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1 Introduction

Experimental designs are usually used in a linear context, i.e. assuming that the mean
response can be correctly fitted by a linear model (polynomial of degree one or two
in most cases). This assumption is often associated with the normality of the observed
responses. Some classical and efficient experimental designs are then well known in
this context (see the books of Box and Draper (1987) or Khuri and Cornell (1996)).
However, it is clear that these linear assumptions are inadequate for some applications.

Many books and papers deal with the question of relaxing the linear model and
the gaussian model framework (see, for example, chapter 10 of the book of Khuri and
Cornell (1996) for a synthesis). But there are two main difficulties with this approach.
First, the choice of a good nonlinear model is not always easy. Second, assuming the
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nonlinear model is given, using a classical design (factorial, central composite, etc.) is
not in general the best choice. This fact can be problematic when industrial results are
first obtained with a classical design. If a linear model turns out to be inappropriate it is
then impossible in general to make new experiments because they are too expensive.

Our goal in this paper is to propose another class of solutions. These solutions have
to be, on the one hand, more general than the linear case and the gaussian framework
and, on the other hand, easier to improve than nonlinear modeling.

This intermediate solution consists of the choice of a generalized linear model (see,
for example, McCullagh and Nelder (1989) or Green and Silverman (1994)). In other
words, we assume that the image of the mean response by a given “link function” can
be modelled via a linear relationship. Such an assumption allows us to consider any
responses with a distribution in the exponential family (Bernoulli, binomial, Poisson,
Gamma, etc.) and then we do not have the restrictions of the classical linear case. These
models have been studied in order to construct D-optimal designs (see the book of
Pukelsheim (1993) for the general problem of optimality). The main problem of this
approach is the fact that the information matrix depends on the unknown parameters
of the model. Some authors have then developed Bayesian methods (see Chaloner and
Larntz (1989)) or robust designs (see Chipman and Welch (1996) or Sebastiani and
Settimi (1997)) but these are available only for logistic regression. Our goal in this paper
is to propose a general method of analysis with a simple information matrix, independent
of the parameters of the model. When there is no prior knowledge the canonical link
function is classically used for the modelization of the mean. We prove in the following
that if we use the alternative choice of an appropriate link function, called the surrogate
function, then classical factorial designs can be advantageously used.

Our paper is organized as follows. Section 2 is devoted to notations and preliminary
results concerning the generalized linear model, the Fisher scoring algorithm and
factorial designs. Section 3 makes a link between these methods and the choice of an
experimental design. At the end we present an example of application.

2 Experimental designs and GLM

2.1 The generalized linear model

We consider in the following a generalized linear model as it was introduced by Nelder
and Wedderburn (1972). Suppose that we have n observed responses yi (i = 1, . . . , n)
associated with the independent random variables Yi having the same distribution, a
member of exponential family. Denoting mi = E (Yi) , we then have a generalized linear
model if and only if:

∀ i = 1, . . . , n , g (mi) = xT
i βββ



S. Dossou-Gbété and W. Tinsson 251

where xi ∈ Rr is the vector of independant variables, βββ ∈ Rr is the vector of unknown
parameters of the model and g is the link function (assumed to be bijective and
differentiable). Because Yi (i = 1, . . . , n) is a member of exponential family we have
the following classe of density functions:

f (yi, θi, φ) = h (yi, φ) exp

(
yiθi − v (θi)
φ

)
with φ known. (1)

We say that θi is the canonical parameter of the distribution (associated with Yi) and that
φ is a dispersion parameter. It is usual to use the canonical link function which means
that:

∀ i = 1, . . . , n , g (mi) = θi.

Recall that for every element of an exponential family we have the following relations:

E (Yi) = mi = v′(θi) and Var (Yi) = φv
′′(θi) . (2)

Hence we can write Var (Yi) = V (mi) with V (mi) = φm′i(θi) .

Example 1 Consider the common case of binary responses. Every observed response
yi is then a realization of a Bernoulli distribution of parameter pi (unknown in most
cases). Such a distribution belongs to the exponential family because its density satisfies
relation (1) with :

θi = ln
pi

1 − pi
, v (θi) = − ln

(
1 + eθi

)
, φi = 1 and h (yi, φi) = I{0,1} (yi, φi) .

