replaced by {2mAm, m ∈ N}. This replacement has no impact on τ(A), however it allows different
representations of the base of 0-neighborhoods of τ(A), [25, Lemma 1]. The reader is referred to [22, 8.1,
8.5, 8.9] for a thorough review on the topology τ(A), including references and credits.

An inductive spectrum is a family {(Ei, ηi) : i ∈ I} of ordered by inclusion vector subspaces Ei of
E, equipped with a topology ηi and with continuous inclusion maps (Ek, ηk) → (Ej , ηj), k ≤ j. For
E = ∪{Ei : i ∈ I}, the inductive limit (E, η) = ind lim{(Ei, ηi) : i ∈ I} is the finest locally convex
topology on E relative to which the maps (Ei, ηi) → E are continuous. A comprehensive information
on inductive limits can be found in [2, 11, 15, 22, 38, 39]. The definitions below are confined to our
needs. We say that (E, η) = ind lim{(En, ηn) : n ∈ N} is strict if ηj induces ηi on Ei, i ≤ j.
A strict countable inductive limit is hyperstrict, if En is closed in En+1 for every n ∈ N, [15, t. 1,
p. 125]. A bounded set B of (E, η) = ind lim{{(En, ηn) : n ∈ I}} is regular if there exists n =
n(B) ∈ N such that B is contained and bounded in (En, ηn) ([38, p. 163]). It is α-regular if there
exists n = n(B) ∈ N such that B is contained in (En, ηn), and β-regular if whenever it is contained
in some (En, ηn), it is bounded in (Ek, ηk) for some k ≥ n, [22, 8.5.11]. Finally, it is quasi-regular if
there exists n = n(B) ∈ N and a bounded set M in (En, ηn) such that B is contained in the η-closure
of M , [8]. An inductive limit (E, η) = ind lim(En, ηn) is regular (resp. α-regular, β-regular, quasi-
regular) if any bounded set of (E, η) is regular (resp. α-regular, β-regular, quasi-regular). An inductive
limit (E, η) = ind lim(En, ηn) is (weakly) compactly regular if any compact subset of (E, η) is contained
and (weakly) compact in (En, ηn), [22, 8.5.32]. Generally, (E, η) = ind lim(En, ηn) is (F1,F2)-regular
if any subset of (E, η) of a class F1(E) is contained in some (En, ηn) and belongs to a class F2(En), [39,
p. 111]. Notice that a hyperstrict inductive limit is regular, a strict inductive limit is not necessarily regular,
and a regular strict inductive limit is not necessarily hyperstrict, [22, 8.4.16, 8.5.14].

We say that (E, η) = ind lim(En, ηn) has the Retakh’s property (M), [resp. (M0)], if there is an
increasing sequence {Un : Un ⊆ Un+1, Un ⊆ (En, ηn), n ∈ N} of absolutely convex 0-neighbourhoods,
satisfying the following: for every n ∈ N there exists a positive integer k ≥ n such that for any m ≥ k the
topologies, [resp. the weak topologies], induced by (Em, ηm)′ and (Ek, ηk)′, coincide on Un ([38, p. 158,
p. 164], [22, 8.9.16]). An LF -space is [weakly] acyclic if and only if it satisfies the property (M), [(M0)].
We refer to [3, 8, 13, 39] for an up-to-date bibliography on [weak] acyclicity of countable inductive spectra.

3 Representation of a dual strong union and its bounded sets

We use slightly changed notations of [35]. Let N = 1, 2, 3, . . ., N0 = {0} ∪ N, N1
0 = N0. For k ≥ 2,

denote n = n1n2 . . . nk ∈ Nk
0 . Define recursively an order relation ≤∗ on Nk

0 in the following way:

1). If k = 1, then m ≤∗ n is the usual order relation m1 ≤ n1, for each m1 ∈ N0, n1 ∈ N0.

2). If k ≥ 2, then m ≤∗ n if and only if ((m1 < n1) ∨ ((m1 = n1) ∧ (m2 . . .mk ≤∗ n2 . . . nk))) for
every m ∈ Nk

0 and n ∈ Nk
0 .

We use n <∗ m for ((n ≤∗ m)∧ (n 6= m)). We denote by 0 the least element of (Nk
0 ,≤∗). For a given

n ∈ (Nk
0 ,≤∗), we denote by n + 1 the least of the elements {m ∈ (Nk

0 ,≤∗) : n <∗ m}.
For a fixed k ≥ 2, we denote by n(k′, 0) an element n ∈ (Nk

0 ,≤∗) such that nk′ 6= 0 for some k′,
satisfying: 1 ≤ k′ ≤ k − 1, and np = 0 for each p, satisfying: k′ + 1 ≤ p ≤ k. For example, if k = 4 and
k′ = 2 then n(2, 0) is a quadruple n = n1n2n3n4 ∈ (N4

