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BREAKDOWN IN FINITE TIME OF
SOLUTIONS TO A ONE-DIMENSIONAL
WAVE EQUATION

Mokhtar KIRANE and Salim A. MESSAQUDI

Abstract

We consider a special type of a one-dimensional quasilinear
wave equation wy — ¢(2¢)wzz = 0 in a bounded domain with
Dirichlet boundary conditions and show that classical solutions
blow up in finite time even for small initial data in some norm.

1 Introduction
Consider the following hyperbolic system
u(z,t) = A(u(z, t))ug(z,t), (1.1)

where u : I x (0,7) — IR" is a vector-valued function, A is an (n x n)
matrix, and [ is an ( bounded or unbounded ) interval. For the Cauchy
problem, results concerning global existence and finite life span have
been established by many authors. The first who discussed such a
problem, in its generality, was John [4] in 1975. He showed that any
C? solution of (1.1) blows up in finite time if the initial data ug(z) =
u(z,0) is of compact support and satisfies that max, {s%|uy ()|} is small
enough. Here s denotes the length of supp ug. His proof makes a cru-
cial use of the local strict hyperbolicity of the system (1.1) in the sense
that the eigenvalues of A(u) are real and distinct in a neighborhood
of u = 0. Ta-Tsien et al [14] discussed (1.1) associated with decaying
initial data. They proved a global C! solution for the Cauchy prob-
lem if, in addition to the local strict hyperbolicity condition, (1.1) is
weakly linearly degenerate and the initial data satisfy, for 4 > 0, that
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maxg {(1 + |z]) 1 (Jug ()| + Iuo(:r}l)} is small enough. They also es-
tablished a blow up result of C! solutions for non weakly linearly degen-
erate systems. As they pointed out, their work generalizes their result of
[13] to the case of initial data with no compact support but they possess
certain decay properties.

For the case n = 2, the situation is less involved and interesting re-
sults have been obtained. For instance, the system of nonlinear elasticity

w(z,t) = @ (v(z,1) vz(2,1),  vi(,1) = uz(a,1), (1.2)

has been discussed by Lax [7] and MacCamy and Mizel [8]. In his work,
Lax required, in addition to ¢ > 0, that ¢’ > 0 and showed that classical
solutions break down in finite time however smooth and small the initial
data are. Whereas MacCamy and Mizel allowed ¢’ to change sign and
proved a similar result. They also showed, under appropriate conditions
on ¢, that there are z-intervals, for which the solution must exist for
all time even though it blows up for values of z outside these intervals.
Messaoudi [11] discussed the following system

us(z,t) = a(z)p (v(z, t) va(z,t) ve(z,t) = uz(z, ), (1.3)

which models a transverse motion of a string with variable density. He
showed that Cl-solutions develop singularities in finite time if the initial
data are taken with large enough gradients.

For systems with dissipation, we mention the equations
Or+c(0)gz=0  q+0(0)0: =—A(0)q, (1.4)

which describe heat propagation in materials that predict finite propa-
gation speed. This phenomenon is called second sound (1], [2], [9] and
(10]. Here @ is the difference temperature and g is the heat flux. The
Cauchy problem was studied by Messaoudi [9] and a blow up result for
classical solutions was proved. We should note here that, if A is constant
and ¢(f) = —1 then (1.4) reduces to a system describing steady shear-
ing flows in nonlinear viscoelastic fluids. This problem was studied by
Slemrod [12] and a blow up result for classical solutions has been estab-
lished. A similar problem was also discussed by Kosinski [6] and Zheng
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[15] and results concerning global existence and nonexistence have been
accomplished.

For the higher-dimensional case, it is worth mentioning the result
of John [5]. In his work, he considered radial solutions of the three-
dimensional system of elasticity and showed that classical solutions de-
velop singularities in finite time.

In the present paper we are concerned with a quasilinear hyperbolic
system of the form

wie ) =0 (X20) os(s, 5

vt(mi t) = Ug (mi t)

u(z,t)
v(z,t)

Note that ¢ ( ) has a dimension of velocity.

We will study (1.5) together with initial and boundary conditions
and show that Cl-solutions blow up even for small and smooth initial
data. Our result cannot be directly deduced from the results of [4] and
[14] since we do not impose the same conditions regarding the size and
the regularity of the initial data (See, for instance, theorem 1.2 of [14]
and lemma 3.1 below).

This work is divided into two parts:

In part one we state, without proof, a local existence theorem.
In part two, our main result will be stated and proved.

2 Local Existence

We consider the following problem

wiz, ) = ¢ (52 ) vala, (21)
v(z,t) = us(z,t), VeelI=(0,1), t>0 (2.2)
u(z,0) = up(z), v(z,0) =vo(z), Vz el (2.3)

u(0,2) = u(1,t) =0, vz(0,t) = v,(1,¢), t>0 (2.4)
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where ¢ is a C? strictly positive function; i.e

pl)>k>0, VEER. (2.5)

We also require

ug € H*(I) N Hy(I), vo € H*(I), wo(z) #0, Vz € [0,1]. (2.6)

Proposition. Assume that ¢ satisfies (2.5) and let ug and vg be given
and satisfying (2.6). Then the problem (2.1) - (2.4) has a unique local
solution (u,v), on a mazimal time interval [0,T), satisfying

u,v € C ([0,T), H*(I)) nC* ([0,T), H'(I)) n C%([0,T), L*(I)) . (2.7)

Remark 2.1. This proposition is a direct application to the results of
Dafermos and Hrusa [3] based on the use of energy estimates.

Remark 2.2. u,v are C? functions by the standard Sobolev embedding
theory.