For the function V and the canonical link function we have mi = pi and Var (Yi) =
pi (1 − pi) so:

V (t) = t (1 − t) and g (t) = ln
t

1 − t
.

2.2 Estimation of the parameters

For a given generalized linear model, our problem is then to estimate the unknown
parameters for the specification of the mean. Using the maximum likelihood method,
our goal is then to maximize the likelihood of the sample or (equivalently) its logarithm,
that is:
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L (y, θθθ,φφφ) =
n∑

i=1

yiθi − v (θi)
φi

+

n∑
i=1

ln (h (yi, φi)) . (3)

The likelihood maximization involves a nonlinear equation for which the solution is not
in closed form. Nelder and Wedderburn (1972) proposed the Fisher-scoring algorithm
in order to find a numerical approximation of the maximum likelihood estimator β̂ββ.
Fisher-scoring is one of the best known quasi-Newton method to solve the likelihood
maximization problem (see Smyth (2002)). For the implementation of this algorithm
we have to choose an initial value βββ(0) for the parameters of the model and then to apply
iteratively the relation:

∀ k ∈ N∗ , βββ(k+1) = βββ(k) +
(
XT W(k)X

)−1
q(k) (4)

where βββ(k) ∈ Rr is an approximation of the solution at iteration k, X is the model matrix
(with n rows and r columns), W(k) and q(k) depend on the vector βββ at iteration k as
follows:

W(k) = diag(ωi, i = 1, . . . , n) with ωi =
1

Var (Yi)

(
∂mi

∂ηi

)2
,

ηi = g (mi) and q(k) as
∂L (y, θθθ,φφφ)
∂β j

for j-th element( j = 1, . . . , r).

Note that the matrix W(k) has to be computed at every iteration because it depends on mi

and mi = g−1(xT
i βββ) depends on the value of the approximation of the solution at iteration

k (vector βββ(k)).

Remark 1 It is also possible to find a vector z(k) such that relation (4) becomes:

βββ(k+1) =
(
XT W(k)X

)−1
XT W(k)z(k).

In other words, the Fisher scoring algorithm is also an iteratively reweighted least
squares method.

2.3 Factorial designs

We assume now that every variable is coded in such a way that its values always
belong to the interval [−1, 1] (this can be done in a very simple way by using a linear
transformation, see chapter 2 of Khuri and Cornell (1996)). A complete factorial design,
for m factors, is then constituted by all the vertices of the cube [−1, 1]m. Nevertheless,
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using such designs is not possible when the number of factors m becomes high (because
of the 2m experimental units). So we also consider in the following some regular
fractions of these factorial designs (see Box and Hunter, 1961a, b). In other words,
we are now working with configurations given by:

1) 2m−q vertices of the cube [−1, 1]m ,

2) n0 central replications of the experimental domain.

Example 2 For m = 3 factors we can consider first the complete factorial design
associated to the design matrix DC (i.e. the n × m matrix with row i made up from
the m coordinates of the i-th design point). Another choice is given by a regular fraction
associated with the matrix DF (with n0 = 1 central point in our case):

DC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1
1 −1 −1
−1 1 −1

1 1 −1
−1 −1 1

1 −1 1
−1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and DF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
−1 1 −1
−1 −1 1

1 1 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This fraction is obtained by keeping the experimental units such that x1x2x3 = +1 where
xi denotes the i-th coordinate of each design point of the factorial part. We say in a classic
way that this regular fraction is generated by the relation 123 = I where 1, 2 and 3 are
the three different columns of the design matrix and 123 is 1�2�3 with � the Hadamard
product operator (also called elementwise product).

In the framework of linear models these factorial designs can be used in order to fit
linear (L) or interaction (I) models such that:

(L) , ∀ i = 1, . . . , n , mi = E (Yi) = β0 +

m∑
j=1

β jxi j ,

(I) , ∀ i = 1, . . . , n , mi = E (Yi) = β0 +

m∑
j=1

β jxi j +
∑∑

j<l

β jlxi jxil.