0 ,≤∗) such that n2 6= 0 and n3 = n4 = 0.
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Definition 1 For a locally convex space (E, τ) and a fixed integer k ∈ N, define a mapping of (Nk
0 ,≤∗)

into the set of subspaces of E* in the following way:

1. F0 = E′,

2. Fn+1 = (E, β(E,Fn))′

3. Fn(k′, 0) = ∪{Fm : m <∗ n(k′, 0)}

For a given k ≥ 2, the well ordered chain {Fn : n ∈ (Nk
0 ,≤∗)} is called the generalized dual strong

sequence of the dual pair 〈E, E′〉. For k=1, or for a fixed k ≥ 2 and n1n2...nk−1 ∈ Nk−1
0 , the sequence

{Fn : nk ∈ N0} is called a dual strong sequence of 〈E, E′〉. A subspace Fn(k′, 0)is called a dual strong
union. If k′ = k − 1 then Fn(k−1,0) is called an initial dual strong union.

Notice that (E, β(E,Fn)) is barrelled ⇔ (E, (µ(E,Fn+1))) is barrelled ⇔ Fm = Fn+1 for every
m ∈ Nk

0 such that n <∗ m, [34, Remark 3.4]. In the sequel we shall use the abbreviation d.s.u. for a dual
strong union.

The following representation of a d.s.u. by an increasing sequence of its subspaces is pivotal to our
investigation.

Definition 2 For k ≥ 2 and 1 ≤ k′ ≤ k−1, Fn(k′, 0) = ∪{Fm : mk′+1 ∈ N}, where mk′ = nk′−1, and
mi = ni for any i, satisfying: ((1 ≤ i ≤ k) ∧ (i 6= k′) ∧ (i 6= k′ + 1)). The sequence {Fm : mk′+1 ∈ N}
is called the representation of the d.s.u. Fn(k′, 0).

We shall use the notation Fn(k′, 0) = ∪{Fm : m ∈ N} for the representation of Fn(k′, 0), suggesting
that mk′+1 = m. Notice that an initial d.s.u. is represented by a dual strong sequence, and a non-initial
d.s.u. is represented by a sequence of dual strong unions.

Definitions 1 and 2 imply that (Fn(k′, 0), σ(Fn(k′, 0), E)) = ind lim{Fm σ(Fm, E) : m ∈ N}. Ob-
viously this inductive limit is strict, not hyperstrict, β-regular, and satisfies the Retakh’s property (M), as
well as (M0). Some of these observations are summarized in the following proposition.

Proposition 1 Let E be a locally convex space, Fn(k′, 0) a d.s.u. and Fn(k′, 0) = ∪{Fm : m ∈ N} its
representation. Let (Fn(k′, 0), η) = ind lim{(Fm, ηm) : m ∈ N} such that (Fn(k′, 0), η)′ = (Fm,ηm)′ = E
for each m ∈ N. The following statements are true:

(a) (Fn(k′, 0), η) is β-regular.

(b) any α-regular set of (Fn(k′, 0), η) is regular and weakly relatively compact.

(c) (Fn(k′, 0), η) satisfies the Retakh’s property (M0).

Continuing [39, p. 111], we say that (E, η) = ind lim(En, ηn) is β − (F1,F2) if whenever a subset of
(E, η) of a class F1(E) is contained in some (En, ηn), it belongs to a class F2(Ek) for some k ≥ n. The
part a of the Proposition 1 may be reformulated in the following way: (Fn(k′, 0), η) is β-(bounded, weakly
relatively compact)-regular.

The next theorem reveals the nature of closed bounded disks of a dual strong union. It was proved
in [34] for k = 2. The same arguments are valid for k ≥ 2.

Theorem 1 Let E be a locally convex space, Fn(k′, 0) a d.s.u., and Fn(k′, 0) = ∪{Fm : m ∈ N} its
representation. Any closed bounded disk of (Fn(k′, 0), σ(Fn(k′, 0), E)) is either compact and regular or a
countable union of an increasing sequence of compact disks {Am : m ∈ N} such that Am ∈ Fm for each
m ∈ N.
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PROOF. Without loss of generality we prove the theorem for k = 3 and k′ = 1. For a fixed n ∈ N0, let
B be a closed bounded disk of (Fn+1,0,0, σ(Fn+1,0,0, E)). Let Bm = B ∩ Fn,m,0. Then B = ∪{Bm :
m ∈ N0}. Denote by Am+1 the closure of Bm in (Fn,m+1,0, σ(Fn,m,1, E))-compact disk of Fn,m,1.
Therefore Am+1 is σ(Fn,m+1,0, E)-compact. Since B = ∪{Am : m ∈ N}, where Am is a compact disk
of (Fn,m,0, σ(Fn,m,0, E)) and Am ⊆ Am+1 for each m ∈ N. �

The next definition is derived from Theorem 1.

