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ENTIRE FUNCTIONS AND
EQUICONTINUITY OF POWER MAPS IN
BAIRE ALGEBRAS
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Abstract

We obtain that the power maps are equicontinuocus at zero
in any Baire locally convex algebra with a continuous product
in which all entire functions operate; whence is m-convex in the
commutative case. As a consequence, we get the same result of
Mityagin, Rolewicz and Zelazko for commutative Bp-algebras.

B. S. Mityagin, S. Rolewicz and W. Zelazko showed ([5]) that a uni-
tary commutative By-algebra in which all entire functions operate is
necessarily m-convex. Their proof is long and technical. In 3], using a
Baire argument and the polarization formula, we obtain that a unitary
commutative Baire locally convex algebra with a continuous product in
which all entire functions operate is actually m-convex. Our proof is
direct and self contained. In the non commutative case, W. Zelazko ex-
hibits in [8] an example of a non m-convex non-commutative By-algebra
on which all entire functions operate. In his example, the power maps
are equicontinuous at zero. Using a Baire argument and the Mazur-
Orlicz formula, we obtain the same result in a more general context. We
show that the sequence (z — z™), of power maps is equicontinuous at
zero in any unitary Baire 1. c¢. a. with a continuous product in which
all entire functions operate. Whence, as a consequence, our result of [3],
in the commutative case and hence the result of Mityagin, Rolewicz and
Zelazko in commutative By-algebras ([5]).

A locally convex algebra (I. c¢. a. for short) is a Hausdorff locally
convex space which is an algebra over a field K (K = Ror K = C)
with separately continuous product. If the product is continuous in two
variables, it is said to be with continuous product. Let (A, 7) be a locally
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convex algebra the topology of which is given by a family of (p;)ie; of
seminorms. It is said to be multiplicatively m-convex (m-convex for
short) if

pi(zy) < pi(z)pi(y), forallz,y € A, i € I.

A Byg-algebraisa l. c. a. whose underlying locally convex space is a com-

pletely metrisable space. An entire function f(z) = :O% an26n € K,
operates in a unitary L. ¢ a (A7) if, for every z in
A, f(z) = 5% anz™, converges in (4, 7). A topological algebra A

is said to be Q-algebra if and only if the set of all invertible elements of
A is open. For a detailed account of basic properties of general locally
m-convex algebras and Bo-algebras, we refer the reader to [4] and [7).

Here is the main result

Theorem 1. Let (A, 7) be a unitary Baire l. c. a. with a continuous
product. If entire functions operate in A, then the sequence (z — z"), of
power maps is equicontinuous at zero. In particular, if A is commutative,
then it is an m-convez algebra.

Proof. Let U be an absolutely convex and closed neighbourhood of
zero in A, and || - ||y its gauge. The product being continuous, there is
another continuous seminorm | - | such that

|l zy lu<lz||yl, z,y€A.

. . . ‘ i
Since entire functions operate in A, one has sup | 2" |7 < +o0, for every
n

inzin A. Let r: A — R, be the map given by r(z) = sup | = |;I:_

It is clear that r is lower semicontinuous. For every, integer p, set A,

{a € A:r(a) < p}. It is a closed subset of A. By Baire’s argument
there is an integer k such that Ay is of non void interior. Hence, there
is an k9 € Ay and an absolutely convex neighbourhood V of zero such
that 29 + V' C Ag. So for every z in V, we have

| (o +2)" |<k",n=1,2,-

Hence,
I (zo+2)" lu< k", n=1,2,--
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By Mazur-Orlicz formula ([2]), we have

2\ _ 1S~ gy (%0, 3 \" ;

kn) Tl % TR V,ne N*.

(kﬂ) nIJZO( 1) Cﬂ. k-l-knx e My &
Then )
n -
(%)n £ % 200an for U is balanced .

1=

But there exists ¢ > 0 such that LL:,E < c", for every integer n. Thus
T\
(E) € c"U,z€V,ne N*, for U is balanced .

Whence

1
z" € U; for every z € EV, n € N*.

Now if A is commutative, consider the polarization formula

T1Ty Ty = ﬁ;(—l)n—cm (fo?:) ,

icl
where I runs over the collection of all finite subsets of {1,2,---,n}, (1)
the cardinal of I and z;,z5,---,2, elements of A. For t > 0, if z; €

étV,l < i < n, we have

(2nt)™

U.
n!

T1To- Xy E

Then, for ¢ small enough, U contains an idempotent neighbouhood of
Zero.

As a consequence, we obtain the following results

Theorem 2. The sequence (z — z™),of power maps is equicontinuous
at zero on any unitary pseudo complete l. c. a. (A, 7) which is a Q-
algebra and with continuous inverse. In particular, if A is commutative,
then (A, 7) is an m-convez algebra.

Proof. Since (A, 7) is pseudo complete . c. a. with continuous inverse,
the Q-algebra property implies the boundedness of every element. Hence
entire functions operate on A. The commutative case follows from [6].
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Theorem 3. Let (A, 7) be a l. c. a. with continuous inverse. If RadA
is closed, then, in this radical, the sequence (z — z™), of power maps
is equicontinuous at zero. In particular, if RadA is commutative, then
RadA is an m-conver algebra.

Proof. The unitary subalgebra (RadA)! = RadA @ Ce, of A, is closed
such that Rad [(RadA)'] = RadA. It follows that (RadA)! is a Q-
algebra. But, by hypothesis, it is with continuous inverse. Then, by
Theorem 2, the sequence (z — z"), of power maps is equicontinuous at
zero on (RadA)' and so on RadA. If A is commutative, the conclusion
follows also from Theorem 2.
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