We denote in the following by D the design matrix, by D j (1 ≤ j ≤ m) the j-th column
of this matrix and we put Q jl = D j �Dl (1 ≤ j < l ≤ m). The model matrix is then given
by:

X = [In | D1 . . .Dm] for the model (L) ,

X =
[
In | D1 . . .Dm | Q12 . . .Q(m−1)m

]
for the model (I) .
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It is well known that the matrix model X is of full rank (i.e. XT X is regular) for the two
models when the factorial design is complete. In the case of a regular fraction then it
will be of resolution at least III for the model (L) and at least V for the model (I) in order
the obtain a full rank matrix X (see Box and Hunter, 1961a, b). When a factorial regular
design is used we have also an orthogonal configuration such that (for the two models):

XT X = diag
(
2m−q + n0, 2

m−q, · · · , 2m−q) .
Example 3 (continuation) The complete factorial design associated with matrix DC can
be used to fit model (L) or (I) . For the regular fraction associated with the matrix DF it
is a fraction of resolution III because it has only one generator (123) and this generator
is a word of length 3. So such a fraction can be used to fit model (L) but is not able to fit
model (I) . In other words the following model matrix X1

F for model (L) is of full rank
but X2

F for model (I) is not (because, for example, columns 2 and 7 are the same):

X1
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X2

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1 −1 −1 1
1 −1 1 −1 −1 1 −1
1 −1 −1 1 1 −1 −1
1 1 1 1 1 1 1
1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3 The surrogate link function

3.1 Modified Fisher-scoring method

Our goal is now to simplify the algorithm of Fisher scoring by dropping out the diagonal
weighting matrix W. This can be done by a judicious choice of the link function. In fact
our objective is:

W = Id ⇔ ∀ i = 1, . . . , n ,
1

Var (Yi)

(
∂mi

∂ηi

)2
= 1. (5)

But we know, from relation (2), that Var (Yi) = V (mi) . Then mi = g−1 (ηi) implies that:

(5)⇔ ∂mi

∂ηi
=
√

V (mi)⇐⇒ 1
g′(mi)

=
√

V (mi).

Our proposal relies on the following lemma:
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Lemma 1 The matrix W is the identity matrix if and only if the link function g satisfies:

∀ i = 1, . . . , n , g′(mi) = V−1/2 (mi) .

Such a function is then called the surrogate link function.

Table 1 gives, for some exponential families of distributions, the surrogate link
functions (depending on t) verifying the differential equations of lemma 1 (with the
additive constant chosen to be zero). We also recall in this table the associated canonical
link functions.

Table 1: Surrogate link function for different distributions.

Distribution of Yi Function V Surrogate link fn. Canonical link fn.

Bernoulli (p) t (1 − t) arcsin (2t − 1) ln
( t

1 − t

)

Binomial B (n, p) t
(
1 − t

n

) √
n arcsin

(
2t
n
− 1

)
ln
( t

n − t

)

Neg. Bin. (n, p) t
( t

n
+ 1
) √

n arccosh

(
2t
n
+ 1

)
ln
( t

n + t

)

Poisson P (λ) t 2
√

t ln t

Gamma G (a, p)
t2

p
√

p ln t
p
t

Remark 2 We have seen in Section 2.2 that the Fisher-scoring algorithm is in fact an
iteratively reweighted least squares method. Then, the use of the surrogate link function
allows us to have an iteratively unweighted least squares method.

The algorithm of Fisher scoring needs also the use of a vector q with j-th element
∂L (y, θθθ,φφφ) /∂β j for j = 1, . . . , r (see section 2.2). We have the following relation, using
the chain rule:

∂L
∂β j
=
∂L
∂θi

∂θi
∂mi

∂mi

∂ηi

∂ηi

∂β j
.

Then we obtain immediately for the likelihood of every sample of the exponential family
(see formula (3)):

∀ j = 1, . . . , r ,
∂L
∂β j
=

n∑
i=1

(yi − mi)
Var Yi

∂mi

∂ηi
[X]i j
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where [X]i j is the element of row i and column j of the matrix model X. This general
relation can be simplified in our case because we have:

ηi = g (mi) with g′(mi) = V−1/2 (mi) so
∂mi

∂ηi
=
√

V (mi).

Thus, we can state the following lemma:

Lemma 2 If the link function is the surrogate link function the vector q is then defined
by:

∀ j = 1, . . . , r ,
∂L
∂β j
=

n∑
i=1

[X]i j y∗i with y∗i =
yi − mi√

V (mi)
.

