
Entropy Numbers of General Diagonal
Operators

Thomas KÜHN
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ABSTRACT

We determine the asymptotic behavior of the entropy numbers of diagonal op-
erators D : �p → �q, (xk) �→ (σkxk), 0 < p, q ≤ ∞, under mild regularity
and decay conditions on the generating sequence (σk). Our results extend the
known estimates for polynomial and logarithmic diagonals (σk). Moreover, we
also consider some exotic intermediate examples like σk = exp(−√

log k).
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Introduction

During the last decade there has been a considerable interest in entropy numbers
of Sobolev embeddings, see e.g. the monograph by Edmunds and Triebel [4], the
article [6] (and the references given therein), or the very recent papers [3, 10–12].
This interest has its origin in applications to spectral theory of (pseudo-)differential
operators, via the famous Carl-Triebel inequality. For details we refer to [4].

Estimating entropy numbers of function space embeddings is not an easy task.
The first step is usually a reduction to a simpler problem in sequence spaces, using
wavelet bases, atomic or subatomic decompositions. The resulting sequence spaces,
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however, are still quite complicated, often they are of mixed-norm type and/or involve
weights. Therefore a further reduction is necessary, which leads to diagonal operators
in �p-spaces. This connection is our main motivation in the present paper.

In most cases where optimal entropy estimates for diagonal operators are known,
the corresponding diagonal is of a very special form, e.g., σk ∼ k−α or σk ∼ (log k)−α

(see [1, 3, 9]). We want to establish sharp upper and lower bounds under less restric-
tive assumptions. Our general results (Theorems 2.2, 3.2, and 3.3) apply to many
concrete cases, e.g., to all sequences of polynomial type (P) or logarithmic type (L),
as defined in section 1. Moreover, we give almost sharp estimates for some interesting
intermediates examples like σk = exp(−√

log k).
The organization of the paper is as follows: In section 1 we fix notation and

state some known results for later use, in sections 2 and 3 we consider polynomial
respectively logarithmic diagonals, and in section 4 we deal with the intermediate
case.

1. Notation and preliminaries

Now we fix notation and state some preliminary results which will be needed later.
Let X and Y be quasi-Banach spaces. The k-th entropy number of a bounded linear
operator T : X → Y is defined as

ek(T ) = inf{ ε > 0 : T (BX) can be covered by 2k−1 balls of radius ε in Y },
where BX denotes the closed unit ball in X. Other related quantities are the approx-
imation numbers

ak(T ) = inf{ ‖T − L‖ : rankL < k }.
These numbers enjoy many nice properties like additivity, multiplicativity, etc., and
entropy numbers behave, in addition, well under interpolation. The details (for opera-
tors in Banach spaces) can be found in the monographs [7,13] (see also [4]), concerning
the extension to quasi-Banach spaces. Clearly, an operator T is compact if and only
if limk→∞ ek(T ) = 0, thus the rate of decay of the sequence (ek(T )) describes the
‘degree’ of compactness of T . In the sequel we need the following relation between
approximation and entropy numbers.

For every α > 0 there is a constant cα > 0 such that

sup
k≤n

kα ek(T ) ≤ cα · sup
k≤n

kαak(T ) for all n ∈ N. (1)

The properties of entropy numbers imply that

L(e)
α (T ) := sup

k∈N

kαek(T )

defines a quasi-norm (on the vector space of all operators T : X → Y for which this
quantity is finite). In fact, this quasi-norm gives rise to a complete quasi-normed
operator ideal in the sense of Pietsch [13].
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As usual we denote by �p, 0 < p < ∞, the space of all (real or complex) sequences
x = (xk) such that

‖x‖p :=
( ∞∑

k=1

|xk|p
)1/p

< ∞

(with the usual modification for p = ∞). Then (�p, ‖·‖p) is a quasi-Banach space
(even a Banach space for 1 ≤ p ≤ ∞). By �n

p we denote R
n resp. C

n equipped with
the analogue of ‖·‖p.

The following basic result is essentially due to Schütt [14], who considered Banach
spaces. The extension to the quasi-Banach case can be found in [4] (see also the
supplement in [8]), which will be used later.

Let 0 < p < q ≤ ∞, and set λ := 1/p − 1/q. Then one has

ek(id : lnp → lnq ) ∼

⎧⎪⎪⎨
⎪⎪⎩

1 if 1 ≤ k ≤ log n,(
log(1+ n

k )
k

)λ

if log n ≤ k ≤ n,

2− k−1
n n−λ if k ≥ n

(2)

for real spaces. For complex spaces the same result holds, if we replace on the right-
hand side n by 2n. As a consequence we obtain in both cases

L(e)
α (id : lnp → lnq ) ∼ nα−λ whenever α > λ.

