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GLOBAL EXISTENCE AND DECAY OF
SOLUTIONS OF A COUPLED SYSTEM OF
BBM-BURGERS EQUATIONS
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Abstract

The global well-posedness of the initial-value problem associ-
ated to the coupled system of BBM-Burgers equations

Up — Uzzt — A3Vzzt + UPUL + @1 VPV, + a2 (UPV); — €1Uzz =0
bivg — Uzt — b2a3 Uzzg + VPUL + baasuPug + boay (wv?),
—EqUzr =0 (*)

in the classical Sobolev spaces H*(R) x H*(R) for s > 2 is studied.
Furthermore we find decay estimates of the solutions of (*) in the
norm LI(R) x LY(R), 2 < ¢ < oo for general initial data provided
that aZb; < 1 and p > 3. Model (*) is motivated by a work due
to Gear and Grimshaw [10] who considered strong interaction of
weakly nonlinear long waves governed by a coupled system of KdV
equations.

1 Introduction

We consider the initial value problem for a coupled system of BBM-
Burgers equations

Ut — Ugpt — A3Vzzt + UPUL + a1 VPV, + a2(UPV): —E1Uze =0

Dyvp — Vper — bopag Uzzt + VPUL + boasuPur + boay (L‘.'Up)x — EoUzy =0 (11)
with initial conditions
u(z,0) = p1(z), v(z,0) = @a(z) (1.2)
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where u = u(z,t), v = v(z,t) are real functions of the real variables
—00 < z < 00, t > 0. All coefficients in (1.1) are real constants with b; ,
bz, €1, €2 positive and the power p is an integer bigger than or equal to
one.

To motivate our study let us mention some works related with (1.1).
The following coupled system

Ut + Uzgz + 3 Uzzr + uPuz + a; vPug + az(uPv)y —eug, =0
bive + Tvz + gz + b2 @3 Uger + VPV + by ag uPug + boa (uvP),

was originally derived in the case p = 1 and € = 0 by J. A. Gear and
R. Grimshaw in 1984 [10] as a model to describe the strong interaction
of weakly nonlinear, long waves. The Cauchy problem for (1.3) with
p =1 and e = 0 was studied by Bona, Ponce, Saut and Tom (8], and by
Marshall Ash, Cohen and Wang [12].

The asymptotic behaviour in time of solutions of (1.3) was studied
by E. Bisognin, V. Bisognin and G. Perla Menzala in [3]. In particular,
for € > 0, they obtained the following decay estimate

1_:1
(5Ol + (-, t)llpe <Ct R, ast— o0

for any 2 < ¢ < oo, provided that the initial data are sufficiently small,
p>4andalby <1.

Concerning model (1.1), V. Bisognin [5] proved global existence and
the asymptotic behaviour of solutions when ) = € = 0 and b; = 1,
where, under suitable smallness assumptions on the initial data and
p > 4 the following L™ decay estimates are obtained

lu(- )|z < C(L+8)73, |lu(-,8)|lze < C(1+1)"F as t — oo.

Observe that if we consider a; = az = a3 = 0 in (1.1) and (1.3) we
obtain, respectively, BBM-Burgers and KdV-Burgers type equations,
which are well known model equations for long waves in nonlinear dis-
persive media where dissipative effects are considered. The existence
and decay of solutions for these (and related) equations has been inten-
sively studied by several authors in recent years (see [1], [2], [6], [7] for
example and the references therein).
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In this paper we study the global well-posedness and decay of solu-
tions of the initial-value problem associated to the system (1.1) in the
case €1 > 0, g2 > 0. We rewrite (1.1)—(1.2) as follows

by Uy — AUz, + F(U)z = BUy,

U(z,0) = ¢(z)
where
u ©1
U= ! =
(U) ¥ (902)
_ b]_ bla3 _ E;bl 0
A= [b2ﬂ.3 1]’ = [0 €2 ] (16)

and the components of F(U) are given by

F(U) = —J—up"'l +blagu”’u+ pPtl

(1.7)
F(U) = éz_nzupﬂ + baay wvP + pi—lup“

A local solution of (1.4)-(1.5) with initial data in H*(R) x H*(R)
for s > 2 and a3b2 < 1 can easily be obtained by inverting the operator

=bIl-A2 —7 in (1.4) and applying Banach Fixed Point Theorem
to the integral equation associated with (1.4)—(1.5). Here I denotes the
2 x 2 identity matrix. To extend the local solution to a global solution
we use the regularization property of the operator M~ 6 together
with an H' x H! a priori estimate (energy estimate). See sectlons 2 and
3.