We see from lemma 2 that the vector q has a very simple expression when the surrogate
link function is used. It needs only the observations y∗i in their standardized and centred
form.

Example 4 (continuation) Consider a random binary phenomenon such that every
observed response yi is a realization of a Bernoulli distribution with parameter pi

(unknown). Here we make the assumption that this phenomenon depends on three
factors and the true response is given by:

∀ i = 1, . . . , n , pi = 0.2xi1 − 0.1xi2 − 0.1xi3 + 0.6

where xi1, xi2 and xi3 are the coded levels for the three factors. In other words, we assume
that the probabilities associated with each Bernoulli distribution can be correctly fitted
by a Taylor series of order one in the experimental domain. We also assume that the
effects of factors 2 and 3 are opposite (and lower) to the effect of the factor 1 on the
response. In order to make a modelization of this phenomenon using the surrogate link
function (such that g (t) = arcsin (2t − 1) in our case) we can consider the following
model (with mi = E (Yi) = pi):

∀ i = 1, . . . , n , arcsin (2mi − 1) = β0 + β1xi1 + β2xi2 + β3xi3.

3.2 Application to factorial designs

Consider a random phenomenon of m factors that may be checked by the experimenter.
We have seen that the choice of the surrogate link function allows us to put the matrix
XT X in place of the initial matrix XT WX in the algorithm of Fisher scoring. The optimal
situation is then reached when a complete factorial design or a well chosen regular
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fraction is used, because we have seen in Section 2.3 that XT X is then a diagonal matrix
(i.e. the design is orthogonal). Now we consider in the following the two non-linear
models given below:

(L∗) , ∀ i = 1, . . . , n , g (mi) = β0 +

m∑
j=1

β jxi j ,

(I∗) , ∀ i = 1, . . . , n , g (mi) = β0 +

m∑
j=1

β jxi j +
∑∑

j<l

β jlxi jxil,

Models (L∗) and (I∗) are then two generalized linear models with a polynomial linear
part of degree one for (L∗) and of degree two with interactions for (I∗) . Using relation
(4) and lemmas 1 and 2 we can state the following simplified iterative treatment when
factorial designs are used:

Proposition 3 Consider the model (L∗) or (I∗) used with the surrogate link function.
For a complete factorial design or a regular fraction of resolution at least III, the Fisher
scoring algorithm is given for the model (L∗) by:

1) β(k+1)
0 = β(k)

0 +
1

2m−q + n0

n∑
i=1

y∗i ,

2) ∀ j = 1, . . . ,m , β(k+1)
j = β(k)

j +
1

2m−q

n∑
i=1

xi jy∗i .

For a complete factorial design or a regular fraction of resolution at least V, the
algorithm of Fisher scoring for the model (I∗) verifies, in addition to the two previous
relations:

3) ∀ j, l = 1, . . . ,m with j < l , β(k+1)
jl = β(k)

jl +
1

2m−q

n∑
i=1

xi jxily∗i .

The implementation of the Fisher scoring algorithm is then very simple in our case
because we only have to apply iteratively results from this proposition and no use of
matrix calculus is needed (in particular we do not have to invert any matrix). Note also
that factorial designs have only two levels, so the values for the coded variables xi j are
only −1, 0 (if at least one central point is used) or 1. This algorithm has to be initialized
by judicious values for β(0). This can be done, for example, by a classic linear regression
on the transformed response (i.e. on the g (yi) with g surrogate link function in place
of the yi). It can also be stopped using different criteria: when the likelihood seems to
be constant (i.e. when |L(k+1)

max − L(k)
max| < ε with ε small positive) or when the estimated

parameters seem to be constant (i.e. when ||β(k) − β(k+1)|| < ε where ‖.‖ is a chosen norm)
for example.

Example 5 (continuation) For the binary responses we assume that the experimenter
has conducted the experiment according to a complete factorial design with two centre
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points (the low number of factors allow us to consider the complete design in this case).
We have then a total of 10 trials given in Table 2 with the probabilities pi associated
for each experimental unit (column pi) and simulated results for the different responses
(column yi).

Table 2: Results for the complete factorial design.

