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REMARKS ON THE POWERS OF ELLIPTIC
OPERATORS *

Jan W. CHOLEWA and Tomasz DLOTKO

Abstract

Under natural regularity assumptions on the data the powers
of regular elliptic boundary value problems (e.b.v.p.) are shown
to be higher order regular e.b.v.p.. This result is used in descrip-
tion of the domains of fractional powers of elliptic operators which
information is in order important in regularity considerations for
solutions of semilinear parabolic equations. Presented approach
allows to avoid C*°-smoothness assumption on the data that is
typical in many references.

1 Introduction
In the studies of the evolutionary equation
u+ Au = F(u), t >0, (1)

with A being a sectorial operator in a Banach space X = X° and the
nonlinear term F' subordinated to some power of A, we need often con-
sider fractional power spaces X, a > 0. The knowledge of the linear
operator is then crucial for the discussion of the solutions to (1) (cf.
[A-C]). In applications to semilinear parabolic equations the operator
A usually corresponds to some elliptic boundary value problem given
by the triple (4, {B;},9) with A and B; as in (2) and (3) respectively.
For simplicity of notation we will not distinguish between the abstract
operator in (1) and its elliptic counterpart.
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The advantage of studying problems of this latter type is that the
estimates concerning the resolvent of A are well known in literature.
Such results come back to a sequence of papers [A-D-N 1], [A-D-N 2] as
well as to a number of later monographs [FR], [L-M], [TR] and [TA].
Roughly speaking, they are a consequence of the regularity assumptions
imposed on the triple (4, { B;}, ) like the smoothness condition, strong
ellipticity condition, and 0-sirong complementary condition (0 € (3, 3'2.1])
Indeed, if this is the case, then —A is the generator of a strongly contin-
uous analytic semigroup on LP(2), p > 1 (cf. [FR], [TA]). Furthermore,
assuming A to be positive, [(X, Aa),@ > 0] is a compactly injected
one-sided fractional power scale generated by (LP(§2), A) (cf. [AM 1]).

The description of the Banach scale [(X;",AQ),Q > 0] is important
in applications. Of course, if X is a Hilbert space, e.g. X = L?(Q), and
A is selfadjoint and positive definite on X, then the characterisation
of the mentioned scale is quite complete. In this case the imaginary
powers of A are bounded and X® may be described as the intermediate
spaces between L%(2) and D(A) = H%};;}(Q} based on the complex
interpolation method (cf. [TR]). For p # 2 similar results are known in
the whole generality if the coefficients of A, B; and the boundary 652
are of class C (cf. [SEE], [TR]). However, mention should be made of
the publications [A-H-S], [P-S], [S-T], [GU] where recent developments
in this field can be found.

The embeddings of X *-spaces in Sobolev and Hélder classes of func-
tions are also of particular importance. Under the natural assumptions
on (A,{B;},Q) such inclusions were proved e.g. in [HE] (cf. formula
(7)). They are however restricted to o € [0,1] whereas it would be
convenient to have them for the whole range of a > 0.

In this note we extend the results of [HE] to all @ € [0, +00) under
naturally strengthened regularity assumptions imposed on dQ2 and the
coefficients of A, Bj, j =1,...,m.
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2 Strongly regular elliptic boundary value
problems

For m =1,2,..., consider the partial differential operators:

A= ) a(z)D, (2)

lo|<2m

Bj= ) b(z)D° j=1,2,...,m, (3)

lo|<m;

where 0 <m; <2m —1and m; #mj fori # 3, 4,5 =1,2,...,m. The
principal symbols of A and B; will be denoted by Ay, (B;)o respectively;
i.e.

AO(Q;:E) = Z a’D’(x)‘Ea! (BJ}U e Z bz;'(x)ga$ J = 112a"'}m'

lo|=2m lo|=m;

We require that the coefficients of the operators A, B; satisfy the fol-
lowing condition.

e Smoothness condition
s, |o| € 2m, are uniformly continuous complex valued functions
defined on a bounded subdomain Q C R", n > 2, with boundary
99 of the class C?™ whereas b} : 9Q — C, b} € C?™™i(8Q), for
o] <mj, 5 =1,2,...,m.