Due to the dissipative terms €juz;, £2v,, the energy associated to
the linear system, that is (1.1) without the nonlinear terms, decays to
zero as t — oo, so that we could expect the same behaviour for the
solutions of (1.1)-(1.2) (or equivalently (1.4)-(1.5)). In section 4 we
prove that this in fact happens provided p > 3 . More precisely, if
¢ € H*(R) x H*(R) with s > 2, a3b, < 1 and p > 3, then using our
previous analysis on the linear part studied in section 2 we obtain the
following decay estimates for the solution of (1.4)-(1.5):

(1) NU(-,)llrexpe < C(L+1)~ i Nl x

i ~lr_1
(ii) IIU(-, Mzaxee < CL+ 872D (|l gy + [leoll 1 xz)
for all 2 < ¢ < oo, where in (ii) we also assume that ¢ € L'(R) x L!(R).
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We remark that the above results are proved without any restriction
on smallness of the initial data. However the technique used in this paper
to obtain (i)-(ii) does not apply to the case of 1 < p < 3. Recently,
for the case p = 1, the decay in time of space-periodic solutions of a
generalization of system (1.1) was studied by E. Bisognin, V. Bisognin
and G. Perla Menzala in [4].

Some notations used in this paper are as follows. In general, for X
and Y Banach spaces, the norm of f in X will be denoted by ||f]||x
and in the product X x Y we always consider the norm ||(f,9)|/%xy =
I1f1% + llgll3 . For 1 < p < oo we denote by L” = LP(R) the Banach
space of real-valued functions defined on R whose p-th power is Lebesgue
integrable (essentially bounded in the case p = co) with the usual norm.
In the particular case p = 2 we will denote by (, )2 the inner product
of L2. We denote by f the Fourier transform of a function f. If f €
L?(R) then f € L?(R) and the Fourier transform can be extended to an
isomorphism from L?(R) onto itself. For any real number s, HS = H® (R)
denotes the Sobolev space of order s. We will denote by C' a generic
constant which value can be vary from line to line.

2 Linear estimates
We consider the linear system

U — Ugpt — A3 Vggt — €] Ugzr = 0

b1 vy — b2a3 Uzgt — Vagt — E2 Ve =0
with initial conditions

u(z,0) = p1(z), v(z,0) = pa(z). (2.2)

Our aim in this section is to study some decay estimates of the solu-
tions of (2.1)-(2.2) and prove some facts which will be used in the next
sections.

With the notation of the introduction we rewrite (2.1)-(2.2) as

bl Ut - AU:.:J:t = BUzm y U(:{?,O) = (P(I) (23)

where A and B are as in (1.6), and ¢ = (:z;)
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Let us consider equation (2.3) in the Sobolev space H*® x H* for s > 2.
Recall that M denotes the operator M = b1 — A 5‘1—2; -

Lemma 2.1. Let a%bg < 1 and s > 2. Then the operator M: H* x H® —
H*=2x H*~2 is invertible and its inverse M~" is given by M~ g = K xg,
where K = (kj¢), with kj € L'NL*®, j,£=1,2, and * denotes spatial
convolution.

Proof. The hypothesis a2b, < 1 implies that the matrix A has two pos-
itive eigenvalues Ay, A2. Let P a nonsingular matrix such that P~! AP
is equal to D = [ ,\S]' Given g € H*~2 x H*? consider the equation
b1V — DV, = P~'g. Using the Fourier transform we see that this
equation has a unique solution V € H® x H? for s > 2, which is given

by

by O] .. 1 [b by
= Lilad= oy IS o il 4
|4 [O Lz] * P~™" g, where Lj(z) i\l % exp ( lzl4 [+ |

7 = 1,2. Consequently, U = PV is the unique solution of MU = g. This
shows that M is invertible. To find M~!, let P = (p;¢), P~ = (gje),
U= (;,) and g = (%}). From U = PV we obtain

U2 2

u; = pj1 L1 * (qu191 + q1292) + pj2 L2 * (2191 + g2292)
= (pj1qu1 L1 + pjaga1L2) * g1 + (pj1q12L1 + pjagaz L) * g2,

j = 1,2. This shows that M~'g = K x g, with K = (kj¢), where
kjg = pi1qieL +ijQ2gL2 are all in L! N L.