Remark 2.3. The local existence can be obtained even if we have
©(0) > k > 0 instead of (2.5). In this case, we only consider initial data
Uug
vo

satisfying (2.6) with small enough.

oo

3 Formation of singularities

In this section, we state and prove our main result. We first begin with
: . u o, S
a lemma that gives a uniform bound on - in terms of the initial data.

Lemma 3.1. Let ¢ be as in the proposition. Then for any € > 0 there
exists § > 0 such that for any initial data satisfying (2.6) and

lvolleo <6, [luolleo <6, ) (3.1)

the solution of (2.1) - (2.4) satisfies

u(z, t)

> 0. :
o(@.7) <€, Vz €[0,1], t>0 (3.2)
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Proof. We define the functions and the differential operators

r=hpl+ [Ta@d, s=wmbi- [Tp0e 63

0 uy\ 0 5} uy\ 0

a=gz=r(S)am D=gz+e(l)m

where
1 1
p(€) = Ve(£), alf) = ma B(&) = _‘;’Tg)——f

We then compute

ar =24, [1’5 + a—”*”;z””r] (3.4)

1 1
=1 [(1-e2)o-ome] 4 fou o (1-2) ]

We remind that, unless otherwise stated, o, 3, p, and ¢ are functions of
. By noting that (1 - a%) =ap and p (1 - af%) = ap, (3.4) gives

gir = 0. (3.5)
Similar calculations also yield
D;S =0

Therefore as long as a smooth solution continues to exist and

u(z,t) ’ (u(:::, t)

oo D) (z,7) (36)

r and s remain constant along backward and forward characteristics,
respectively; hence

lIlloo = lIrolloos  IlIslloo = lIsolloo-

To establish (3.6) we note, by virtue of (3.3), that
_ [ ulz,t)
' Sqé(dmﬂ)‘
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is continuous and strictly monotone, so it

where ¢(7) = /T 2‘9—'(;;(?55

admits a continuous inverse 1, at least in a neighborhood of zero. Since
9(€) = p(&) — €2 is continuous and g(0) > , one can choose 7 < ¢ such
that g(¢) > %, for all [¢| < n and choose v > 0 so that |4(€)| < n, for all
|€] < 7. Therefore as long as ||r — s||ec < 7y, we have

Z|=twe-9<n<e (37)

From the definition of r and s, it is easy to see that if 6, in (3.1), is
chosen small enough then we get

[Irolleo + [1s0llc0 < 73 (3.8)

consequently [|r — s||co < [|70]loo +||S0]|c0 < 7. This implies (3.5); hence
u

u u K
9(;) = ‘P(;) - (;)2 2> 7 (3.9)

Therefore (3.6) is established and the proof of the lemma, is completed.

Remark 3.1. By using (3.9) and the boundedness of 7 we conclude,
from (3.3) that In|v| remains bounded. Therefore, with the above choice
of the initial data, v is never equal to zero.

Now, we state our principal result.

Theorem 3.2. Assume that, in addition to (2.5), ¢ satisfies
¥'(0) > 0,

and

' Hss icimt
”—°+a(‘i"-) 2070 ~80% 50, vare o).
Then there exist initial data ug,vq satisfying (3.1), for which the solution
of the problem (2.1) - (2.4) blows up “pointwise” in finite time.

Proof. As usual, we have to derive an ordinary differential inequality
with a quadratic nonlinearity for a combination of v and v from which
the desired conclusion can be drawn.

For this, we take an z-partial derivative of (3.5) to get

0
(atr)z =Tzt — PTzz — Trap =0 (310)
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which, in turn, implies

0y 0 su
Bu(rs) = rag—p = N (;) ; (3.11)

el (9. n-ag ()

and substituting in (3.11), we obtain

By using

O = %[tp - ( ) Jr2 — % [ — (S)Q}rmsx. (3.12)

To handle the last term in (3.12), we set
u

and substitute in (3.12), to get

oW =

4(;:(,0 - (%)2]W B ’\_[('0 (g)z]rzsz +12\'0, (L—‘) . (3.13)

By using equations (2.1), (2.2), and (3.3) we easily deduce
u v(ug — Jfouz) — u(vy — /o

v2

_ vlpvs — Vous) — uluz — /Pva) _ (VPVz — ug)(u + /o) (3.14)

v2 o2
and 8
= —(Vpvz —uz) = = Vg — Ug 3.15
TP = L (B —w). (315
Now we choose A so that
a2, (2 1o (%Y —
/\490 [p (U) Jresz + 1.\ 6, (;J—) =l (3.16)

By combining (3.14) - (3.16) we arrive, by simple computations, at

N(E) _ ()

NORETIOK
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which yields, by a direct integration,
A(E) = '4(¢);

consequently (3.13) reduces to

- '

0 u\2 .
AW = 7lip - (;) W2, (3.17)

If we choose 4 sufficiently small then the coefficient of the quadratic term
in (3.17) remains bounded away from zero by virtue of (3.10), the lemma,
and the continuity of ¢ and A. So there exists a constant k¥ > 0 such that
o 3)2 ST
consequently (3.17) yields
OW > kW, (3.18)

Therefore (3.18) shows that W ( hence r.) blows up in a maximal time
toi = ﬁg, if we choose initial data satisfying (3.1) with derivatives
satisfying Wy > 0; i.e

! ) !
v u UpUp — Ugv
—°+a(—0) 200 50, Vzelol].
(] Vo ‘UO

Remark 3.2. A similar result can be established for ¢/(0) < 0. In this
case we consider the evolution of s; on the forward characteristics; i.e
we repeat the same calculations (3.10 )-(3.18) with s and D;s.
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