Recall the formulation of the uniform strong ellipticity condition (cf.
[FR, p. 2]) and the 0-strong complementary condition (cf. [FR, p. 77)).

e Uniform strong ellipticity condition

3e>0 Vzen Veern (—1)™ReAq(z,£) > clé*™; (4)

e f-strong complementary condition
Let 6 € (0, 2) be fixed, whereas H, and N(z) denote, respectively,
the tangent hyperplane and the outward normal unit vector to 9
at z € J§). Take any z € 99, any £ € H, and arbitrary complex
number A from the ray argA = @ such that (£, A) # (0,0). Then,
the polynomial p(z) = A¢(z,& + 2N(z)) — (—1)™ ) should possess
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exactly m roots z;*' (z,€,A), 1 =1,...,m, with positive imaginary
parts and the polynomials Pj(z) (j = 1,...,m), where Pj(z) =
(Bj)o(z,é+2zN(z)), should be linearly independent modulo Q(z) =
(z - zf(ma'st)‘)) =¥ (z - z;;(:r,{, ’\))

Remark 1. Let us make few remarks on the above conditions. Inequal-
ity (4) means equivalently that (—1)™ ReAq(z,&) > 0 for each z € Q and
¢ # 0. In particular, for any = € 0 and any pair of linearly independent
vectors £,7 € R", the polynomial Ay(z,€ + 2n) has equal number m
of roots with positive and with negative imaginary parts. The latter
property may not be true if A is merely an elliptic operator in (, i.e.
when Ag(z,€) # 0 for z € 2, 0 # £ € R"™, unless the space dimension
n is strictly greater than 2 or, if n = 2, the coefficients of A are real.
In other words, validity of (4) is equivalent to ellipticity of the following
operator

. A2m
Y (@)D — (-1 o (5)

|lo|=2m

Ay

in  x R for all values of § € [%,3]. By what was said above, it
is clear that, whenever 6§ € [7, %] and arg\ = @, the polynomial
p(z) = Ag(z,E+2zN(z))—(—1)™ )\ introduced in the §-strong complemen-
tary condition possesses exactly m roots with positive imaginary parts.
The latter condition remains true for all A with arg) # 0 provided the
coefficients a,, |o| = 2m, of A are real valued functions (cf. Proposition

1 below).

Proposition 1. Let the operator A in (2) have real coefficients a,,
lo| = 2m, and satisfy the strong ellipticity condition (4). Then, Ag
defined in (5) is an elliptic operator in 2 x R for each 6 € (0,2w).

Proof. For 7 # 0 € (0,27), £ € R, 0 # n € R we have; ImAy(z,£) =0
and Im((—1)™e'n?™) # 0, which ensures that:

Ao(z,€) — (=1)"en®™ #0, z € Q. (6)

For § = m, n # 0, £ = 0 the above condition is trivial. Validity of (6) in
the remaining two cases (i) 6 € (0,27), n = 0, and £ # 0 as well as (ii)
0=m 0#¢&e€R" and 0 # n € R, is a direct consequence of (4). The
proof is complete. [ |
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Definition 1. Consider a triple (A, {B;},Q), where A and B; are given
by (2), (3) and suppose that the following conditions hold:

e the smoothness condition,
e the uniform strong ellipticity condition,
e the O-strong complementary condition for each 6 € (0,27).

Then the triple (A, {B;},Q) is called a 2m-th order strongly regular el-
liptic boundary value problem (2m-th order strongly regular e.b.v.p.).

Remark 2. The simplest possible examples of the strongly regular
e.b.v.p. are connected with the three basic problems of potential the-
ory given by the triples (—A,Id,9), (=A,5%,Q) and (-4, % +
ald,Q) with real a. Of course other triples can be considered, like e.g.
(—A+ 32—1, 3%, §2). More complicated examples of higher order e.b.v.p.’s
may be easily obtained from the just mentioned triples with the use of
Theorem 1 stated below.

Our main concern here is to prove the following result:

Theorem 1. Let A, Bj, j = 1,...,m, be given by (2), (3) respectively
and the coefficients as, |o| = 2m, of A be real valued functions. Suppose
further that a triple (A,{B;},Q) forms a 2m-th order strongly regular
e.b.v.p. Then, (A% {Bj, AoB;},Q) and (A%,{Bj, BjoA},R) form dm-th
order strongly regqular e.b.v.p. provided the following additional smooth-
ness requirements are satisfied:

e 09 is of class C'™,
e a, € C*™(Q), |o| <2m,

o b} € CY™mi(8Q), |B|<mj, j=1,2,...,m.

Proof. Since (A?)o(z,&) = Ao(z,£)?, it is immediate that A2 is uni-
formly strongly elliptic.

Fix z € 09, € € H, (£ is tangent to 89 at z), 6 € (0,27), arg\ = 0
and let N(z) be the outward normal unit vector to S at z. Note that
the polynomial

p(z) = (A%)o(z, &+ 2N (z)) — X = Ag(z,& + zN(z))? — A
= (Ao(2,€ + 2N(2)) — V) (4o(z,€ + 2N (z)) + V)
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has exactly 2m roots with positive imaginary part. In fact, by Propo-
sition 1, the polynomials Ao(z,€ + zN(z)) £ V/X have each exactly m
zeros with positive imaginary part since +(—1)™VA ¢ R. Denote by
z,i=1,...,m, the roots with positive part of Ay(z, ¢ + zN(z)) = VA,
by z; ., ¢ =1,...,m, those of Ag(z,£ + zN(z)) + VX and let q1(z) =
(z—2])...(2=2}), @2(2) = (z—2z}t 1) ... (2—23,). Proving the f-strong
complementary condition now consists in showing that the polynomials