Definition 3 Let Fn(k′, 0) be a d.s.u., Fn(k′, 0) = ∪{Fm : m ∈ N} its representation, and B a closed
bounded disk of (Fn(k′, 0), σ(Fn(k′, 0), E)). We say that B = ∪{Am : m ∈ N} is the wc-representation of
B, if {Am : m ∈ N} is the increasing sequence of weakly compact regular disks of Theorem 1.

By saying that a bounded set B of a d.s.u. Fn(k′, 0) is regular, we intend to the regularity of B in
(Fn(k′, 0), σ(Fn(k′, 0), E)) = ind lim{Fm, σ(Fm, E) : m ∈ N}.

Proposition 2 Let E be a locally convex space, Fn(k′, 0) a d.s.u. and Fn(k′, 0) = ∪{Fm : m ∈ N} its
representation. Any closed barrelled disk of Fn(k′, 0) is weakly compact and regular.

PROOF. If B is a closed barrelled disk of (Fn(k′, 0), σ(Fn(k′, 0), E)), then EB is Baire-like, [28]. By
Theorem 1, B admits a wc-representation B = ∪{Am : m ∈ N}. Therefore EB = ∪{2mAm : m ∈ N},
hence B ⊆ λ Am for some m ∈ N and positive λ ([6, Corollary 1]; see also [36, Theorem 6]). We conclude
that B is weakly compact and regular. �

Proposition 3 Let E be a locally convex space, Fn(k′, 0) a d.s.u., and Fn(k′, 0) = ∪{Fm : m ∈ N} its
representation. Let (Fn(k′, 0), η) = ind lim{(Fm, ηm : m ∈ N)} such that (Fn(k′, 0), η)′ = (Fm, ηm)′ =
E for each m ∈ N. The following statements are equivalent.

(a) (Fn(k′, 0), η) is quasi-regular.

(b) (Fn(k′, 0), η) is α-regular.

(c) (Fn(k′, 0), η) is regular.

(d) (Fn(k′, 0), η) is weakly compactly regular.

(e) (E,µ(E,Fn(k′, 0))) is dual locally barrelled.

(f) (E,µ(E,Fn(k′, 0))) is dual locally complete.

(g) (E,µ(E,Fn(k′, 0))) is barrelled.

(h) (E,µ(E,Fn(k′, 0))) is the associated barrelled topology of E.

PROOF. (a) ⇒ (b) ⇒ (c) ⇒ (a) follow from Proposition 1. (c) ⇒ (d): since (Fn(k′, 0), η) is regular,
any weakly compact set K of Fn(k′, 0) is contained in some step. Since (Fn(k′, 0), η) and its steps have the
same dual, K is weakly compact in the step. (d) ⇒ (c): if (Fn(k′, 0), η) is not regular then by Proposition 1,
it is not α-regular. Therefore there is a bounded sequence {un} in (Fn(k′, 0), η) such that {un}�⊂Fm for
any m ∈ N. Since 2−nun converges to zero in (Fn(k′, 0), η), {2−nun} is compact, hence (Fn(k′, 0), η)
is not compactly regular. (c) ⇒ (g): if (Fn(k′, 0), η) is regular then by Proposition 1, any bounded disk
of (Fn(k′, 0), η) is weakly relatively compact, hence (E,µ(E,Fn(k′, 0))) is barrelled. (g) ⇒ (f) ⇒ (e) are
obvious. (e) ⇒ (c) follows from Proposition 2. (g) ⇔ (h) follows from [35, Proposition 3.1]. �
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4 Topologies of the dual pair 〈E, Fn(k′, 0)〉
Let {ηi : i ∈ I} be a set of locally convex topologies on E, equipped with the usual (partial) order relation
ηi ≤ ηj . The topology sup{ηi : i ∈ I}, (resp. inf{ηi : i ∈ I}), is the weakest, (resp. finest), locally
convex topology on E, finer, (resp. weaker), than each ηi, i ∈ I . Notice that the topology inf{ηi, i ∈ I}
is not necessarily Hausdorff.

Theorem 2 Let E be a locally convex space, Fn(k′, 0) a d.s.u. , and Fn(k′, 0) = ∪{Fm : m ∈ N} its
representation. For each m ∈ N, let ηm be a topology on E, such that µ(E,Fm) ≤ ηm ≤ β(E,Fm). Then
µ(E,Fn(k′, 0)) = sup{ηm, m ∈ N}.