]
Corollary 2.2. For any g € H® X H® with s > 0, there ezists a positive
constant Cy such that [|M ™! g||gst1xgstr < Collg|lprs-15 -1 -
Proof. The components of the vector M~! g are

kj1 * g1 + kj2 * g2 = pj1q11 L1 * g1 + pjaga1 Lo * ¢
+pi1q12L1 * g2 + pjegaelo x g2, j=1,2

where g = (g;) Thus,

2

-1
1M gllgrsrsgerr £ 3 kst * g1 + Kjz + gall o
Jj=1

427 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 2, 423-443



JARDEL MORAIS PEREIRA GLOBAL EXISTENCE AND DECAY OF ...

2
= llpjrguls * g1 +pjagnLa* g1 +pjigialy * g2
g=1

+Ppjeqae Lo * gollgs+1 < Collg||frs-1 x pro-1

where
1

min(by, A;) " min(by, Ap)

o = max { bieie=,

2
with [|[P[| = 3= |pjq
j!£=1
"

Using Lemma 2.1 we can write (2.3) in the space H® x H® with s > 2

as
Ut = ‘CUa U( !0) =@, (24)

where L= M~'B ai:?' The initial value problem (2.4) has a unique solu-
tion U € C'([0, 00); H® x H®), which is given by U( -, t) = E(t)p, where
E(t) denotes the semigroup of linear operators on H® x H® generated
by L. Therefore, the components u, v of U are the unique functions in
C'([0, oo); H®) satisfying (2.1)—(2.2).

Next we will find explicit formulas for u and v which will allow us to
derive some decay estimates.
Taking the Fourier transform of (2.1) and (2.2) we obtain

Ui(z,t) + A(2)T(2,8) =0,  U(z,0) = ¢(2)
where U = (¥), ¢ = (%) and

] P2
22 [ (b +22)e;  — a32?
A(z) = —
(z) o(z) [—b2a351z2 {1 + Z2)€2]
with 0(2) = by + (1 + b1)2? + (1 — a2by)2* > 0.
Therefore N
U(z,t) = exp (— tA(2))p(2). (2.5)

The eigenvalues of the matrix A(z) are given by
2

A= Ai(2) = 2:(2) ((bl + 22)&'1 +(1+ 22)62 e 5(2‘))
Az = A2(z) = 2:;) ((bl +2%)er + (1 + 2%)es — 5(1)),
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where
1/2
6(z) = {[(51 +2%)e1 — (14 2%)es)” + 4a§b2£;sgz4} .

Computing the matrix exp(—¢(A(z)) and using (2.5) we find

ﬁ(zat) = a’ll(zlt)@l (Z) +a12(za t)¢2(z} (2 6)
9(z,t) = a21(z, t)P1(2) + az(z,t)P2(2) '
where
a“(z,t) = (Al - Ag)_l {(Al - d) exp(—t/\;) — (Ag -_ d) exp(—t/\g)]
ai2(z,t) = (A = A2)"leT (A = d) (A2 — d) [ exp(—tA;) — exp(—tA2)]
az1(z,t) = (A1 — Ad2) " 'c[exp(—tAa) — exp(—tX )]
az(z,t) = (A1 — Ad2) 7' [(A1 — d) exp(=tA2) — (A2 — d) exp(—tA;)]

(2.7)

and
4

= —boaseq — d=(1+2%e 2
c= 203E] O'(Z) ] T z 2 O'(Z)

Using the inverse of the Fourier transform in (2.6) we obtain
u(z,t) = \/% [m[all(z, t)P1(z) + ar2(z, t)p2(z)] exp(izz)dz (2.8)
ol b= % /ﬂ len(=081(2) + an(z, 09a()] expliaz)dz (29)