Pj(z), j =1,...,2m, given by

R‘.‘(Z) = (Bj)o(xrf 2 ZN(I)), =L m;
Prnyj(2) (Ao Bj)o(z,{ + 2N(z))
= Pj(2)Ao(z,€ +2N(z)), j=1,...,m;
are linearly independent modulo ¢(2) = ¢;(z)g2(2). To this effect, con-
sider a linear combination w(z) := Z?i‘l ¢;Pj(z) and suppose w(z) is
divisible by g(z). Since ¢;(2) divides Ag(z,& + zN(z)) — VX and w(z)
may be written as

1

m

w(z) = Y (¢j + VAcm;)Pi(2)

j=1

+ Zcm+ij(Z) (Ao(z,€ + zN(z)) — V),

J=1

then g (2) divides Z;?;l (¢j +'\/XCyn+j)Pj (2). The strong complementary
condition for the original system, valid for arg v/ since v/X is not real,
implies c; + \/Xcmﬂ =0 for j = 1,...,m. Similarly we see that Cj —
\/Xc-m,+j =0forj=1,...,m, hencec; =0 for j =1,...,2m. The proof
of Theorem 1 is complete. [

The result of Theorem 1 may be immediately generalised by an in-
duction argument to the form:

Corollary 1. Let (A, {B;},9) be a 2m-th order strongly regular e.b.u.p.
and the coefficients of the main part of A be real valued functions. If
k€ N and

e 00 is of class Czk“m,

e a, € C'Qk“m_?m(ﬁ), lo| < 2m,
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o by e C*TImomi(0Q), Bl <my, j=1,2,...,m,

then (A2,{Bj, Ao Bj, A% 0 B;,...,A? 10 B;},Q) and (A?,{B;,B; o
A,BjoA?,... ,BjOAT'l}, Q) are 2" m-th order strongly regular e.b.v.p.
for eachl =0,... k.

3 Applications

Let 2 C R™ be a bounded domain with 9Q of class C?™, 1 < p < +o0
and A a sectorial operator in L”(2) with the domain D(A) C W?™?(Q)
and such that Reog(A) > 0. It is easy to see that the estimates of [HE,
Theorem 1.6.1] extend to the real order Sobolev spaces W™ (Q) with
5> 0 (cf. [AM 2]) and the following Sobolev type embeddings hold:

D(A%) c W*™(Q) for s~ ; <2mo:—-;—, r>p, a€l0,1], s >0,
D(A%) C CH®)) for 0 < u < 2ma — g, a e [0,1]. (7)

As shown in [FR], if (4, {B;},9) is a strongly regular e.b.v.p., then
A, = A 4 wld with the domain D(A4,) = ng:’f(ﬂ) is sectorial and
positive in LP(Q2), p € (1,+00), whenever w > 0 is chosen sufficiently
large. Therefore (7) is true for A := A,. '

It is possible to extend (7) to cover all values @ € [0,+00) using
the elliptic regularity theory of [TR] (cf. [C-D, Chapter 1]). Based
on Theorem 1 another proof of such type embeddings, under weaker
regularity assumptions, can also be given.

Corollary 2. Let (A, {B;},Q) be a 2m-th order strongly regular e.b.v.p.
and the coefficients of the main part of A (cf. (2)) be real valued func-
tions. Fiz k € N and assume that

o 90 is of class C2**'m,

* g, € CPTIMIM@), o] < 2m,

o bl e C*'momi(0Q)), Bl <my, j=1,2,...,m.
Then, for a € (0,2*], the following inclusions hold:

D(AZ) c WoT(Q) for s— 3 <2ma-2, r>p, s >0, 2
D(AZ) € C*(Q) for 0< p < 2ma—2, (8)
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where a number w > 0 is assumed to be sufficiently large.

Proof. As a consequence of the Corollary 1, Af,k is a sectorial oper-
ator. Therefore, the embeddings (8) follow immediately from Henry’s
estimates (7) and [KO, Theorems 6.4, 10.3, 10.6]. =

Remark 3. As a consequence of [KO, Th. 10.6], if A is a sectorial,
positive operator acting in a Banach space X, then

(A%)# = A%, for each B> 0. (9)

As is well known, an operator A is sectorial if and only if —A is the
infinitesimal generator of an analytic semigroup. Note that (9) may not
be true if —A is merely the generator of a C%-semigroup (cf. [YO)).
However, for a sectorial operator, the resolvent set of A contains the
complement of a sector of half angle ¢ satisfying 0 < ¢ < %, which is
sufficient for the validity of (9) (cf. [KO] for details).