Trial Fac. 1 Fac.2 Fac. 3 pi yi p̂i ŷi

1 1 1 1 0.60 1 0.54 (0.75) 1 (1)
2 −1 1 1 0.20 0 0.27 (0.00) 0 (0)
3 1 −1 1 0.80 1 1.00 (1.00) 1 (1)
4 1 1 −1 0.80 1 1.00 (1.00) 1 (1)
5 −1 −1 1 0.30 0 0.03 (0.00) 0 (0)
6 −1 1 −1 0.30 0 0.03 (0.00) 0 (0)
7 1 −1 −1 1.00 1 0.59 (1.00) 1 (1)
8 −1 −1 −1 0.60 1 0.60 (0.75) 1 (1)
9 0 0 0 0.60 1 0.57 (0.75) 1 (1)
10 0 0 0 0.60 0 0.57 (0.75) 1 (1)

If we have no information concerning the choice for the initial values of the
algorithm, we can take, for example:

β(0)
0 = 1 , β(0)

1 = β
(0)
2 = β

(0)
3 = 0.

Then the iterative treatment of Proposition 3 leads us very quickly (in two iterations) to
the maximum likelihood solution:

β̂0 = 0.143 , β̂1 = 1.376 , β̂2 = −0.719 and β̂3 = −0.719.

In other words, the best fitted model satisfies (∀ x1, x2 ∈ [−1, 1]):

p̂ (x1, x2) =
sin (0.143 + 1.376x1 − 0.719x2 − 0.719x3) + 1

2
.

Predicted values of the probabilities pi are given in Table 2 (column p̂i) with the
predicted responses (column ŷi), that is the values of p̂i rounded to the nearest integer.
We also present, in brackets, results obtained by the classical analysis with the canonical
link function (these results come from the SAS software). We observe the good global
quality of the results since observed responses yi and predicted responses ŷi are always
the same (except, of course, for the two last trials where it is impossible to predict at
once 0 and 1). If we consider probabilities pi we note, on the one hand, that predictions
are very good for half of the experiments (i.e. trials 1, 2, 8, 9 and 10). On the other hand,
these results are not so good for trials 3 and 4 and they are bad for trials 5, 6 and 7. These
problems of prediction are principally due to the small number of trials, and also to the
nature of the responses which give poor information because we have only two levels.
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We can finally note that the adjusted model allows us to find again the correct effect of
each factor (i.e. factor 1 has a preponderant effect on the response and factors 2 and 3
have equal effects, opposite to factor 1).

3.3 Dispersion of the estimations

We know (see Green and Silverman (1994)) that asymptotically the maximum likelihood
estimator of βββ has a Gaussian distribution and a dispersion given by:

Var β̂̂β̂β = φ
(
XT WX

)−1
.

If φ is unknown then it can be estimated by means of Pearson statistics. This result is
very interesting in our case because we know that XT WX is a diagonal matrix and the
diagonal elements are given in the last subsection. So we have the following proposition:

Proposition 4 Consider the model (L∗) or (I∗) used with the surrogate link function
and a complete factorial design or an appropriate regular fraction (of resolution at
least III for (L∗) and at least V for (I∗)). The maximum likelihood estimator β̂ satisfies
asymptotically the following properties:

1) its components are non-correlated,

2) its dispersion is given by:

Var β̂0 =
φ

2m−q + n0
and ∀ j, l = 1, . . . ,m , j < l , Var β̂ j = Var β̂ jl =

φ

2m−q
.

Remark 3 The dispersion parameter φ is needed in order to obtain these different
dispersions. This is not a serious problem in practice because φ has often a simple form
(for example, φ = 1 for a binomial distribution, a Poisson distribution and a negative-
binomial distribution).

3.4 Considering submodels

For m quantitative factors, models (L∗) and (I∗) are not often the best choice because
some linear effects or interactions may be sometimes removed. Then it is preferable
to use a submodel. Propositions 3 and 4 follow from the orthogonal properties of the
model matrix X when the model is complete. These results are then a fortiori true in the
case of a submodel. The main problem for an experimenter is the validation of such a
submodel. In other words, is the chosen submodel really better than the complete model?
To answer to this question it is usually advised to use the notion of deviance (see Green
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and Silverman [6]). For a given model and a submodel, the deviance is defined as:

D = −2 [Lmax (submodel) − Lmax (model)] (6)

where Lmax (.) is the maximal value of the likelihood for the (sub)model (i.e. L(β̂̂β̂β) where
β̂̂β̂β is the maximum likelihood estimator). The choice of the submodel is then a good
alternative when the deviance D is close to zero. In order to quantify this notion we
usually use the following rule: when the model has r unknown parameters and the
submodel has r′ < r unknown parameters, the submodel is then a better one if and
only if:

D < χ2
p−p′,0.05

with χ2
p−p′,0.05 the upper 5% point of a χ2 distribution with (r − r′) degrees of freedom.