If σ = (σk) is a scalar sequence, then we denote by Dσ the mapping (xk) 
→ (σkxk).
This defines a bounded linear operator Dσ : �p → �q if and only if σ ∈ �r with
1
r + 1

p ≥ 1
q . Since we are interested in compact operators, we can assume that

limk→∞ σk = 0, and by the properties of the (quasi-)norms in �p and �q we can
furthermore assume that (σk) is real and non-increasing.

Clearly we cannot expect to obtain the correct entropy behavior for arbitrary
diagonal operators, without any condition on the generating diagonal. In fact, the
entropy numbers may behave quite irregular. Therefore we have to pose certain
reasonable regularity and decay conditions. On one hand they should be general
enough, so that many natural examples are included, but on the other hand they
should also be easy to check. In order to find out appropriate conditions, we list and
analyze some relevant examples which should at least be covered.

Given two sequences of positive real numbers (ak) and (bk) we write ak � bk, if
there is a constant c > 0 such that ak ≤ c · bk for all k ∈ N, while ak ∼ bk will stand
for ak � bk � ak. Logarithms are always taken in base 2, log = log2.

Examples. Let α > 0, β ∈ R and 0 < δ < 1.

(i) σk ∼ k−α.

(ii) σk ∼ k−α(log k)β .
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(iii) σk ∼ (log k)−α.

(iv) σk ∼ (log k)−α(log log k)β .

(v) σk ∼ (log . . . log k)−α (m-fold iterated logarithm).

(vi) σk ∼ exp(−α(log k)δ).

First we observe that all examples satisfy the doubling condition

σk ∼ σ2k. (3)

For non-increasing sequences one easily verifies that this is equivalent to

inf
n≥k

σn

σk
·
(n

k

)a

> 0 for some a > 0. (4)

Similar conditions play an important role in [2]. In particular this implies σk � k−a,
i.e., (σk) cannot decay faster than polynomially.

For examples (i) and (ii) one has, in addition,

sup
n≥k

σn

σk
·
(n

k

)b

< ∞ for some b > 0, (5)

implying in particular the decay condition σk � k−b.
In examples (iii)–(v) even the dyadic subsequences satisfy the doubling condi-

tion (3), we call this the dyadic doubling condition. For non-increasing sequences it
is equivalent to

σk ∼ σk2 (6)

and also to
inf
n≥k

σn

σk
·
(1 + log n

1 + log k

)a

> 0 for some a > 0. (7)

Moreover, we will use the similar condition

sup
n≥k

σn

σk
·
(1 + log n

1 + log k

)b

< ∞ for some b > 0. (8)

This brief analysis of the given examples shows that conditions (3)–(8) fit to our
aims: They are sufficiently general and easy to check. Therefore we shall work with
these conditions.

In order to extend and unify the list of examples, we define inductively the iterated
logarithms (for t ≥ 1) by

L1(t) := 1 + log t and Lj+1(t) := 1 + log Lj(t),

and consider the following sequences of polynomial resp. logarithmic type.
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More examples.

σk ∼ k−α
m∏

j=1

Lj(k)aj (m ∈ N, α > 0, aj ∈ R) (P)

σk ∼
m∏

j=�

Lj(k)aj (1 ≤ � ≤ m, a� < 0, a�+1, . . . , am ∈ R). (L)

All examples in (P) satisfy (4) and the polynomial decay condition

k−a � σk � k−b for some 0 < b ≤ a < ∞,

while the examples in (L) satisfy (7) and the logarithmic decay condition

σk � (log k)−a for some 0 < a < ∞.

Obviously, all sequences in (i)–(v) are either of type (P) or of type (L). However,
the examples under (vi) are quite interesting exceptions, they are of neither of these
two types. Roughly speaking, they are between the logarithmic and the polynomial
scales, more precisely one has

k−ε � σk � (log k)−a for all ε > 0 and all a < ∞. (9)

2. Polynomial diagonals

In this section we investigate diagonal operators Dσ generated by sequences which
are between two powers, meaning that

k−a � σk � k−b for some 0 < b ≤ a < ∞.

Our starting point is the following result by Carl [1]. Using operator ideal techniques,
he proved it in the context of Banach spaces, i.e., when p, q ≥ 1. The proof, however,
extends literally to the quasi-Banach case.