We also obtain from (2.7) the following inequalities

22 L.
|aij(z,t)| < aexp ("‘ wﬁf)a t,j=1,2 (2.10)
where 1 1
a—max{l (& ? }.(E?ﬂ)i
B "\ber /) ' 2\ e
and

B = e1ea{ max [bye| + €2, €1 + €2 + 2|a3[(52£1£2)”2]}"1‘

Remark. In the above calculation we assumed that a3 # 0. In the case
as = 0 we have

32 ,'2‘.'2
ﬂn(z,t) = exp - _'_Elt ] 022(2‘:, t) =exp| — eat 1
1+ 22 14 22

ai2(z,t) = ag(z,t) =0,
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and we can replace the values of @ and f in (2.10) by a =1 and 8 =

min | €1, 672 without changes on the final results stated in the
min(1,b;)

next theorem.

Theorem 2.3. Let ¢ € H* x H® for s > 2 and agbg < 1. Then we have
the following estimate for the solution of (2.1)-(2.2):

1(w, v)||Loox oo < C(L+8)Y4 ol g1 1 - (2.11)
Moreover, if also ¢ € L' x L', then
()| poosczoe < CL+ ) Y2 (lollgrscmr + lollpier)  (2:12)
and

(s 0)l|L2xrz < CL+ ) (llell2serr + el xzr)- (2.13)
Proof. Taking the norm L™ in (2.8) and using (2.10) we obtain

llu(- Dl < = / a1 (2, 8)] |1 (=) d2

+715_;/_00 la12(2, £)| [$2(2)| d=

% 3 27 1/2
o3
<[ rmen(-Za0)] Gedim +lielim),
(2.14)
Observe that

1 2
=, o—B+27 4
/Izlgl T+22°0F ( 1+ 22 © (2.15)
<ePpaIY %)(

h:l—‘

and

f —*Lwex 2 Bt |dz < 2¢7P v <CQ+t) /2
I:izl 1+22 P 1+ 2 - 0 1+22 - !
(2.16)

for allt > 0, where in (2.15) I'(-) denotes the classical Gamma function.
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Substitution of (2.15) and (2.16) in (2.14) give us the estimate
llu(-, Ol < CU+ )" Nl , t20.  (217)

Similarly, using (2.9) and (2.10) we prove that (2.17) is also true for
v(-,t). This proves (2.11).
Now, observe that

e /I [ 01195(2) dz

2
Z
< ex - —7 Ot | |p; d
Sy g
< 2e3f /0 e~ 3P0+ dz)ll%'“u
1 L
< 2 et B3 T(L)(1 + )7 |lpjllea

and

b [l 019yl ds < 22 (/m ke )%n !
e a1i(z,t)||@i(z)|dz € —

2 a1 1j Pj 1 A\, 1+z — 4 YjllHt
<Ce P pjllm <CA+8)2 |lpjllg, j=1,2

for all £ > 0.
Substitution of these inequalities in (2.14) give us that

i
llu(-, )llze < CA+2)72 (lollmxmm + llellpixer), >0, (2.18)
A similar estimate can be proved for v(-,¢). This proves (2.12).
Finally, using Plancherel’s theorem and (2.6) we obtain

(-, BI22 = 8-, )22 < 2/ la11(z, ) P11 (2) 2 dz
-0
(2.19)

+2 [ ~ Jana(z, ) 21pa(2) 2 de.

e o]

Estimating each integral in (2.19) as before we have

i 215 ()2 o’ gainl
2 |a1j(z, t)l |(pj(z}| dz < —W—e B2 F(E)(l +t 2 ”Qﬁ_;”;l

— o0

— 1
+4a? et |12, < C(L+ )72 (llolI2: + llesl22), ¢>0,
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Thus

-1
lu-, ez < C(L+ )7 (llell2xrz + llellpixz), 0.
A similar estimate is also true for v(-,t). This proves (2.13). ]

Remark. Under the hypothesis of Theorem 2.3, using interpolation we
immediately obtain

_lp_1
1(w,v)||zaxze < CA+ 872" (1ol xan + llellprxrr)

for all 2 < ¢ < co. We also easily obtain from (2.8)-(2.9) and (2.10) the
following estimate

IE®)ellasxns < V2allpllgsxns, &> 0. (2.20)

3 Existence of solutions of the nonlinear system

In this section we shall prove that the initial value problem (1.4)-(1.5)
has a unique global solution U(-,t) in the class C([0,00); H® x H?),
provided that s > 2, a%by < 1 and ¢ € H* x H® and that this solution
depends continuously on the initial data.