4 Application to the geometric distribution

4.1 Utilization of a full model

We consider in this part responses with a binomial negative distribution and, more
precisely, the particular case of the geometric distribution. It is, once again, a very
classical situation and such a distribution is in the exponential family because its density
satisfies relation (1) with:

θi = ln (1 − pi) , v (θi) = − ln
(
1 − eθi

)
, φ = 1 and h (yi, φ) = IN (yi, φ) .

We can illustrate such model by considering experiments made in order to test the tensile
strength of ropes. The experimenter makes identical tractions and the response is then
the number of tractions endured by the rope before breaking. We assume in the following
that the tensile strength of the rope depends mainly on five concentrations of chemicals
(called now factors 1, 2, 3, 4 and 5).

From section 2.3 we consider the surrogate link function g (t) = arccosh (2t + 1) and
we can use the interaction model (with mi = E (Yi) = (1 − pi) /pi):

∀ i = 1, . . . , n , arccosh (2mi + 1) = β0 +

5∑
j=1

β jxi j +
∑∑

j<k

β jk xi jxik.

We consider in the following the experimental design obtained by the regular fraction of
the factorial design such that I16 = 12345.With the addition of three central replications,
we have then a total of 19 experiments given in Table 3 (with 1 denoted by + and −1 by
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−). Responses given in this table are obtained by simulation of geometric distributions
with pi parameters such that :

∀ i = 1, . . . , 19 , arccosh (2mi + 1) =

xi1 + 0.5xi2 + 0.5xi3 + 0.5xi4 − 0.5xi5 + xi1xi2 + 0.5xi1xi4 + 2.
(7)

In other words, we make two important assumptions in this part. First, we assume that
there are only two interaction effects in this phenomenon and they are associated with
the pair of factors {1, 2} and {1, 4} . Secondly, we assume here that we are in “optimal”
conditions because the true model uses the surrogate link function (simulations with
another link function will be used later).
Now we can implement the Fisher-scoring algorithm with a set of simulated responses
(given in column yi of Table 3). Concerning the initial values, we take:

β(0)
0 = arccosh (2y − 1) and all the others components of βββ(0) are zero.

So, the algorithm is initiated with the best choice for a constant model.

Table 3: Results for the fractional factorial design, the full model and the submodel (in
brackets).

Exp f 1 f 2 f 3 f 4 f 5 pi yi p̂i ŷi

1 + + + + + 0.02 40 0.03 (0.02) 39 (64)

2 − − + + + 0.60 1 0.51 (0.50) 1 (1)

3 − + − + + 0.94 0 0.99 (0.94) 0 (0)

4 − + + − + 0.94 0 0.99 (0.99) 0 (0)

5 − + + + − 0.60 1 0.51 (0.63) 1 (1)

6 + − − + + 0.60 2 0.34 (0.52) 2 (1)

7 + − + − + 0.94 0 0.99 (0.97) 0 (0)

8 + − + + − 0.11 7 0.13 (0.10) 7 (9)

9 + + − − + 0.28 4 0.21 (0.29) 4 (2)

10 + + − + − 0.02 72 0.01 (0.01) 70 (76)

11 + + + − − 0.04 20 0.05 (0.05) 19 (19)

12 − − − − + 0.94 0 0.99 (0.89) 0 (0)

13 − − − + − 0.60 1 0.51 (0.44) 1 (1)

14 − − + − − 0.28 5 0.17 (0.26) 5 (3)

15 − + − − − 0.94 0 0.99 (0.97) 0 (0)

16 + − − − − 0.94 0 0.99 (0.64) 0 (0)

17 0 0 0 0 0 0.42 0 0.44 (0.41) 1 (1)

18 0 0 0 0 0 0.42 2 0.44 (0.41) 1 (1)

19 0 0 0 0 0 0.42 1 0.44 (0.41) 1 (1)