Proposition 2.1. Let 0 < p, q ≤ ∞ and α > max(1/q − 1/p, 0). Then

σk ∼ k−α implies ek(Dσ : �p → �q) ∼ k1/q−1/p−α.

Note that the condition on α is necessary, provided we consider only power-like
diagonals σk ∼ k−α with α > 0. Indeed, then the operator Dσ acts boundedly from �p

to �q if and only if α + 1/p > 1/q .
We extend this result to more general sequences, including in particular all exam-

ples of polynomial type (P). The special case σk ∼ k−α(log k)β was already shown
(in the Banach space setting) in [9].

483 Revista Matemática Complutense
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Theorem 2.2. Let 0 < p, q ≤ ∞, and let σ = (σk) be a non-increasing sequence
satisfying the doubling condition σk ∼ σ2k and, in addition,

sup
n≥k

σn

σk
·
(n

k

)α

< ∞ for some α > max(1/q − 1/p, 0). (10)

Then
ek(Dσ : �p → �q) ∼ k1/q−1/p · σk.

Proof. For the upper estimate we use a standard factorization technique. Consider
the diagonal operators

Dτ : �p → �q with τk = k−α

and

Dρ : �q → �q with ρk = kασk,

leading to the factorization Dσ = DρDτ . Let P denote the projection in �q onto the
first k − 1 coordinates. By (10) we get for all k ∈ N

ak(Dρ) ≤ ‖Dρ − DρP‖ = sup
n≥k

ρn � ρk.

Our assumption σk ∼ σ2k implies that also the sequence (ρk) satisfies the doubling
condition, or, equivalently condition (4). From (1) we deduce

ek(Dρ) � ak(Dρ) � ρk.

(Alternatively we could work here with the results of Gordon, König, and Schütt [5],
or more precisely with the extension of their results to the quasi-Banach case.) Taking
into account Proposition 2.1 and the multiplicativity of entropy numbers we arrive at

e2k(Dσ) ≤ ek(Dτ ) · ek(Dρ) � k1/q−1/p−α · kασk = k1/q−1/p · σk,

which is equivalent to the desired upper estimate.
The lower estimate follows immediately from (2), indeed

ek(Dσ : �p → �q) ≥ σk · ek(id : �k
p → �k

q ) ∼ k1/q−1/p · σk.

Remark 2.3. In fact the assumptions of the preceding theorem are quite general.
This is illustrated by the following observation: Let a, b be given real numbers with
α < b < a < ∞. Then there exists a sequence (σk) satisfying the assumptions of the
theorem, and such that σkn

∼ k−a
n and σjn

∼ j−b
n for certain subsequences kn → ∞

and jn → ∞. For the construction of such a sequence see, e.g., [11].

Revista Matemática Complutense
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3. Logarithmic diagonals

Next we consider logarithmic diagonals. Our main results rely essentially on the
following proposition, which was shown for q = ∞ in [3].

Proposition 3.1. Let 0 < p < q ≤ ∞ and set λ := 1/p − 1/q. Then

σk ∼ (log k)−λ implies ek(Dσ : �p → �q) ∼ k−λ.

Proof. For the upper estimates we prefer to work with identities in weighted spaces.
If (wk) is any sequence of positive real numbers, then the space lq(wk) consists of all
sequences x = (xk) such that wx := (wkxk) ∈ lq, and the quasi-norm is defined as
‖x | lq(wk)‖ := ‖wx | lq‖. The properties of entropy numbers imply that

ek(Dσ : �p → �q) = ek(id : �p → �q(σk)).

By [3, Theorem 3.3] one has for 0 < p < ∞
ek(id : �p → �∞((1 + log k)−1/p)) � k−1/p, (11)

which covers the case q = ∞ in our proposition.
Now let 0 < p < q < ∞ and σk ∼ (1 + log k)−λ. Set τk := (1 + log k)−1/p, and

select 0 < θ < 1 such that
1
q

=
1 − θ

p
+

θ

∞ =
1 − θ

p
.

This choice gives

θ/p = 1/p − 1/q = λ and σk ∼ τθ
k .

Then it is trivial to check that for all (xk) ∈ �p ∩ �∞(τk) the estimate

‖(σkxk)‖q ∼ ‖(τθ
kxk)‖q ≤ ‖(xk)‖1−θ

p · ‖(τkxk)‖θ
∞

holds. In other words, the space �q(σk) is an intermediate space of J-type θ with
respect to the couple (�p, �∞(τk)), whence (11) and the interpolation property of the
entropy numbers imply, with some constant c > 0 independent of k,

ek(Dσ : �p → �q) = ek(id : �p → �q(σk))

≤ c ‖ id : �p → �p‖1−θ · ek(id : �p → �∞(τk))θ

� k−θ/p = k−λ.

