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ABSTRACT

Let f be a C1 function defined over Rn and definable in a given o-minimal
structure M expanding the real field. We prove here a gradient-like inequality
at infinity in a neighborhood of an asymptotic critical value c. When f is C2

we use this inequality to discuss the trivialization by the gradient flow of f in a
neighborhood of a regular asymptotic critical level.

Key words: �Lojasiewicz inequality, asymptotic critical values, bifurcation values, gra-
dient trajectories, o-minimal structures.
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1. Introduction

Given a C1 function f : U ⊂ Rn → R a �Lojasiewicz inequality in a neighborhood of
x0 ∈ U —the closure of U in Rn for the usual topology— is, for instance, an inequality
that quantitatively compares the behavior of f(x) with the one of |∇f(x)| or |x| in a
neighborhood of x0.

When f is analytic and x0 is a critical point of f , there are at least two well-known
such inequalities. The standard �Lojasiewicz’s gradient inequality (cf. [13]) states that
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there exists a smallest rational number ρf ∈]0, 1[ and a positive constant C such that
in a neighborhood of x0 we have

|∇f(x)| ≥ C|f(x) − f(x0)|ρf . (�L)

Another important inequality, called Bochnak-�Lojasiewicz inequality, states that there
is a constant Cf such that in a neighborhood of x0 ∈ U

|x − x0| · |∇f(x)| ≥ Cf |f(x) − f(x0)|. (B-�L)

These inequalities are very useful once we need to deal with quantitative behavior
of the function. (These two inequalities are key elements in the proof of the gradient
conjecture, see [8].)

The development in the last twenty years of so-called tame geometry, sharing
many nice properties with semialgebraic geometry, lead many mathematicians to be
interested in this sort of quantitative information about a tame function. One will
find more general �Lojasiewicz inequalities, for instance, in Pfaffian geometry (cf. [10])
or in the o-minimal structure generated by semialgebraic sets and the exponential
function (cf. [11]).

Let us fix the framework of this note. Let M be a given o-minimal structure
expanding the real field (see [5] and [6] for the geometric meaning of this notion and
some of its basic and important consequences). In the following by a definable set or
a definable function we will mean a set or a function definable in the structure M.

The first contribution of the notion of �Lojasiewicz’s gradient inequality in the o-
minimal context was provided by Kurdyka in [7]. In this paper, he was interested
in the uniform behavior of the trajectories of the gradient field ∇f , where f is a C1

definable function defined over a bounded open subset U ⊂ Rn. To deal with such
a question one needs more than just the critical values of f . Namely, we say that c
is an asymptotic critical value of f if and only if there exists a sequence {xν}ν ∈ U
such that f(xν) → c and ∇f(xν) → 0. The set of asymptotic critical values is finite
and contains the set of critical values and the singular values on the boundary of U .
We denote by Ka(f) the set of asymptotic critical values. To control the behavior
of the trajectories of ∇f in the neighborhood of asymptotic critical fibres Kurdyka
established the following key result:

Theorem 1.1 ([7]). If f : U → R is a C1 definable function, then for all c ∈ Ka(f)
there exist a constant Kc > 0 and a C1 definable function Ψc : [0, +∞[→ R such that
|∇(Ψc(|f(x) − c|))(x)| ≥ Kc for all x ∈ U and f(x) sufficiently close to c.

Now let us assume that f : Rn → R is a C1 definable function. Assume the
o-minimal structure M is polynomially bounded.

In [4] we proved that for a value c such that f−1(c) is non compact there exist
C > 0 and a smallest ρc ≤ 1 such that for sufficiently large |x| and sufficiently small
|f(x) − c| we have

|x| · |∇f(x)| ≥ C|f(x) − c|ρc . (K-�L)
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In fact we proved this inequality in the semialgebraic context, but the proof extends
easily with exactly the same arguments for C1 functions defined in polynomially
bounded o-minimal structures.

The aim of this note is to prove an analog of inequality (K-�L) when M is not
polynomially bounded. Such an inequality will be useful to decide whether we can
trivialize the function f over a neighborhood of a regular asymptotic critical value c
by the gradient field.

Conventions. Let u and v be two continuous functions of a single variable r
defined over [1, +∞[. We will write w ∼ v to mean that u/v tends to a limit l ∈ R∗

when r tends to +∞. We will write u 
 v if u ∼ v and l = 1.

