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Extension and splitting theorems for Fréchet
spaces of type 2.

A. DEFANT, P. DOMANSKI, M. MASTYLO

Abstract

We prove the following common generalization of Maurey’s ex-
tension theorem and Vogt’s (DN)-(2) splitting theorem for Fréchet
spaces: if T is an operator from a subspace E of a Fréchet space G
of type 2 to a Fréchet space F of dual type 2, then T extends to a
map from G into F" whenever G/E satisfies (DN} and F satisfies

().

In the paper [M} Maurey proved a very strong extension theorem for
Banach spaces: each operator from a subspace E of a Banach space G
of type 2 into a Banach space of cotype 2 extends to the whole space
G. In particular, this implies a result of Kadec and Pelczynski [KP,
Cor. 1] that every Hilbert subspace of L,(u) for 2 < p < oo is always
complemented. It is well-known that in the Fréchet case even a subspace
of a hilbertizable space (i.e., a projective limit of Hilbert spaces) could
be uncomplemented. Thus there is no straightforward generalization
of Maurey’s result. On the other hand, for hilbertizable spaces the
splitting result of Vogt holds {[V3] or [MV2, 30.1]): a closed subspace
F of a hilbertizable Fréchet space G such that F has property (£2) and
G /F has property {DN), is complemented. We will prove (Cor. 4.4)
that a hilbertizable Fréchet subspace F of a I'réchet space G of type
2 (i.e., a projective limit of type 2 Banach spaces) is complemented
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whenever F' and (/F satisfy Vogt’s conditions. Similarly, we prove an
extension version of this result (Cor. 4.5). In view of the preceding
this result seems to be a natural generalization of Maurey’s extension
theorem for Fréchet spaces. The proof is deeply influenced by [V3]. For
recent splitting results see [F] and [FW].

The techniques used are based on interpolation theory and the local
theory of Banach spaces, in particular, a deep result of Kouba [K] (Th.
2.2 below), as well as the very subtle splitting criterion of Vogt [V1] (Th.
3.2 below). In order to make the paper selfcontained and accessible for
non-specialist in one of the involved fields we start with a short presen-
tation of notions and results from interpolation theory, local theory of
Banach spaces and the splitting theory for Fréchet spaces.

Another different generalization of Maurey’s extension theorem for
operators from Fréchet spaces into Banach spaces has been obtained
recently by Peris and the first named author [DP].

In general we follow the notation and terminology of [J], of [DF] (for
tensor products) and of {BL] (for interpolation theory). Operator means
a linear continuous map. An arbitrary Fréchet space E is a reduced
projective limit of a sequence of Banach spaces (E,). We always denote
by if : Ex = E, the linking maps and by i : E — E} the standard
projections. Reduced means that #;(E) is dense in Ex. By || - ||,, we
denote the norm in E, as well as the induced seminorm on E, and by
E’, E" the strong dual and bidual, respectively.

1 - Preliminaries from interpolation theory

A pair X = (Xg, X)) of Banach spaces is called a Banach couple if X,
and X, are both continuously embedded in some Hausdorff topological
vector space A. The couple is called ordered if X, < Xy, where —
means a continuous embedding. For a Banach couple X we form the
intersection XoNX; and the sum X+ X,;. They are both Banach spaces
equipped with the norms

lzll=J(La %) and 2= K(,z %),
respectively, where for ¢t > 0 [BL, 2.6]:

-](t,:t:; X) = max{” T ”Xo!t' |I x ||Xl}
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K(t,z; X) :=inf{|| zo ||x, +t || 21 ||x,: = = Ta + 21,20 € Xo,21 € X1}

A Banach space X is called an intermediate space with respect lo X if
XoNnX;—= X — Xo+ X;.