PROOF. First, we shall prove the theorem for ηm = µ(E,Fm). Clearly µ(E,Fm) ≤ µ(E,Fn(k′, 0))
for each m ∈ N, therefore sup{µ(E,Fm) : m ∈ N} ≤ µ(E,Fn(k′, 0)). Let ζ be a locally convex
topology on E such that ζ ≥ µ(E,Fm) for each m ∈ N. Then (E, ζ)′ ⊇ Fm for each m ∈ N, therefore
(E, ζ)′ ⊇ Fn(k′, 0). By Proposition 2, any σ(Fn(k′, 0), E)-compact disk is contained in some Fm, and
therefore it is µ(E,Fm)-equicontinuous for some m ∈ N. Hence any σ(Fn(k′, 0), E)-compact disk is
ζ-equicontinuous, therefore ζ ≥ µ(E,Fn(k′, 0)). Thus µ(E,Fn(k′, 0)) = sup{µ(E,Fm) : m ∈ N}.
Since µ(E,Fm) ≤ ηm ≤ β(E,Fm) ≤ µ(E,Fm+1) for any m ∈ N, we conclude that µ(E,Fn(k′, 0)) =
sup{ηm : m ∈ N}. �

Proposition 4 Let {Fn : n ∈ N} be the generalized dual strong sequence of 〈E, E′〉, Fn(k′, 0) a d.s.u.,
and Fn(k′, 0) = ∪{Fm : m ∈ N} its representation. Then µ(E,Fn(k′, 0)) = sup{µ(E,Fm) : m <∗

n(k′, 0)} = sup{β∗(E,Fm) : m <∗ n(k′, 0)} = sup{β(E,Fm) : m <∗ n(k′, 0)}.

PROOF. Follows from Definition 1 and Theorem 2. �

Proposition 5 Let {Fn : n ∈ Nk
0 } be the generalized dual strong sequence, Fn(k′, 0) a d.s.u. and

Fn(k′, 0) = ∪{Fm : m ∈ N} its representation. Let K be a disk of E. The following statements are
equivalent.

(a) K is compact in (E,µ(E,Fn(k′, 0)))

(b) K is compact in (E,µ(E,Fn)), for each n ∈ Nk
0 , satisfying: n < n(k′, 0).

(c) K is compact in (E,µ(E,Fn)), for each m ∈ N of the representation Fn(k′, 0) = ∪{Fm : m ∈ N}.

PROOF. (a)⇒ (b)⇒ (c): obviously, if K is µ(E,Fn(k′, 0))-compact then it is µ(E,Fn)-compact for each
n ∈ Nk

0 , satisfying n < n(k′, 0). (c) ⇒ (a): by Theorem 2, (E,µ(E,Fn(k′, 0))) is isomorphic to a closed
subspace (diagonal) of the topological product

∏
{(E,µ(E,Fm)) : m ∈ N}. Therefore by Tychonoff

theorem, A is µ(E,Fn(k′, 0))-compact whenever it is µ(E,Fm)-compact for each m ∈ N. �

The next theorem states that µ(Fn(k′, 0), E), the Arens topology of (Fn(k′, 0), µ(Fn(k′, 0), E)) and the
associated (infra-) Schwartz topology of (Fn(k′, 0), µ(Fn(k′, 0), E)) satisfy the requirements of Propositions
1 and 3.

Theorem 3 Let E be a locally convex space, Fn(k′, 0) a d.s.u., and Fn(k′, 0) = ∪{Fm : m ∈ N} its
representation.. The following statements are true.

(a) (Fn(k′, 0), µ(Fn(k′, 0), E)) = ind lim{Fm, µ(Fm, E) : m ∈ N}

(b) (Fn(k′, 0), κ(Fn(k′, 0), E)) = ind lim{Fm, κ(Fm, E) : m ∈ N}

(c) (Fn(k′, 0), µfc(Fn(k′, 0), E)) = ind lim{Fm, µfc(Fm, E) : m ∈ N}
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(d) (Fn(k′, 0), µwfc(Fn(k′, 0), E)) = ind lim{Fm, µwfc(Fm, E) : m ∈ N}

PROOF. We identify E with a subspace of the algebraic dual of Fn(k′, 0).

• (a) Let (Fn(k′, 0), η) = ind lim(Fm, µ(Fm, E)). Clearly the canonical inclusions (Fm, µ(Fm, E)) →
(Fm+1, µ(Fm+1, E)) → (Fn(k′, 0), µ(Fn(k′, 0), E)) are continuous, therefore η ≥ µ(Fn(k′, 0), E).
Hence by proving that (Fn(k′, 0), η)′ = E, we conclude that η = µ(Fn(k′, 0), E). If g ∈ (Fn(k′, 0), η)′,
then its restriction on Fm is µ(Fm, E)-continuous for every m ∈ N. Therefore for every m ∈ N there
exists fm ∈ E such that g and fm coincide on Fm and {fm : m ∈ N} converges pointwise to g.
Since for each m ∈ N, fm+1 − fm = 0 on Fm and Fm separates the points of E, there exists f ∈ E
such that fm = f , for each m ∈ N. Hence, g = f ∈ E and we conclude that (Fn(k′, 0), η)′ = E.
Therefore, η = µ(Fn(k′, 0), E).