2. A Bochnak-�Lojasiewicz inequality at infinity near an asymp-
totic critical value

Let f be a C1 function defined over Rn and definable in M. Let us denote by ∇f
the gradient vector field of f for the standard Euclidean metric.

Definition 2.1. A real number c is an asymptotic critical value of the function f if
there exists a sequence {xν}ν ∈ Rn satisfying the following conditions when ν → +∞

(i) |xν | → +∞,

(ii) f(xν) → c,

(iii) |xν | · |∇f(xν)| → 0.

Let us denote by K∞(f) the set of asymptotic critical values of f . Let K0(f) be
the set of critical values of f . Then we recall

Theorem 2.2 ([2]). Let f : Rn → R be a C1 definable function. The set K(f) :=
K∞(f)∪K0(f) is finite. Moreover, the function f induces a locally trivial continuous
fibration over each connected component of R \ K(f).

Unfortunately it is well known, even for a real polynomial function, that the set of
bifurcation values of the function can be strictly contained in K(f) (see for instance
f(x, y) = y(2x2y2 − 9xy + 12) in [15]). Nevertheless we know that any bifurcation
value which is not a critical value is at least an asymptotic critical value (see the
works of Némethi and Zaharia in [14] and Loi and Zaharia in [12] to shrink the set of
asymptotic critical values where to find the regular bifurcation values).

On the other hand, the attempts to better understand the behavior of the trajec-
tories of the gradient field ∇f nearby an asymptotic critical level c of f , lead us to
find a gradient-like inequality at infinity nearby this level for semi-algebraic functions:
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Theorem 2.3 ([4]). Assume that f is semialgebraic. Let c ∈ K∞(f). Then there
exist a smallest rational number ρc ∈ Q∩]0, 1] and a positive constant Kc such that

|x| 
 1 and |f(x) − c| � 1 =⇒ |x| · |∇f(x)| ≥ Kc|f(x) − c|ρc .

As a consequence (cf. [4]), if f is C2 and ρc is strictly smaller than 1, then we can
trivialize by the gradient flow of f over a neighborhood of c (and so shrink the set of
asymptotic critical values that could be bifurcation values).

Let R≥0 be the interval [0, +∞[. In the definable context the first gradient-like
inequality at infinity is given by the following

Lemma 2.4 ([3]). Let f : Rn → R be a C1 definable function. Let c be an asymptotic
critical value of f . There exists a continuous definable and non constant function
Ψc :]c − 1, c + 1[\{c} → R≥0, such that

|x| 
 1 and 0 < |f(x) − c| � 1 =⇒ |x| · |∇(Ψc ◦ f)(x)| ≥ 1.

This inequality can be rephrased as

Lemma 2.5. Under the hypotheses of Lemma 2.4, taking ν :]0, 1[→ R≥0 such that
ν(t) = min{|Ψ′

c(c − t)|−1, |Ψ′
c(c + t)|−1}, we obtain

|x| 
 1 and |f(x) − c| � 1 =⇒ |x| · |∇f(x)| ≥ ν(|f(x) − c|).

Since c ∈ K∞(f), we necessarily must have that ν tends to 0 near 0. The first
issue about this inequality is to be able to find the “best” function ν (i.e., the biggest).
The second is, knowing the “best” such function, to be able to have a quantitative
information about its asymptotic behavior when we get close to 0.

For this purpose we will use an elementary lemma about the growth properties of
germs at infinity of a single real variable definable functions, which here is an analog
of what was done by Kurdyka and Parusiński in [9].

Let us denote by R�1 the germ at infinity of [1, +∞[. Let us recall that if ϕ
is the germ of a definable function in a single variable r at infinity, and if ϕ̃ is a
representative of ϕ over [R, +∞[, then for any positive integer k, there exists Rk ≥ R
such that ϕ̃ is Ck on the interval ]Rk, +∞[, and each derivative is either constant or
strictly monotone.

Lemma 2.6. Let ϕ, ψ : R�1 → (R≥0, 0) be non ultimately zero definable functions.
Assume that ϕ > ψ. Let K > 1 be given. Then for r large enough we get

ϕ′(r) ≤ ψ′(r) and K
ψ′

ψ
≤ ϕ′

ϕ
.
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Proof. Since ϕ−ψ is a positive function and tends to 0 at +∞ then, by monotonicity
the derivative (ϕ − ψ)′ increases to 0 at infinity, hence we get the first inequality.