Let 0 < 6 < I and let X be an intermediate space with respect to
X. Then X is said to be of J-type 8, shortly X € C;(8; X) (respectively,
K -type 8, shortly X € Cx(8; X)) [BL, 3.5.1] if there exists C > @ such
that for all positive £:

2 llx<Ct-0u(t,z; %)  forallz e Xon X,

(respectively, K(t z;X) < ctf | = ||x for all z € X). Moreover,
we need the following two important “interpolation methods”. If X =
(X5, X1) is a Banach couple and 0 < § < 1, then the Lions-Peetre space
X6,1 [BL, 3.1] is given by:

_ o o, dt
Xg, ={zeXot+ X1 zllg,= (fo t_BK(t,x;X)T) < oo},

whereas the complex interpolation space of Calderén [BL, 4.1] is defined
as follows: assuming that X and X, are complex spaces, denote by
F(X) the space of all continuous functions f on the closed strip {z €
C: 0 < Re z < 1} with values in Xg + X, which are analytic on the
interior, and such that the functions f(j + :t) are continuous into X
( =0, 1) and tend to zero whenever |t| = co. Then

| £z xy:= maxsup || f(7 +it) ||x,
1=0,1 ¢eR

defines a norm on F(X), and for 0 < 8 < 1 the interpolation space [X]g
of Calderén is defined by [X]g := {f(6) : f € F(X)} and equipped with
the corresponding quotient norm.

The following proposition is well-known:

Proposition 1.1. Let X = (Xp, X) be a Banach couple.
(a) {BL, 4.1.2] The spaces [X]g are of K-type 0.
(b) [BL, p. 49] An intermediate space X is of J-type 8 if and only

if .Yg‘l — X if and only if there is C > 0 such that

Iz lix<Cllz Bz 1%, forallz e Xon X,.
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Corollary 1.2. Jf X is ordered and X is of K-type v, § < v, then

X = Xﬂ,l‘ In particular, if Y is a Banach space of J-type 0, then
AoY.

Proof. It suffices to show that any z € X belongs to Xg,. Since
K(t,z; X) || = |lx,, it follows that

g - dt
f t_gK(t,:z:;X)T < 0.
1
On the other hand, since X is of K-type v we get

1 _ 1 dt
] t“eK(t,z;X)%SC/ =0 |]:1=”XT<00,
0 o .

which yields || z ||g , < oe.
We will also need the following lemma:

Lemma 1.3. Let (X,Y) be a Banach couple. If Z is an tntermediate
space of J-type 8, then for any f € Z' and any € > 0 there are g € X',
h € Y’ such that

fixay = glxny +hlxny and | glx<e. (1.1)
Proof. For a fixed £ > 0 we equip X @Y with the norm |-|, defined by

|(z, )¢ == max(|| z ||x,¢t ]l y llv)

and obtain an isometry
(XY, J(t (X, )2 (XaeY, ]| |, 1(z) == (=, z).

Moreover, by assumption, the embedding (X NY, J{t,-; (X,Y))) ‘i) Zis
of norm < ct-t (C independent of t).
Now, take f € Z’ and consider j/(f) € (X nY, J(t,;(X,Y)))". Ob-
viously, there is a pair (¢,h) € (X @ Y,|-|,)’ such that
I'(g, k) = 5'(f), (1.2)

and

1 . -
@M=l g llxe +5 LR < 2115 Sz 200

Taking ¢ big enough we get || ¢ ||x+< £. The equality (1.2) means exactly

(1.1).
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2 Preliminaries from the local theory of Banach
spaces

Let us recall (see [Pi2, Ch. 3] or [DF, p. 86]) that a Banach space X is of
type 2 (cotype 2, respectively), whenever there is a constant C' > 0 such

that for any finite sequence (zj,...,%,) € X the following inequality
holds:

. n 1/2
2SI Y am < C (Z | z; IIZ)
£ i=1

i=1
1/2

n n
@3 I ewlZ2C (D liesl") respectively),
£ i=1 i=1

where the first sum }_, is taken over all sequences € = (g;) of signs 1.