We begin observing that for all U, V in H® x H* the following in-
equalities are true

1EU) = F(V)||fexne

3.9
< LUl xrre + [VIso ) WU = Vilgrosme, s>1 D)

[|M~10:[F(U) — F(V))|| rrs x s
< CoCr(|U]] grs—1 x gs—1 (3.2)
HIVlas-1sms-1)P IlU = V|| gro-1xps-1, s>2

where F is defined in (1.7) and Cy, C; are positive constants with Cj
as in the Corollary 2.2.

The proof of (3.1) follows easily from the fact that when s > %,
H*(R) is a Banach algebra and (3.2) is an immediate consequence of
Corollary 2.2 and (3.1).

Theorem 3.1. (Local existence). Let s > 2, a3b, <1 and ¢ € H® x
H?. Then there ezists T > 0 and a unique solution U € C'([0,T}; H® x

H®) of (1.4)-(1.5).

432 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 2, 423-443



JARDEL MORAIS PEREIRA GLOBAL EXISTENCE AND DECAY OF ...

Proof. Using Lemma 2.1 we can write the integral equation associated
with (1.4)-(1.5):

U(-,t) = E(t)p — /ﬂt E(t—o)M 0, FU(-,0))do  (3.3)

where E(t) denotes the semigroup generated by £L = M~1B 3%25 . We
consider the space of functions

Yr = {U € C([0,T]; H® x H®) such that
sup |[U(-,t) — E(t)¢||lgsxus < 1 and U(-,0) = ¢}
0<t<T

with the norm ||U||y,. = sup ||U(-,t)||gsxne, where s > 2.
0<I<T

Let us denote by P(U)( -, t) the right-hand side of (3.3). Using inequality
(3.1) we easily see that P:Yr — Yr is a contraction if T is chosen
sufficiently small. (In fact it sufficient to take T' as T' = [2PC}v2a(1 +
V2a||p||gsx g+ )P+ 71, where C; and « are defined in (3.1) and (2.20)
respectively). By Banach Fixed Point Theorem it follows that there
exists a unique U € Yp satisftying (3:3).

To calculate Uy let V(t) = / Et—o)M 19, F({U(-,0))do,0<t<T.

A direct calculation shows t%a.t
t
Vi(-,t) = c[/ Et—o)M™ 9, F(U(-,0)) do] + M9, F(U(-,t)).
0

Since U(-,t) = E(t)p — V(t), then we conclude that

U(-,t) = LU(-,t) — M8, F(U(-,1))
=M™ 1BU(-,t) — M8, F(U(-,t)),

for all 0 < ¢ < 7. This proves, in view of Corollary 2.2 and inequal-
ity (3.1), that U; € C([0,T]; H* x H®) and that U(-,t) satisfies (1.4).
Obviously U(-,0) = ¢.

To prove uniqueness observe that if U, V are any solutions of (1.4)-
(1.5) in the class C'([0,T); H® x H®) with s > 2, then W = U — V is
also in the same class and satisfies

W, = LW — M™'9,[F(U) - F(V)], W(-,0)=0. (3.4)
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Using (3.4) we have that

= B(t= o)W (-,0) = ~E(t— )M &F(U(-,0)) ~ F(V(-,0)]

Integrating this equation from 0 to ¢ we obtain
t
W(-t) == [ Blt= )M 0[FU(-0)) - F(V(-,0))]do.
0

This equation with (2.20) and (3.2) imply that

W (- ) s xms
< V2aCyCy sup (||[U(-,8)||gsxns+
0<t<T

t
HV(‘,t)l!mxHa)”/o V(i i

By Gronwall’s inequality we obtain W = 0.
21

Using well known techniques (see [13] for example) we obtain the
following

Corollary 3.2. Under the hypothesis of Theorem 3.1 there ezists a
unique solution U € CY([0,T*); H* x H®) of (1.4)-(1.5) with the property
that either T* = oo or T* < 00 and tlTig} NWU(-,t)|| e x e = 00.