Let us first choose K = p/q > 1 to be a rational number such that p and q are
positive and relatively primes. Let v be the definable function defined as v := ψpϕ−q.
Since 0 < v ≤ ψp−q, we get that v tends to 0 at infinity and thus v′ ≤ 0, which
provides

ψp

ϕq

[
p
ψ′

ψ
− q

ϕ′

ϕ

]
≤ 0,

and thus get the second inequality when K is a rational and by density the proof is
over.

Let us come now to the main result of this section, that is, a Bochnak-�Lojasiewicz
inequality at infinity nearby c.

Proposition 2.7. Let f : Rn → R be a C1-definable function defined over Rn. Let c
be an asymptotic critical value of f . Then there exist positive constants R, ε, and K
such that

if |x| > R and |f(x) − c| < ε, then |x| · |∇f(x)| ≥ K|f(x) − c|.

Proof. Assume this does not hold. Then, by the Curve Selection Lemma at infinity
there exists a definable curve γ : R�1 → Rn such that |γ(r)| = r and

lim
r→+∞ f(γ(r)) = c and lim

r→+∞
|γ(r)| · |∇f(γ(r))|

|f(γ(r)) − c| = 0. (1)

Let v be the definable function defined as v(r) = |f ◦ γ(r) − c|.
Under the hypothesis (1) the following holds true.

Lemma 2.8. rv(r) → 0 when r → +∞.

Proof. Assume this is not the case. Hence, there exists a constant M > 0 such that,
ultimately, v(r) ≥ M/r. Taking the derivatives we obtain

M/r2 ≤ |v′(r)| ≤ |γ′(r)| · |∇f(γ(r))|.

Note that |γ′(r)| → 1 when r → +∞. Then there exists l > 0 such that ultimately

r|∇f(γ(r))| ≥ l/r ≥ l

M
v(r).

Hence, r|∇f(γ(r))| · v(r)−1 has a non-zero limit as r tends to infinity. A contradict-
ion.
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We can end the proof of Proposition 2.7. Since |γ′(r)| → 1 as r → +∞, there
exists a positive constant M ′ > 0 such that

|γ(r)| · |∇(f)(γ(r))|
|f(γ(r)) − c| ≥ M ′ r · |v′(r)|

v(r)
.

Let w(r) = 1/r. Then

r
|v′(r)|
v(r)

=
w(r)
|w′(r)|

|v′(r)|
v(r)

.

Since v and w are definable and v/w → 0 at infinity, for r large enough, w − v is
positive and decreases to 0. From Lemma 2.6, there exists a positive constant A > 0
such that ∣∣∣∣ w(r)

w′(r)

∣∣∣∣ ·
∣∣∣∣v

′(r)
v(r)

∣∣∣∣ ≥ A,

which contradicts (1).

Remark 2.9. The proof of Proposition 2.7 is straightforward when M is polynomi-
ally bounded. In this case we can conclude without Lemma 2.6 because for all non
ultimately zero definable function v in the single variable r, the function rv′/v has a
non zero limit as r goes to infinity. The reason is that the Hardy field of M has rank
one in this case.

3. Main result

Let f : Rn → R be a C1 definable function and assume c ∈ K∞(f). There is an
explicit way to produce the “best” function ν satisfying Lemma 2.5. For |x| 
 1 and
0 < |f(x) − c| = t � 1 let us define the function mc as

mc(t) = inf{ |x| · |∇f(x)| : |f(x) − c| = t }.
This function is well defined and positive since any such t is a regular value and not
an asymptotic critical value. Moreover mc is definable in M, and thus continuous
over a small interval of the form ]0, b] and satisfies the inequality of Lemma 2.5.

As a consequence of the inequality of Proposition 2.7, we actually get

Proposition 3.1. Under the previous hypotheses we have:

(i) There exists A > 0 such that for 0 < t � 1 we have mc(t) ≥ At.