• (b) Let (Fn(k′, 0), ν) = ind lim(Fm, κ(Fm, E)). Clearly, ν ≥ κ(Fn(k′, 0), E). Since κ(Fm, E) ≤
µ(Fm, E), it follows from (a) that ν ≤ µ(Fn(k′, 0), E). Hence, (Fn(k′, 0), ν)′ = E. Let U be a closed
absolutely convex 0-neighbourhood in (Fn(k′, 0), ν). Then the polar Uo of U in E is σ(E,Fn(k′, 0))-
compact, and we conclude that Uo is σ(E,Fm)-compact for each m ∈ N. On the other hand, for
every m ∈ N, there exists a closed 0-neighbourhood Vm in (Fm, κ(Fm, E)) such that Vm ⊆ U ∩Fm.
The polar (Vm)o of Vm in E is µ(E,Fm)-compact. By bipolar theorem (U ∩ Fm)o equals to the
closure of Uo in (E, σ(E,Fm)) for each n ∈ N. hence, by the Proposition 5, Uo is µ(E,Fn(k′, 0))-
compact, therefore U is a 0-nbgh in (Fn(k′, 0), κ(Fn(k′, 0), E)). Hence, ν ≤ κ(Fn(k′, 0), E), and we
conclude that ν = κ(Fn(k′, 0), E).

• (c) and (d) follow from the Proposition 5.2 of [35]. �

Notice that by Proposition 5.2 and Observations 5.1, 5.2 of [35], each of the inductive limits in c and d
is strict. Clearly no one of c or d is hyperstrict.

5 Weak barrelledness and the wb-topology on E

A barrel U of (E, τ) is called a ℵ0-barrel if there is a sequence {Un : n ∈ N} of closed absolutely
convex 0-neighbourhoods of (E, τ) such that U = ∩{Un : n ∈ N}. Notice that finite intersections of
[bornivorous] ℵ0-barrels are [bornivorous] ℵ0-barrels.

Our next definition specifies a topology introduced by Roelcke in [25] in connection with the finest
locally convex topology τ(A) agreeing with τ on an absorbent sequence {Am : m ∈ N} of (E, τ).

Definition 4 Let (E, τ) be a locally convex space. Denote by τwb[τ∗wb] a topology on E, such that a
[bornivorous] barrel V of (E, τ) is a 0-neighbourhood of τwb[τ∗wb] if and only if there exists a [bornivorous]
ℵ0-barrel U of (E, τ) such that U ⊆ V . We say that τwb[τ∗wb] is the [bornivorous] wb-topology of (E, τ),
(wb stands for weak barrelledness).

Roelcke observes that τ ≤ τ(A) ≤ τwb ≤ β(E,E′) and if {Āτ
m : m ∈ N} is bounded-absorbent,

then τ ≤ τ(A) ≤ τ∗wb ≤ inf(τwb, β
∗(E,E′)), [25, Theorems 3 and 5]. We denote by µwb(E,E′),

[µ∗wb(E, (′E))], respectively σwb(E,E′), [σ∗wb(E,E′)], the [bornivorous] wb-topology for the Mackey,
respectively weak, topology of (E, τ). Our next proposition regards the weakest quasi-wb-topology for
µ(E,E′) and the associated Schwartz topology µfc(E,E′). We believe the result is essentially known,
although we did not find a direct reference.

Proposition 6 Let E be a locally convex space. Then σ(E,E′) ≤ µfc(E,E′) ≤ σ∗wb(E,E′).

PROOF. A closed disk K of (E′, σ(E,E′)) is µfc(E,E′)-equicontinuous if and only if K is compact in
EM for some Banach disk M ⊆ E′, [38, p. 205], hence if and only if it is contained in the closed absolutely
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convex hull of a sequence converging to 0 in EM ([5, III.1.5, III.1.7]; see also [22, 6.1.21]). Therefore a 0-
neighbourhood of µfc(E,E′) is an ℵ0-barrel of (E,µ(E,E′)). By [22, 3.2.7], it is a bornivorous ℵ0-barrel.
�

The next theorem affiliates the [bornivorous] wb-topology of E with a dual strong union.

Theorem 4 Let Fn(k′, 0) be a dual strong union of the duality 〈E, E′〉. The following statements are true.

(a) µwb(E,Fn(k′, 0)) = β(E,Fn(k′, 0)).

(b) µ∗wb(E,Fn(k′, 0)) = β∗(E,Fn(k′, 0))

PROOF. Let B be a closed bounded disk of (Fn(k′, 0), σ(Fn(k′, 0), E)). Applying Theorem 1 and Def-
inition 3, we have B =

⋃
{Am : m ∈ N}. Then by the bipolar theorem any barrel of (E, σ(E,Fn(k′, 0)))

is an ℵ0-barrel of (E,µ(E,Fn(k′, 0))). �

The next definition was introduced in [33, Definitions 1 and 2]. It conceptualized a class of spaces
studied by Valdivia in [37]. The version below befits our needs.

Definition 5 A locally convex space (E, τ) is called ℵ0 − η-[quasi]-barrelled if η is compatible with the
duality 〈E, E′〉 and any [bornivorous] ℵ0-barrel of (E, η) is a 0-neighbourhood in (E, τ).