This is the desired upper bound.
The estimate from below is again a simple consequence of (2) and the proper-

ties of entropy numbers. Indeed, if P now denotes the projection onto the first 2k

coordinates, then one has

ek(Dσ : �p → �q) ≥ ek(DσP ) ≥ min
j≤2k

σj · ek(id : �2
k

p → �2
k

q ) ∼ k−λ.
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Now we are prepared to prove the main results of this section. It is an inter-
esting phenomenon, observed already earlier in similar situations, that the entropy
behavior of the logarithmic diagonal operators changes drastically, if the decay of the
diagonal sequence is ‘very slow’. So we have to distinguish two cases which will be
treated separately. First we consider the case of ‘fast logarithmic decay’, meaning that
σk � (log k)−λ.

Theorem 3.2. Let 0 < p < q ≤ ∞ and set λ := 1/p − 1/q.
If σ = (σk) is a non-increasing sequence such that

σk ∼ σk2 and sup
n≥k

σn

σk
·
(

1 + log n

1 + log k

)λ

< ∞,

then
ek(Dσ : �p → �q) ∼

( log k

k

)λ

σk.

Proof. For the upper estimate we use the same method as in the proof of Theorem 2.2.
Again we consider diagonal operators Dτ : �p → �q and Dρ : �q → �q, but now with
τk = (1+log k)−λ and ρk = (1+log k)λ σk, which gives the factorization Dσ = DρDτ .
By Proposition 3.1 we have

ek(Dτ ) � k−λ.

Since the dyadic doubling condition implies the doubling condition (and only this is
needed here), we can argue similarly as in the proof of Theorem 2.2 and we get

ek(Dρ) � ρk = (1 + log k)λ σk.

Thus the multiplicativity of entropy numbers yields

e2k(Dσ) ≤ ek(Dρ) · ek(Dτ ) � ρk · k−λ ∼
(

log k

k

)λ

σk.

Now we pass to the lower estimate. Fix k ∈ N and let P be the projection onto the
first k2 coordinates. Then, using the dyadic doubling condition σk2 ∼ σk and the
result in [8], we obtain the desired lower bound

ek(Dσ) ≥ ek(DσP ) ≥ σk2 · ek

(
id : �k2

p → �k2

q

) ∼ (
log k

k

)λ

σk.

For ‘very slow decay’, i.e., if σk decreases not faster than (1 + log k)−λ, we have
the following result.

Theorem 3.3. Let 0 < p < q ≤ ∞ and set λ := 1/p − 1/q.
If σ = (σk) is a non-increasing sequence such that

inf
n≥k

σn

σk
·
(

1 + log n

1 + log k

)λ

> 0, (12)
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then
ek(Dσ : �p → �q) ∼ σ2k .

Proof. Fix k ∈ N, let P be the projection onto the first 2k coordinates, and let Q be
the projection onto the remaining ones.

The lower estimate follows immediately from (2),

ek(Dσ) ≥ ek(DσP ) ≥ σ2k · ek

(
id : �2

k

p → �2
k

q

)∼ σ2k .

Now we prove the upper estimate. Since (σk) is non-increasing, we have

‖DσQ : �p → �q‖ = sup
j>2k

σj ≤ σ2k . (13)

In order to bound ek(Dσ P : �p → �q) we use an appropriate factorization. Let
τj = (1 + log j)−λ for all j ∈ N, and ρj = (1 + log j)λ σj , for j = 1, . . . , 2k and ρj = 0
for j > 2k. Proposition 3.1 and assumption (12) imply now that

ek(Dτ : �p → �q) ∼ k−λ

and

‖Dρ : �q → �q‖ = max
j≤2k

ρj � ρ2k ∼ kλσ2k ,

whence the obvious factorization DσP = DρDτ gives

ek(DσP ) ≤ ek(Dτ )‖Dρ‖ � k−λ · kλσ2k = σ2k . (14)

Thanks to (13), (14), and the additivity of entropy numbers we finally arrive at

ek(Dσ) ≤ c ·
(
ek(Dσ P ) + ‖DσQ‖

)
� σ2k ,

and the proof is finished.