Lemma 3.3. Let s > 2, a2by < 1 and ¢ = (p1,92) € H® x H*. If
U e CY([0,T); H® x H®) is a solution of (1.4)-(1.5), then there ezists a
positive constant Cy = Ca(by, be,a3) such that

W Dllaixm < Collellpxm, 0<t<T. (3.5)

Proof. Let u, v be the components of U. Multiply the first equation in
(1.1) by byu and the second equation by v, integrate in the whole space
and add to obtain

1d
5 75 ballullZa + balluallZa + bullol2s + llvel|2s + 2asbs(uz, vs) 1)
+baer||uzl[72 + e2llvzll}2 = 0. (3.6)
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Integration of (3.6) in time give us

ballullZs + balluzllZz + bullvll}2 + [lvzll72 + 2a3b2(us, vz) 12
t
+2/ (b2er|fua (-, 0)lI72 + eallvz(-, 0)l[72) do = balln I3 (3.7)
0

+b2||3x(p1”%2 + bil"{’?”iz + “6::992”%2 + 2&3:’)2(3;;901,33992)L2 .
Observe that if a3b, < £ < 1, then 12a3b2(uz, vz) 2| < b2€llug]|2s +

E:?;'_? ||vz]|2, . Using this fact in (3.7) we obtain

azb
bal[ul|Z2 + b2(1 — &)||ug||32 + byl|v][}2 + (1 - i&i)livxlliz

t
+2/0 (baerlluz (-, 0) ][22 + eallva(-,0)|[22) do (3.8)

aZb
< ballealliz + b2(1 4 OBz 1ll72 + balle2llF2 + (1 T “%—2‘) 1822|122 -

Now, choosing & = %(a%bg + 1) in (3.8) we obtain (3.5), with Cj
depending only on b; , by and aj .

n

Theorem 3.4. (Global existence). Let s > 2, a2by <1 and ¢ € H® x

H?®. Then the initial value problem (1.4)-(1.5) has a unique solution
U € C([0,00); H® x H®).

Proof. By Theorem 3.1 and Corollary 3.2 it sufficient to prove that if
U is any solution of (1.4)—(1.5) in the class C*([0,T); H* x H*), s > 2,
then there exists a positive constant C' = C(s, T, |||l nsxms) such that

supT||U( “yt)||gsxms < C. Since U also satisfies the integral equation
0<t<

(3.3) for 0 < ¢ < T, then using (2.20) and (3.2) we have that
N Ol b x s

t 3.9
< VAl +VERCOCr [ V(- oNliits s do &)
0

From (3.9) and (3.5) it follows that

HUC Ol gzxarz < V2a max (1,5 (14+CoCi Tl G2, )60l 2 2
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By induction we obtain

sup ||U(-,t)||amxpm
. 0<t<T — (3.10)
< 9P (1 4 CoCy Tl ermxcim ) P2 ||| iy e

where m = 2,3,... and n = v2a max(1,C*).

Now, for any s > 2 we choose an integer m such that m < s <m
and use (3.9), (3.10) and the Sobolev imbeddings H® < H™ « Hs~!
to conclude that

UG Ol xus < V2allol|lgs xre + V2 COCI/”U( )l e Ao
”o— 2
< nte*d (1+0001T”‘P”H=><H-)(p+) llellere rre
< (14 CoCr TNl B st ) ™ Hleolbre e

for all 0 < ¢t < T. This proves the theorem.
|
The solution of (1.4)-(1.5) obtained in Theorem 3.4 depends contin-
uously on the initial data in the following sense:

Theorem 3.5. (Continuous dependence). Let s > 2, a3b; < 1 and
Un,U the solutions of (1.4)-(1.5) in C([0,00); H® x H®) corresponding
to the initial data @y, in H® x HS, respectively. If v, — @ in H® x H®
then

lim sup (||Un(-,t) —U(-,t)||lgsxns

n—oo OSI!
H0eUn(-,t) = QU(-,t)|lgsxns) =0,
for all fired T > 0.
Proof. Fixed T' > 0, using the integral equation (3.3) with ¢,, ¢ and
(2.20),(3.2) we obtain the estimate
UR(-58) = U, )|l xms < V2 allen — ollaex s+

V2aCoChsupg<e<r (|Un( -, )| s x s +

||U(-,t)umm)*’/0 TV O e
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for all 0 <t < T'. Therefore, Gronwall’s inequality implies that

sup ”Un( '5t) - U( ’ st)“H"xH" <V 20‘”9”1& = ‘P“H"XH‘ ewnT (311)
0<t<T

where

on = VEGCHC sup (IUn(,OllrswtsHUC, OllgeiePs = 1,2, .