We remind two well-known extremes of Definition 5. The ℵ0 − τ -[quasi-]-barrelled space (E, τ) is
precisely the countably [quasi-] barrelled space of [18], or the d-[infra-] barrelled space of [30], or the
ℵ0-[quasi-]-barrelled space of [22, 8.2.1]. The ℵ0−σ(E,E′)-[quasi-]-barrelled space is the σ-barrelled [σ-
evaluable] space of [6], or the σ-[infra-] barrelled space of [30], or the l∞-[quasi-] barrelled space of [22,
8.2.13]. Notice that if (E, τ) is ℵ0 − σ(E,E′)-[quasi-]-barrelled and E′ admits an infinite-dimensional
bounded Banach disk, then τ is strictly finer than σ(E,E′), [22, 6.1.21].

Theorem 5 Let (E, τ) be an ℵ0 − η-[quasi-] barrelled space. The following is true.

(a) σ(E,E′) ≤ η ≤ ηwb ≤ τ ≤ µ(E,E′), [σ(E,E′) ≤ η ≤ η∗wb ≤ τ ≤ µ(E,E′)].

(b) (E, t) is ℵ0 − η-[quasi-] barrelled for any locally convex topology t such that ηwb ≤ t ≤ µ(E,E′),
[η∗wb ≤ t ≤ µ(E,E′)].

(c) (E, t) is ℵ0 − ηwb-barrelled, [ℵ0 − η∗wb-quasi-barrelled], for any locally convex topology t such that
ηwb ≤ t ≤ µ(E,E′), [η∗wb ≤ t ≤ µ(E,E′)].

(d) (E, t) is ℵ0 − σ(E,E′)-[quasi-] barrelled for any locally convex topology t such that σwb ≤ t ≤
µ(E,E′), [σ∗wb ≤ t ≤ µ(E,E′)].

(e) (E, t) is ℵ0−σwb(E,E′)-barrelled, [ℵ0−σ∗wb(E,E′)-quasi-barrelled], for any locally convex topol-
ogy t such that σwb ≤ t ≤ µ(E,E′), [σ∗wb ≤ t ≤ µ(E,E′)].

PROOF. We start with the barrelled case.
(a) is obvious.
(b) since (E, τ) is ℵ0− η-barrelled, (E, η) and (E, ηwb) have the same ℵ0-barrels. Therefore, (E, ηwb)

is ℵ0 − η-barelled. Obviously,(E, t) is ℵ0 − η-barrelled for any topology t such that ηwb ≤ t ≤ µ(E,E′).
(c) follows from (b).
(d) if {fn : n ∈ N} is bounded in (E′, σ(E,E′)) and K is an η-equicontinuous disk of E′, then

{(K ∪ fn) : n ∈ N} is a bounded sequence of η-equicontinuous sets of E′. Since (E, τ) is ℵ0 − η-
barrelled, ∪{(K ∪ fn) : n ∈ N} is η-equicontinuous. Hence {fn : n ∈ N} is weakly relatively compact,
therefore (E, τ) is ℵ0-σ(E,E′)-barrelled. Using (b) we conclude that if σwb ≤ t ≤ µ(E,E′), then (E, t)
is ℵ0 − σ(E,E′)-barrelled.
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(e) if (E, τ) is ℵ0 − σ(E,E′)-barrelled, then (E, σ(E,E′)) and (E, σwb(E,E′)) have the same ℵ0-
barrels. The conclusion follows then from (c).

The quasi-barrelled case follows immediately after noticing that if (E, τ) is ℵ0−η-quasi-barrelled, then
(E, η) and (E, η∗wb) have the same bornivorous ℵ0-barrels. �

In [20, Example 5.4] Ka̧kol, Saxon and Todd constructed a non-Mackey countably barrelled DF -space
(E, τ) that admits another topology γ, such that τ < γ < µ(E,E′) and (E, γ) is not countably bar-
relled. Ka̧kol, Saxon and Todd noticed that (E, γ) is ℵ0 − σ(E,E′)-barrelled. Definition 5 and Theorem 5
“upgrade” the barrelledness condition of (E, γ), claiming that it is ℵ0 − τ -barreled, as well as ℵ0 − τwb-
barrelled.

Our next proposition links the wb-topology of Definition 4 and the weak barrelledness of Definition 5.
It also unifies Corollaries 1, 2 of Theorem 3 and Corollaries 1, 2 of Theorem 5 in [25]. The parts a and b
are well known Theorems 1 and 2 of [18], rephrased in the terms of Definitions 4 and 5.

Proposition 7 Let (E, τ) be a locally convex space. Consider the following statements.

(a) τ = τwb, [τ = τ∗wb].

(b) (E, τ) is ℵ0 − τ -[quasi-] barrelled.

(c) τwb[τ∗wb] is compatible with the duality 〈E, E′〉.

(d) (E, τwb)[(E, τ∗wb)] is ℵ0 − τ -[quasi-]-barrelled.