The iterations continue until the likelihood increases by only a small amount (i.e. until
L(k+1)

max − L(k)
max < ε with ε = 0.001). Then, we obtain the following estimates after 10

iterations:
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β̂0 = 1.946 β̂1 = 0.971 β̂12 = 1.097 β̂23 = −0.094 β̂34 = −0.145

β̂2 = 0.469 β̂13 = −0.186 β̂24 = −0.067 β̂35 = −0.233

β̂3 = 0.441 β̂14 = 0.435 β̂25 = 0.021 β̂45 = 0.072

β̂4 = 0.731 β̂15 = 0.113

β̂5 = −0.514

The predicted probabilities p̂i and the predicted mean responses (i.e. the rounded values
to the nearest integer of (1 − p̂i) /p̂i) are then reported in Table 3 (results in brackets will
be discussed in the next subsection). We note the global good fit of the model: observed
responses and predicted responses are always very close. The maximum likelihood
associated with this model is equal to −32.523.

4.2 Utilization of a submodel

Our goal in this part is to find a good submodel of the previous full polynomial model.
Again we find that the submodel containing only the interactions x1x2 and x1x4 is
interesting because it is associated with a maximum likelihood equal to −33.531. In
other words, the deviance between the full model (with r = 16 parameters) and this
submodel (with r′ = 8 parameters) is:

D = −2 (−33.531 + 32.523) = 2.016.

But we have χ2
8,0.05 = 15.51 so results from Section 3.4 show us that this submodel

is a good alternative to the full model. The Fisher-scoring algorithm leads us (after 8
iterations and until L(k+1)

max − L(k)
max < ε with ε = 0.001) to the following estimates:

β̂0 = 2.039 β̂1 = 0.987 β̂4 = 0.612 β̂12 = 1.095

β̂2 = 0.396 β̂5 = −0.518 β̂14 = 0.507

β̂3 = 0.429

In conclusion, the best fitted model is then given by the following formula (for every
x = (x1, x2, x3, x4, x5) ∈ [−1, 1]5) :

p̂ (x) =
2

cosh
(
β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 + β̂5x5 + β̂12x1x2 + β̂14x1x4

)
+ 1

Results concerning this submodel are given in brackets in Table 3. Once again, we note
the good quality of predicted probabilities and estimated responses.
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4.3 Quality of the parameter estimations

Results from Sections 5.1 and 5.2 are obtained with only one simulation of the responses
yi (i = 1, . . . , 19). So it is natural to perform now a large number of simulations in order
to evaluate the global quality of this method. Table 4 presents, for each parameter of
the model, the basic statistical results (mean and dispersion) for 1000 simulations of the
geometric distribution.

Table 4: Simulation results.

Param. Mean Variance Param. Mean Variance

β̂0 1.712 0.074 β̂4 0.532 0.100

β̂1 0.967 0.095 β̂5 −0.457 0.099

β̂2 0.556 0.085 β̂12 0.981 0.089

β̂3 0.470 0.095 β̂14 0.485 0.096

Figure 1: Boxplots of values of the estimated parameters; the length of the whiskers is 1.5 times the
interquartile range.

A graphical representation of these results, using boxplots, is also given (Figure 1). We
deduce from Table 4 and Figure 1 that this method of estimation is adequate concerning
the stability of the estimated parameters (i.e. only a very few of these parameters are
outside the whiskers). We have also a good convergence speed of this iterative method
because, for the 1000 simulations, the algorithm needs an average of 8.7 iterations in
order to converge (less than 10 iterations are needed in 94 % of the cases and the
maximum does not exceed 20). Concerning the linear and interaction effects we note
the good quality of the estimated values, with mean and median very close from the
theoretical values of the model of Section 5.1. The only imprecision concerns the general
mean effect β0 which is underestimated.



264 Factorial experimental designs and generalized linear models

Figure 2: Estimation of β2 (histogram and QQ-plot).

Another important problem concerns the validity of Proposition 4. The goal in
statistical planning is to reduce the number of experiments so we must be very careful
with asymptotic results. Nevertheless, some properties of this proposition are true in our
case. First, we find again that dispersions of linear and interaction effects seem to be very
close whereas the dispersion of the general mean effect is smaller (because of the three
central replications). Secondly, Figure 2 (the histogram and QQ-plot for the estimated
values of the parameter β2) shows us that we can assume that this parameter follows a
normal distribution, and we obtain similar results in the case of the other parameters).