(ii) If |x| 
 1 and |f(x) − c| � 1 then |x| · |∇f(x)| ≥ mc(|f(x) − c|).
(iii) Any definable function v satisfying points (i) and (ii) instead of mc satisfies

mc(t) ≥ v(t) for all sufficiently small t > 0.
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Proof. Point (i) is a direct consequence of Proposition 2.7 while point (ii) is just the
definition of the function mc. Point (iii) comes from the fact that mc(t) is the infimum
of the function |x| · |∇f(x)| taken on the level hypersurface f−1(t) outside a (given)
ball of large radius. A function v > mc would contradict this infimum property.

Remark 3.2. If M is polynomially bounded, then the function 1/mc of Proposition 3.1
is of the form 1/mc(r) 
 Cr−ρ, with C a positive constant and 0 < ρ ≤ 1 is an
exponent lying in the field of the exponents of the Hardy field of M.

The next consequence is the analog in the current context of [4, Theorem 4.4]. We
here assume that f is actually C2 and c ∈ K∞(f) \ K0(f). Then

Theorem 3.3. If the function 1/mc is integrable on an interval of the type ]0, b], then
we can trivialize the function f over a neighborhood of c by the gradient flow of f .

Proof. The proof is adapted from [4, Theorem 4.4]. For simplicity we shall only work
with values t < c. Let t0 < c be such that [t0, c] ∩ K(f) = {c} and let R > 0
be a real number such that Proposition 3.1 holds in f−1([t0, c[) ∩ {|x| > R}. Let
x0 ∈ f−1(t0) ∩ {|x| > R} and let γ be a (maximal) trajectory of ∇f parameterized
by the levels of f , that is satisfying to the following differential equation

γ′(t) = X(γ(t)), with initial condition γ(t0) = x0 ∈ f−1(t0), (2)

where X is the vector field ∇f/|∇f |2. Thus for all t we obtain f ◦ γ(t) = t.
Integrating equation (2) between t0 and t < c, we obtain

∫ t

t0

γ′(s) ds =
∫ t

t0

X(γ(s)) ds (3)

From equation (3), we get a first inequality

|γ(t)| � |γ(t0)| +
∫ t

t0

ds

|∇f(γ(s))|
Using Proposition 3.1, it provides

|γ(t)| � |γ(t0)| +
∫ t

t0

|γ(s)|
mc(|s − c|) ds

Then Gronwall Lemma gives

|γ(t)| � |γ(t0)| exp
∫ t

t0

ds

mc(|s − c|)
When 1/mc is integrable, |γ(t)| has a finite limit when t tends to c. So each trajectory
passing through a point of the level t0 has finite length between the levels t0 and c.
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Thus the flow of ∇f maps injectively the whole level t0 into the level c. To conclude
we use an embedding theorem proved by the first named author [3], stating that any
connected component of the level c is injectively mapped into a connected component
of the level t0 by the flow of −∇f . Thus the trivialization by the gradient near c is
proved.

4. The Riemannian case

In this section we assume that f : M → R is a C1 definable function defined on a
C2 definable submanifold M ⊂ Rn equipped with the definable Riemannian metric g
induced by the standard Euclidean metric of Rn. We also assume that M is closed,
connected, unbounded and without boundary. We respectively denote by |·|g and ∇g

the norm and the gradient with respect to the metric g.
In this setting it makes sense to study the function |x| · |∇gf(x)|g and again to

define the set K∞(f) of asymptotic critical values of f with it. It was proved in [2]
that K∞(f) is finite and in [3] that Lemma 2.4 holds with this setting.

In this context, it is easy to verify that the results stated in the present paper are
also true. Let c ∈ K∞(f). For sufficiently small t > 0, let mc be the function defined
as mc(t) = inf{|x| · |∇gf(x)|g : |f(x) − c| = t}, then the following holds true.

Proposition 4.1.

(i) There exists A > 0 such that for 0 < t � 1 we have mc(t) ≥ At.

(ii) If |x| 
 1 and |f(x) − c| � 1 then |x| · |∇gf(x)|g ≥ mc(|f(x) − c|).
(iii) Any definable function v satisfying points (i) and (ii) instead of mc satisfies

mc(t) ≥ v(t) for all sufficiently small t > 0.

Similarly, the main result of this paper extends in this setting as

Theorem 4.2. If the function 1/mc is integrable on an interval of the type ]0, b],
then we can trivialize the function f over a neighborhood of c by the flow of ∇gf .
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