Then: (a) ⇔ (b), (a) ⇒ (c), and (c) ⇔ (d).

PROOF. (a) ⇔ (b) are Theorems 1 and 2 of [18]. (a) ⇒ (c) is obvious. (c) ⇒ (d): since τwb[τ∗wb] is
compatible with the duality 〈E, E′〉, any [strongly] bounded countable union of τ -equicontinuous sets of
E′ is weakly relatively compact. Therefore, (E, τwb)[(E, τ∗wb)] is ℵ0 − τ -[quasi]-barrelled. (d) ⇒ (c) is
embedded in Definition 5. �

Generally, for a locally convex space (E, τ) the topology τwb[τ∗wb] is not necessarily ℵ0 − σ(E,E′)
-[quasi]-barrelled. Moreover, it is not necessarily compatible with the duality 〈E, E′〉. Example 2.1 of [29]
exhibits a dual locally complete Mackey space that is not ℵ0−σ(E,E′)-barrelled. Applying Proposition 7,
it means that the wb-topology σwb(E,E′) of a dual locally complete space is not necessarily compatible
with the duality 〈E, E′〉. However for the space Cc(X) the following proposition is true.

Proposition 8 Let E = Cc(X) be the space of continuous real-valued functions on a completely regular
topological space X equipped with the compact-open topology. The following statements are equivalent.

(a) E = Cc(X) is dual locally complete.

(b) the wb-topology σwb(E,E′) for E = Cc(X) is compatible with the duality 〈E, E′〉.

(c) E = Cc(X) is ℵ0 − σ(E,E′)-barrelled.

(d) E = Cc(X) is ℵ0 − σwb(E,E′)-barrelled.

PROOF. (a) ⇔ (c) is Theorem 4.1 of [4]. (b) ⇔ (c) follows from Proposition 7. (c) ⇔ (d) follows from
Theorem 5. �

Our next theorem reveals the sensitivity of the dual pair 〈E, Fn(k′, 0)〉 to weakest barrelledness condi-
tion.

Theorem 6 Let Fn(k′, 0) be a dual strong union of the duality 〈E, E′〉. The following statements are
equivalent.

(a) any [strongly] bounded set of (Fn(k′, 0), µ(Fn(k′, 0), E)) is α-regular.
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(b) any [strongly] bounded set of (Fn(k′, 0), µ(Fn(k′, 0), E)) is quasi-regular.

(c) (E,µ(Fn(k′, 0), E)) is dual locally [quasi-] barrelled.

(d) (E,µ(Fn(k′, 0), E)) is dual locally [quasi-] complete.

(e) the topology σwb(E,Fn(k′, 0))[σ∗wb(E,Fn(k′, 0))] is compatible with the duality 〈E, Fn(k′, 0)〉.

(f) µwb(E,Fn(k′, 0)) = µ(E,Fn(k′, 0)), [µ∗wb(E,Fn(k′, 0)) = µ(E,Fn(k′, 0))]

(g) (E,µ(E,Fn(k′, 0))) is ℵ0 − σ(E,Fn(k′, 0))-[quasi-] barrelled.

(h) (E,µ(E,Fn(k′, 0))) is [quasi-] barrelled.

PROOF. (a) ⇔ (b) follows from Proposition 1.
(a) ⇒ (h) follows from Proposition 1.b and Theorem 2.
(c) ⇒ (h) follows from Proposition 2.
(f) ⇔ (h) follows from Theorem 4.
(h) ⇒ (g) is well known.
(g) ⇒ (e) follows from Theorem 5. (a).
(e) ⇒ (g) follows from Proposition 7 and Theorem 5 (d).
(g) ⇒ (d) is well known.
(d) ⇒ (c) is obvious.
(c) ⇒ (a) follows from Proposition 2. �

6 Final remarks
We conclude this article with remarks regarding bounded disks in dual strong unions and weak barrelledness
conditions of Definitions 4, 5.

A locally convex space (E, t) satisfies the (BBC) condition if there exists a weaker Hausdorff locally
convex topology τ on E, such that every bounded set of (E, t) is contained in a t-bounded τ -compact disk
of (E, t), [3]. The reader is referred to [7], [19] or [22, Ch. 7] for a definition of a B-complete space,
and to [31, IV.1.1] for a definition of a hemi-compact space and related properties of spaces of continuous
functions defined on a hemi-compact space.

Remark 1 If B is a closed bounded disk of a d.s.u. (Fn(k′, 0), σ(Fn(k′, 0), E))), then there exists a locally
convex topology σ(B) on SpB such, that:

(a) B is hemi-compact when equipped with the induced σ(B)-topology.

(b) (SpB, σ(B)) is B-complete.

(c) σ(B) is the finest topology on SpB, having the same compact disks as the induced σ(Fn(k′, 0), E)
topology.

(d) any locally convex topology on SpB, finer that σ(B), satisfies the (BBC) condition.