We have the same problem for the choice of a submodel with the deviance criterion.
We know that D follows asymptotically a χ2

r−r′ distribution but is this result true for
our 19 experiments ? We have computed, for each simulation, the deviance between
the full model and the chosen submodel with only interactions x1x2 and x1x4. Figure 3
gives a graphical representation (the histogram and QQ-plot) for these deviances. The
line of the QQ-plot represents the best fitted χ2 distribution and we find that it has
6 degrees of freedom (i.e. it is a gamma distribution with parameters 1/2 and 3). In
conclusion, we note that the deviance is close to a χ2 distribution but we have to be
careful because the observed degrees of freedom (6) are smaller than the theoretical
ones (r − r′ = 8). This fact implies that theoretical results lead us to reject the
submodel when D > χ2

8,0.05 = 15.51 but it seems more adequate to reject it as soon
as D > χ2

6,0.05 = 12.59. Note that it has a weak influence for the validation of the
submodel because, for our 1000 simulations, we have only 16 values of D in the interval
[12.59, 15.51].
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Figure 3: Deviance (histogram and QQ-plot).

4.4 Comparison with the classical method

The previous Sections 5.1, 5.2 and 5.3 use simulated responses given by the model
(7) (i.e. responses obtained with the surrogate link function). Now we are going to use
other simulations in order to compare our method to a classical one. For the classical
method we use the GENMOD procedure of the SAS program. In the case of a geometric
distribution this procedure uses by default the logarithm function for the link. So,
responses are now obtained by simulation of a geometric distribution with probabilites
given by (with mi = E (Yi) = (1 − pi) /pi):

∀ i = 1, . . . , 19 , ln (mi) =

xi1 + 0.5xi2 + 0.5xi3 + 0.5xi4 − 0.5xi5 + xi1xi2 + 0.5xi1xi4 + 2.
(8)

This model is then the optimal choice concerning the classical method because it uses
the same link function. The values of the pi are given for each point of the design
in Table 5. For each of these parameters 1000 simulations have been made and the
means of the estimated values for the pi parameters are given in Table 5. We can note
that these two methods gives very close estimations. Note also that the convergence is
obtained for the surrogate link function with a mean of 8.7 iterations (and the number
of iterations is always between 2 and 34) but for the classical method the SAS software
stops the algorithm, in most of the cases, after 50 iterations because the convergence is
not reached.
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Figure 4 and 5 allow us to compare these two methods with a graphical
representation using boxplots of the 17 estimated probabilities associated with every
experimental unit. Once again the two results seem to be very close. Figure 6 is a
graphical representation for the estimated values of the model parameters. We note
that the stability of the estimated parameters is again satisfactory (i.e. all the observed
distributions are very close to a normal distribution).

Table 5: Simulation results (mean values of p̂i) SLF: surrogate link function. CLF:
classical link function.

Exp pi SLF p̂i CLF p̂i Exp pi SLF p̂i CLF p̂i

1 0.06 0.10 0.11 10 0.06 0.10 0.11
2 0.32 0.42 0.41 11 0.10 0.16 0.16
3 0.56 0.64 0.61 12 0.44 0.51 0.50
4 0.44 0.54 0.52 13 0.32 0.41 0.40
5 0.32 0.43 0.42 14 0.22 0.31 0.31
6 0.32 0.39 0.40 15 0.44 0.52 0.51
7 0.44 0.53 0.50 16 0.44 0.52 0.50
8 0.15 0.22 0.23 17 0.27 0.32 0.35
9 0.22 0.29 0.30

Figure 4: Estimated probabilities for the surrogate link function.

4.5 Conclusion

In this paper we have presented a new method in order to extend the classical one
associated with the analysis of a linear model. The constraint of this new method
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concerns the utilization of the surrogate link function. Neverthless, the two examples
of this paper have suggested that this choice for the link is a good choice. This method
has two principal advantages:

1) the Fisher-scoring algorithm is now very easy to improve (and then computations
can be done faster),

2) classical designs like factorial designs, well known in the linear case, can be used.

Figure 5: Estimated probabilities for the canonical link function.

Figure 6: Values of the estimated parameters (natural link function).
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