Remark 4. The question whether the embeddings (7) hold also on the
boundary of the parameter set; i.e., if the strict inequality in the first
line of (7) is replaced by s — 2 < 2ma = Z, is not completely settled.
However, when the operator A has bounded imaginary powers then it is

possible to obtain

X = [L(Q), WipH (D]a C [LP(Q), W™P(Q)]a

= HIM(Q) € WHhen(Q), a € (0,1), (10}

which shows that for p = r, the strict inequality of (7) can be im-
proved to a non-strict one (cf. [SEE], [TR]). But besides the cases
considered in [A-H-S], [P-S], [S-T], the boundedness of A* is not known
without the C*° regularity assumptions introduced in the original paper
[SEE].

Remark 5. For particular operators, like e.g. A = A? with
D(A) = Wl 2,(9)

the result of [P-S] is sufficient to obtain (10). Indeed, combining (9)
with the results of [P-S, Theorem C] we obtain, under C*-regularity of
the boundary, that

D(A%) = D((~Ap)*) = [L2(Q), WiE 5y (Dla
C [L2(9), W42 (Q)]a € WiP(Q), o €0, 1).
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Therefore we can also get a sharp version of (7) in this case.

There are two further reasons for the technical considerations pre-
sented earlier. The first is that one often needs to prove sectoriality
of higher order elliptic operators. The existing literature does not give
sufficient support for such considerations. For example, when studying
higher order problems (A?,{Id,A},Q) or (A% {5%,95}.Q) in L?(Q)
with p # 2 (e.g. in connection with the Cahn-Hilliard equation) one
cannot find the references to ensure that these problems are strongly
regular e.b.v.p.. The result of our note at least partially fills this gap.
Such information follows immediately from Theorem 1 and Remark 2.

A further motivation for these studies is provided by the regularity
theory of higher order semilinear parabolic equations. Regularity con-
siderations for such equations are known in literature. In particular A.
Friedman studied such questions in [FR, Part 3]. Various regular so-
lutions are also considered in [L-S-U]. However, often the assumptions
imposed on the data are too restrictive, in part because the existing
references do not allow anything else.

Consider the initial-boundary value problem

u = —Au+ f(z,u, 2, 2., 0L, (t,z) € RT x Q,
Biu=...=Bnuu=0 on 90, (11)

u(0,z) = ug(z), = € Q.
(mo < 2m — 1) and assume that:

(1) The corresponding triple (4, {B;},Q) with A and B; given in (2),
(3) satisfies the assumption of Theorem 1. Hence, A is a sectorial
operator in X = L?(Q2), p € (1, +00), with D(A) = W{ngf(ﬂ)

(ii) The Nemytskii operator F, F : Xty Xﬁ, connected with f
is Lipschitz continuous on bounded sets for some y € (0,1).

As shown in [C-D, Chapter VII] condition (ii) holds with p > n and
v € (52,1) provided that f has all first order partial derivatives locally
Lipschitz continuous with respect to functional arguments uniformly for
z € 2. Moreover, when u = 0 on 91, we need to assume that Sluzo = 0.
Consider now the problem

u +Pu = F(u), t >0, u(0) = ug, (12)
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on the base space Y. Recall the following existence result of [HE]:

Proposition 2. Let P : D(P) DY — Y be sectorial and positive
operator in a Banach space Y and, for some a € [0,1), F: Y* =Y be
Lipschitz continuous on bounded subsets of Y*. Then, for eachug € Y©,
there exists a unique Y*-solution u = u(t,uy) of (12) defined on its
magzimal interval of existence [0, 7y,) and such that

u€ C([0,7),Y*)nC((0,7), YP)nC((0,7), YY), B€[0,1).

The problem (11) will be considered as an abstract equation (12) on
the space Y = X 7= with sectorial operator P = A, e
X Zm

As shown in [AM 1, p. 260]:

D(P")=D((4 ,)")=Xm".

A
e
Consequently, by Proposition 2 (cf. [HE, Chapter 3]), there exists a
unique X 3= H-solution to that problem such that:

u € C([0,7), X2 +1)NCY((0,7), X =) NC((0,7), X 1Y), B € [0,1).
(13)
If p > n, it is a consequence of (8) that

u € C([0,7), CE™THH(@))NCL((0, 7), CE™+(@)NC((0, 7), CP™+4(Q)),

(14)
whenever 0 < o < 1 — 2. Hence, all derivatives appearing in the main
equation and boundary conditions of (11) can be understood in the
classical sense. In particular, the time derivative @ (strong derivative in
X 5“1:1?) coincides with a pointwise classical time derivative of u(t,z) and
we thus deal with the classical solution to (11).

Remark 6. Restrictilng the operator A to a fractional power space of
higher order than X 2m one can similarly obtain smoother solutions to
(T
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