PROOF. Let Fn(k′, 0) = ∪{Fm : m ∈ N} be the representation of Fn(k′, 0), and B = ∪{Am : m ∈ N}
the wc-representation of B. Denote by σ(B) the finest locally convex topology on SpB, agreeing with
σ(Fn(k′, 0), E) on each Am, [22, 8.1.16].
(a) follows from Definition 3 and Definition IV.1.1 of [31].
(b) By [25, Lemma 1], σ(B) admits a base of 0-neighbourhoods closed in (SpB, σ(Fn(k′, 0), E)). Hence
by the arguments of [19, Theorem 3.1], (SpB, σ(B)) is B-complete.
(c) Since each Am is compact, it follows from the Banach-Dieudonne theorem that σ(B) is the finest linear,
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as well as the finest general topology, agreeing with σ(Fn(k′, 0), E) on each Am, [15, t. I, p. 230]; [22,
8.1.8.].
(d) If τ is a locally convex topology on SpB, finer that σ(B), then any closed τ -bounded disk is σ(B)-
bounded, hence contained in some 2mAm : m ∈ N. Therefore, (SpB, τ) satisfies the (BBC)-condition.
�

Remark 2 Let Fn(k′, 0) = ∪{Fm : m ∈ N} be the representation of a d.s.u. Fn(k′, 0), and B = ∪{Am :
m ∈ N} the wc-representation of a bounded disk B of (Fn(k′, 0), σ(Fn(k′, 0), E)). Denote by Em the
Banach space with the unit ball Am, m ∈ N. Then:

(a) (SpB, t(B)) = ind lim{Em : m ∈ N} is a regular (LB)-space, satisfying the conditions (BBC)n

and (CNC)n of [3], thus allowing a construction of a natural predual, [3, Section 1(b), Theorem 1].

(b) (SpB, t(B)) )) admits an equivalent inductive sequence of normed spaces {Sp(B ∩ Fm)} : m ∈ N
with the unit ball B ∩ Fm weakly closed in Fm, for each m ∈ N.

PROOF. (a) is well known. (b) is embedded in the Theorem 1. �

A wealth of important topologies with compactness, regularity, localization and other “nice” properties
coexist on SpB. Results related to SpB may be found in [2, 3, 6, 11, 12, 13, 27, 36], (this reference list is
far from being exhausting; in particular we would like to notice a remarkably simple proof of Grothendieck-
Floret factorization theorem, given in Section 2 of [13], see also [22, 8.5.38]).

As mentioned in the introduction, the research on bounded sets of (Fn(k′, 0), σ(Fn(k′, 0), E)) seems to
be fascinating. Take, for example, the set K of all compact disks of (Fn(k′, 0), σ(Fn(k′, 0), E)) , and con-
sider two topologies on Fn(k′, 0): the finest locally convex topology σ(K) agreeing with σ(Fn(k′, 0), E) on
each A ∈ K and the inductive limit (Fn(k′, 0), t(K)) = ind lim{EA : A ∈ K}. The topologies σ(K) and
t(K) may be regarded in the setting of mixed topologies ([14, 23, 40], see also Section 5 of [26]), or treated
by homological methods ([24, 39]). Notice that by [5, III.2.4.] and Proposition 2, t(K) is the associated
ultrabornological topology for (Fn(k′, 0), σ(Fn(k′, 0), E)) and by [5, III.2.8], the dual of (Fn(k′, 0), t(K))
is the completion of the Schwartz space (E, (E,µfc(E,Fn(k′, 0)))), associated to (E,µ(E,Fn(k′, 0))).
It should be noticed that K is not a base for a compact bornology on (Fn(k′, 0), σ(Fn(k′, 0), E)) unless
µ(E,Fn(k′, 0)) is the associated barrelled topology for (E,µ(E,E′)), (see [24] for a definition of bornol-
ogy). Indeed, by Proposition 2, (E,µ(E,Fn(k′, 0))) is barrelled if and only if it is dual locally complete,
therefore by [9], if and only if the closed absolutely convex hull of any convergent to zero sequence of
(Fn(k′, 0), σ(Fn(k′, 0), E)) is compact and hence absorbed by some A ∈ K. We believe that the research of
weakly compact subsets of a dual strong union is going to be fruitful and promising.

Regarding the topologies of Definitions 4 and 5, we do not know whether the σwb-and ηwb-barrelledness
of an ℵ0 − η-barrelled space (E, τ) affects the topologies between σwb and ηwb. Speaking informally,
Theorem 5 presents the wb-topology as a “demarcation line” of barrelledness. It simply states that the weak
barrelledness condition of an ℵ0 − η-barrelled space (E, τ) starts from σwb, then jumps to ηwb and keeps
going until µ(E,E′). But what happens between σwb and ηwb?

Acknowledgement. The author wishes to thank Prof. Jochen Wengenroth of the University of Trier for
sending his remarkable book “Derived Functors in Functional Analysis”, [39].
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