The only spaces which are both of type and cotype 2 are the Hilbert
spaces ([Pi2, Th. 3.3] or [DF, 30.5]), while L,(u) is of type 2for 2 < p <
oo and of cotype 2 for 1 < p < 2 (see [DF, Prop. 8.6]). It is also clear
that type is inherited by subspaces and quotients while cotype only by
subspaces.

Proposition 2.1. ([DF, 31.2), [Pi2, Prop. 3.2]) If a Banach space X 1s
of type 2, then X' is of cotype 2.

Remark. This yields that X is of cotype 2, whenever X' is of type
2. The converse holds iff X is so-called K-convex iff X has some type
strictly larger than 1 [Pil].

Now, we call a Fréchet space hilbertizable (of type 2, of cotype 2, of
dual type 2) whenever it is a projective limit of Hilbert spaces (Banach
spaces of type 2, of cotype 2, of spaces with duals of type 2, respectively).
Again it is clear that for Fréchet spaces type 2 is inherited by subspaces
and quotients while cotype by subspaces only. Thus, without loss of
generality, we can consider reduced spectra only. In general, a Fréchet
space of dual type 2 is of cotype 2 while a projective limit of K-convex
Banach spaces with cotype 2 is a Fréchet space of dual type 2.

The following deep result of Kouba [K, Th. 4.4] for completed pro-
jective tensor products @ will be essential:

Theorem 2.2. Let (Xq, X1) and (Y, Y1) be two Banach couples and let
Xo, X1, Yo, Y1 be of type 2. Then (Xo®Yo, X1®Y1) is ¢ Banach couple
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and for 0 < 8 < 1:

[Xo®Yo, X1®Y1lg = [Xo, X1}g&[Yo, Vil

3 Preliminaries from the theory of short exact
sequences

Let us assume that all the considered spaces (E, I, G etc.) are Fréchet.
The following diagram

0 FA3G3E=0 (3.1)

is called short ezact sequence, whenever ker¢g = imj and j, ¢ are a
topological embedding and a quotient map, respectively. If j has a left
inverse (or, equivalently, ¢ has a right inverse), then (3.1) splits. We
say that (3.1) splits locally if for any continvous seminorm || - || on
£ there is another continuous seminorm || - ||y on G and linear map
r @ G = F such that r is a left inverse for 7 and continuous as a
map r : (G,|| - 1) = (F/| - |} Equivalently, local splitting can be
formulated in terms of a linear map £ — G.

The following certainly known fact shows that splitting results usu-
ally lead to extension theorems and vice versa.

Proposition 3.1. Let E, F, G, H be Fréchet spaces, F = proj F,,
G =projG,, H=projH, and T : F — H be an operator.

(a) For each short ezact sequence (3.1) there is a commutative dia-
gram with exact rows:

0 — H 2 Go & E — 0
17 + Ty tid (3.2)
0 — F X5 ¢ 4L B 5 0

(b} The upper row in (3.2) splits iff T eztends onto G.

(c) The upper row in (3.2) splits locally iff for every n there are k
and ! such that the map TY : Fy — H, induced by T factorizes through
some map j,"' 1 Fy = Gy induced by 3.

Proof. (a): Take the closed subspace 4 := {(Ty,—jy) : y € F} C
H & G the quotient Gy := H & G/A and define Ty, jo, g0 canonically.
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(b): If S is an extension of T, then Tp — 7S induces a lifting of
id : E — E into Gg and the upper row splits. Conversely, if R: E — Gg
is a right inverse for qo, then Ty — Rq gives the required extension.

{c): Analogous to (b).