Moreover, using (1.4) with U, and U and (3.11) we have

10eUn(-,t) — QU (-, t)|| s xns (3.12)
S|LUR(-,t) = LU(-, )| e x s
+H|M T O [F(Un(-,t) = F(U(-, )]l e s
< Comax(e1by, b2)||Un(-,t) = U(-, )| s x s
Fwn||Un(-,t) =U(-,t)||ms x s
< V2a[Co max(e1b1, by) + wn] €*T ||on — @l|poxps, 0<t<T.

Since ¢, — ¢ in H® x H®, then using the same arguments presented
in the proof of Theorem 3.4 we show that (w,) is a bounded sequence.
Thus, the conclusion of Theorem 3.5 follows from (3.11) and (3.12).

Remarks. (1) The same results given by Theorems 3.1, 3.4 and 3.5
above can be proved for (1.3) in the case of e; = g9 = 0. In fact, for
this case we can replace the hypothesis s > 2 by s > 1. These results
improve those one presented in [5].

(2) It is also important to observe that in some particular cases, for
example, by = by = 1,41 = aa,|a3| < 1 and &; = €3 = 0, system (1.1)
has solitary wave solutions of the form u(z,t) = v(z,t) = 9¥(z — ct),
where ¢ > 0 and

ch2P . )L/2g) 1P

P(z) = [';‘(P +1)(p + 2)mse 2'1+a3

Thus, an argument similar to that of page 579 of [9] shows that (in this
case) the continuous dependence in Theorem 3.5 can’t be uniform for
allt > 0.
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4 Decay estimates to the nonlinear system

Let us denote by u, v the components of the global solution U of (1.4)-
(1.5) obtained in the last section. From Theorem 3.4 and Lemma 3.3
we deduce that

/Om(uux(-,a)niz a0l il does oo, (4.1)

Theorem 4.1. Under the conditions of Theorem 3.4 and p > 3 we have
the following decay estimate

U(-,8)llpeoxpee < CL+ )T ||l ginm s t20.  (4.2)

Moreover, if also ¢ € L' x L', then

11
IUC Ollzoxze < CL+ 8720 (ol gims + lollpi), >0
(4.3)
for all 2 < g < 0.

Proof. Since U(-,t) also satisfies the integral equation (3.3) for any
t > 0, then we can take the norm L* x L* in (3.3) and use (2.11) to
obtain

Ly
NU(-,t)||Leoxree < C(14+1)77 |||l g x i
(4.4)

t
+C [ +t=0) M0, PO o))l do
0

To estimate ||[M 18, F(U)||g1xm , let 8z F(U) = g = (g1, g2), where

g1 = bivPug + bra1vPv; + braz(uPv),
92 = vPuy + boag uPuy + boay (wv?P), .

From Corollary 2.2 it follows that

IM~10: F(Ulxa < Collgllzexre (4.5)
Using the inequality ||w||p~ < ||u.r||i£,,2 ||'.'_4u||11rl’:_,:E valid for any w € H(R),

the imbedding H! < L*®, and lemma 3.3 we estimate ||g1|| 2 as follows

-2 <
llgrllze < bullullfes luel(Zz llullze + bilas| [[0]175 1Ioll 2 [lvz] 72
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+ bup |aa| ||ul 173 ||uzl|22 | |ul 2 ][] | Lo
+ byag| lullfe [fuzll g2 |l L2 vz ]| L2
< C(lJuzl22 + vzl 22U Lo x 100 (4.6)

A similar estimate is also true for ||gz||;2. From these estimates and
(4.5) we conclude that

IM~10: F(U)l 1 xm < Cllluzllfz + llvzll72)Uleoxre . (47)
Substitution of (4.7) in (4.4) give us
=
U(- t)l|eoxpee < C(1+1)77 ||l g1 x 1
t
+c/ (b b=o)~F B0 ol i
0
where H(t) = |luz(-,t)|[2; + ||va (-, t)||2, is an integrable function on
[0,00) by (4.1) .
By a Gronwall’s lemma (see Lemma 1 of [11]) it follows (4.2).