The fact that each sequence (3.1} splits, where E, F are fixed, is
denoted traditionally by Ext!(F, F} = 0. Vogt’s theory of the functor
Ext! gives a very precise criterion which allows to conclude splitting
from local splitting (comp. [V1,Prop. 2.1] and its proof, or [MV2]):

Theorem 3.2. Let F be a projective limit and E a reduced projective
limit of sequences of Banach spaces (F,) and (E,), respectively. Then
every locally splitting sequence (3.1) splits whenever the following suffi-
cient condition holds:

InVEk3IIVmpe>03ArVéeL(E,F) IyeL(E,F),
X € L(E., Fn):{| ¥ IS e and iigil, = il + ip'x.

Note that this formulation is for non-necessarily reduced projective
spectra (Fy,) and an individual sequence (3.1) its proof follows verbatim
the proof in [V1].

In the splitting theory the following conditions play a fundamental
role:

A Fréchet space E has property (DN) iff:

3nVp,0<r<13rCz|p,<Cllz|l "Nz |7 forz € E,
and property (£2) iff:
VEIIVYm 30<v<,Cllz|li<C |zl Itz |l}¥ forz € EL,,

where || z |[i:= supyy, <1 1z(¥}].

It is proved (V2, Lemma 5.7] (comp. [MV2, p. 362]) that property
(DN) of E implies that F is countably normed, i.e., the sequence of
seminorms (|} - ||n) on E could be chosen in such a way that all || - ||,
are norms and ?*! : E, ., — E, are injective, n € N.
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4 Splitting for spaces of suitable type and
cotype

We start with the following local splitting theorem:

Proposition 4.1. Let H and G be Fréchet spaces of cotype 2 and of
type 2, respectively. Then in the following commutative diagram with
ezact rows:

0 — H —y Gg -—— E —>. 0
T7 T Tid

0 — F 25 ¢ L E -5 0

the upper row splits locally.

Proof. Let H be a reduced projective limit of spaces (H,) of cotype 2.
Without loss of generality we may assume that T? : F,, — H, (the map
induced by T') factorizes through a subspace of some G, where G is a
reduced projective limit of Banach spaces (G,) of type 2. By Maurey’s
extension theorem (see the introduction), T factorizes through some
G which, by Prop. 3.1 (c), implies local splitting of the upper row.

Now, in view of Theorem 3.2, we need the following more subtle
version of Vogt’s “Decomposition Lemma” (see [V3, Prop. 2.4] or [MV2,
30.4)):

Theorem 4.2. Let (Fy, E;) and (Fy, Fy) be ordered Banach couples
consisting of spaces of type 2. Assume that E|, Fy are intermediate with
respect to (Eq, E,) and (Fy, Fy), respectively, such that

E, e CJ(T, (Eo, Ez)) and F) € Cj(l — v, (Fz, Fo))

with 0 < 7 < v < 1. Then for any T € L(Ey, F]) and € > 0 there exist
To € L{Ey, Fé), Ty € L{F, Fé) such that

|| To ||€ € and g1t = Toil 4 327y,

where the if denote the linking maps in the respective triples of Banach
spaces.

Proof. Without loss of generality, by taking complexifications if neces-
sary, we may assume that all spaces are complex.
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Let 0 <7 <& <v < 1. By Prop. 1.1 and Cor. 1.2, we obtain the
following continuous inclusions:

9 ;¢
(Eo,Exlg <> By and  [Fy, Fo),_g S A,
and hence, by duality, the following commutative diagram:

d, B FoY R

E
i},T ig,[ iﬂ

(4}
zﬂ
0 T i)
[Eo,Balg — E1 — F = ([Fo, F2le)’

:ﬂ 2] ] zﬂ
E M g rol, o

—

Define S = (59)'Tid € L([Bo, Exlg, ([Fo, F2lp)'} and X := Bo®Fy, ¥ =
F.®@F;. Then, by Kouba’s Th. 2.2,

[X, Y]y = [Eo, E2]g®[Fo, F2]g, (4.1)

and, by the well-known duality of projective tensor products [DF, Prop.
3.2],

([X,Y]g) = ([Eo, E2lp®(Fo, Falg)’ = L([Eo, En)g, ([Fo, Falg)’)-
Hence, Lemma 1.3 applied to § = f € ([X,Y]g)’ yields that there are
To € L(Eg, F}), T2 € L(Ey, F}) such that || Tp ||< € and

Sleer = TolE,0m + T2l B0 -

This means
i55ij = Toig + a7,

which completes the proof.

Remark. The assumption type 2 is only used to derive formula (4.1).

Theorem 4.3. Let F' € () be of dual type 2 and let E € (DN} be of
type 2. Then the following locally splitting short ezact sequence splits

0= F'5G 3 E—=0.
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Proof. We check the condition from Th. 3.2 — without loss of gen-
erality, assume that £ is a reduced projective limit of (F,) with F, of
type 2. Choose n as in (DN) for E and fix k, then { as in {£2) for " and
for any m find 0 < v < 1 and C also as in (§2) for F. Finally, choose p
and 7 < v and a corresponding r as in (DN). Since the (DN) condition
implies that E is countably normed we may assume that the mappings

i B, F, and i By o By
are injective. Now, apply Theorem 4.2 to the triples
E.—E,~E, and FL— F > F,,

where the linking maps are injective also in the second triple because
the spectrum (Fy) is reduced. Fréchet spaces with condition (2) are
quasinormable [MV1] and, thus, distinguished [MV2, 26.18]). Hence F”
is a projective limit of the bidual spectrum (F}/). Since (DN) and (£2)
mean exactly that £, € C;(r, (E,, Ey)) and F] € Cj(1~v, (F;,, F{)) (see
1.1 (b)), we obtain the desired condition from 3.2 for F” and E.

Remark. Note again that the type 2 assumptions on £ and F are only
required in order to make sure that the couples (Ey, E;) and (F),, F})
satisfy Kouba’s formula (4.1).

The following corollary weakens the assumption of the main result of
{V3] and is an analogue of the result of Kadec and Pelczyiiski mentioned
in the introduction:

Corollary 4.4. If F is a hilbertizable Fréchet space satisfying {Q) and
E is a Fréchet space of type 2 satisfying (DN), then the following shor{
exact sequence

0+ F->G—-FE=0
splits if and only if G is of type 2.

Remark. Note that even if F, E are Hilbert spaces, G need not be of
type 2 [ELP]. See also [KP).

Proof. The necessity is obvious, the sufficiency follows from 4.3 and
4.1.

Finally, we state a Fréchet version of Maurey’s extension theorem:
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Corollary 4.5. Let F and G be Fréchet spaces, ' of dual type 2 and
G of type 2. Then every operator T : E — F defined on a subspace B
of G extends to a map Ty : G — F" whenever F' has () and G/E has
(DN).

Remark. Since in the Banach case each map from a type 2 space into
a cotype 2 space factorizes through a Hilbert space ([M] or [Pi2, Cor.
3.6]), the above result implies Maurey’s extension theorem in the Banach
setting.

Proof. Let i : F — F" be the canonical embedding. By Prop. 3.1 (a)},
we obtain the following commutative diagram with exact rows:

0 — F" — Gyg —m G/E — 0
4T 1 tid
0o — E L ¢ 4 G/IE — 0

The duals F). are of type 2, thus the F} are of cotype 2 (Prop. 2.1).
Hence, by 4.1, the upper row locally splits. Now, 4.3 implies that it
splits because G/FE is of type 2 as a quotient of the type 2 space G.
Again, by 3.1 (b), T extends toa map T} : G — F.

Remarks. There are plenty of (reflexive) examples of spaces satisfying
the assumptions concerning F. The most natural seem to be suitable
projective limits of L,(p)-spaces for 1 < p < 2, in particular, some
weighted projective limits of L,. [t is worth observing that, by Holder’s
inequality, such a space with a sequence of weights (w;) satisfies () iff

Vi IIVmIn,C :Cw;”" > Wnwh it — almost everywhere.
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