Now taking the norms L*® x L* and L? x L? in (3.3) and using
(2.12)-(2.13) we obtain respectively

1O, O)llzexzoe < CLA+8)72 (@l + llellzinsr)
+0 [+ 1=0yH (M0, PO o) s
+HIM ™9, F(U(+,0))|1x11)do (4.8)
and
NUC 5 llzaxee < C(L+6)77 (l@llgexre + llellpixzr)
+0 [+ t= o) (70, U o) o
HIM ™8, F(U(-,0))||prxp1)do (4.9)

Let us work with (4.9) first. Using the same notation as before and
lemma 2.1 we have
2

IM~18; F(U)||2xre < Z(Ilkﬂ*mllbz+|ijz*921|w)
i=1

9
< D (lkillzllgn]lze + |kj2llz gallz2)
j=1
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and

2
IM70: FU)llpixrr <) (lkjy * gl + [lkj2 * g2[11)
=1
(4.10)
2
> Ukl gl + lkjallzlg21lzr)

=1

IA

Estimating ||g1||z2 as in (4.6) we find

llgillze < Cllluzlizz + lzll72)1U]| 2L -

We estimate ||g1||;1 as follows

lgallzr < bullullfadllusg] 22 lull2,
+b1|ar| |I152 |[vel |2 |zl | 2 llul 22 ||| 2
+bipla| [[ul[§2 | uall g2 ozl 2 |ull g2 |[v]] L2
+b1ag| ||l 5 [z g2 |vall g2 el 2
< C(H“‘z”?{ﬁ + ”Um”i'z)”U“L"’xL’ .

Similar estimates are also true for ||g2||z2 and ||g2||.1
Thus

1M ™10z F(U)llr2xr2 < ClllusllZa + l[vell32) U] 2 2
(4.11)
IM™10; F(U)||prxpr < C(lluzllfz + llvzll32) U] 2 12

Combining (4.11) with (4.9) we obtain

U llzzxre < CA+07% (llgllzaxce + llellzaces)+

c[ (1+t—0)F HO)|U(-,0)l|panz2 do
0

witlh H () as before. Applying lemma 1 of [11] we conclude that

WUll2xzz < C(L+ )73 (llollp2xre + llollpixpy), 20 (4.12)
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Now, let us estimate ||M 10, F(U)||p1xz1 in terms of ||U||geex oo - Us-
ing similar arguments as before, the Young inequality and (4.12) we
have

3/2

2
llwPuzllps < |lulBallull g2 lluellze < [l P52 ug| 222 || oo

1 3 =
< (711 + 5 luallFo)ilullze < C(A+8)7% + [fugllf2) llull
[uP~ ug]|pr < C(L+ )% + fug||22)|ul|£eo
[vPog||pr < C((1+ )% + |Joz|[22)][v]] Lo
We also have
Pl < ||ulBllullpe|[vall L2 |ul Lo
2 1/2
< |l P22 e |22 oz 2 el oo
< (|lul|% +||u:1| 22+ 2||vzl|22)| | oo
< O +8)7F + |lugl2e + llval22)|ullze
Consequently
lgtllz < CUA+8)7% + |[ugll2e + |val[22)||U ]| poo s poo (4.13)

A similar estimate is also true for ||g2||;1 .This fact with (4.13) and
(4.10) imply that

IM18, FO)llaxz < O + 8% + llualBa + [loalZ)1U oo
(4.14)
Combining (4.14)-(4.7) with (4.8) we obtain
U )l|leoxree < C(lt+ £)~% (||l + lellLixrr)
+C [ +t=0)F HONU( )12z do
0
where 5
H(t) = (1+)7% + |Juz(-, )22 + |[oz( -, 1)][32

is an integrable functions on [0,00) by (4.1) and because p > 2. By
lemma 1 of [11] it follows that

; _1
NU(- Ollpeoxre < CA+E)72 (llellgrxa +lellpixzr), t>0 (4.15)
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Finally, from (4.12)-(4.15) and interpolation we obtain (4.3). This com-
pletes the proof of Theorem 4.1. |
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