Remark 3.4. Let us come back to the phenomenon mentioned above. Under the
assumptions of Theorem 3.2 (roughly speaking if σk � (log k)−λ) the entropy numbers
of Dσ : �p → �q depend explicitly on p and q. However, under the assumptions of
Theorem 3.3 (roughly speaking for null sequences with σk � (log k)−λ) the entropy
numbers are independent of p and q. Of course, an implicit dependence is still hidden
in the critical exponent λ = 1/p − 1/q.
Remark 3.5. Theorems 3.2 and 3.3 yield, in particular, asymptotically sharp results
for all diagonals of logarithmic type (L). In order to give a specific example which
illustrates the phenomenon described in the previous remark, we state the following
corollary. In the special case β = 0 and for Banach spaces, i.e., for 1 ≤ p < q ≤ ∞, this
can be found in [9]. The completely different proof in [9] was based on probabilistic
arguments, and used tools which are no longer available in the context of quasi-Banach
spaces, e.g., complex interpolation, and Tomczak-Jaegermann’s result [15] on duality
of entropy numbers.
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Corollary 3.6. Let 0 < p < q ≤ ∞, α > 0, and β ∈ R. If λ := 1/p − 1/q and

σk ∼ (log k)−α(log log k)β ,

then the entropy numbers ek := ek(Dσ : �p → �q) behave asymptotically like

ek ∼
{

k−λ(log k)λ−α(log log k)β if α > λ or α = λ, β ≤ 0
k−α(log k)β if α < λ or α = λ, β ≥ 0.

4. The intermediate case

In order to complement the results obtained so far, we finally study some diagonal
operators Dσ : �p → �q with generating sequences between the logarithmic and the
polynomial scales, in the sense of (9). Let us call this the intermediate case, typical
sequences of this type are given in example (vi). The main aim in this section is to
establish (almost) sharp entropy estimates for this example.

Before doing so, we state a more general result which is a direct consequence of the
proofs of the lower estimate in Theorem 2.2 and the upper estimate in Theorem 3.2.

Proposition 4.1. Let 0 < p < q ≤ ∞ and set λ := 1/p − 1/q. If (σk) is a non-
increasing sequence such that

σk ∼ σ2k and sup
n≥k

σn

σk
·
(

1 + log n

1 + log k

)λ

< ∞. (15)

Then

k−λσk � ek(Dσ : �p → �q) �
(

log k

k

)λ

σk. (16)

Remark 4.2. In contrast to Theorem 3.2 we require here only the doubling condition
σk ∼ σ2k instead of the dyadic doubling condition σk ∼ σk2 , which is of course much
stronger. Note that (15) implies

k−α � σk � (log k)−λ for some α > 0.

Although lower and upper bounds in (16) are different, the result is optimal under
assumption (15). For instance, by Propositions 2.1 and 3.1 we know:

• The lower bound is sharp if σk ∼ k−α for some α > 0.

• The upper bound is sharp if σk ∼ (log k)−λ.

Our last theorem gives an almost optimal result for example (vi), indeed the
gap between lower and upper bounds is very small. The result also shows that the
asymptotic order of the entropy numbers ek(Dσ : �p → �q) does not necessarily
coincide with the upper or with the lower bound in (16).
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Theorem 4.3. Let 0 < p < q ≤ ∞, α > 0, 0 < δ < 1, and

σk ∼ exp(−α(log k)δ).

Then one has, with λ := 1/p − 1/q,

(
(log k)1−δ

k

)λ

σk � ek(Dσ : �p → �q) �
(

(log k)1−δ log log k

k

)λ

σk.

Proof. Lower estimate. Fix N ∈ N and set M := N + [N1−δ], where [x] denotes the
greatest integer part of a real number x. This implies

M δ − N δ ∼ 1 and σ2N /σ2M = exp(α(M δ − N δ)) ∼ 1.

Now the properties of entropy numbers and (2) yield

e2N (Dσ : �p → �q) ≥ σ2M · e2N (id : �2
M

p → �2
M

q )

∼ σ2N · 2−λN (M − N)λ ∼ σ2N · 2−λNN (1−δ)λ.

This proves the lower estimate for integers of the form k = 2N , and by a monotonicity
argument it holds for all k ∈ N.

Upper estimate. Given any natural number N ∈ N, we now set

M := N + [CN1−δ log N ], where C =
21−δλ

αδ
.

(Later in the proof we need that the constant C is sufficiently large, and our specific
choice will work.) Moreover, we use the following projections in �p.

P : onto the coordinates j with 1 ≤ j < 2N ,

Q : onto the coordinates j with 2N ≤ j ≤ 2M ,

R : onto the coordinates j with j > 2M .

By the additivity of entropy numbers there is a constant c = c(p, q) > 0 such that for
all k ∈ N the inequality

e3k(Dσ) ≤ c · (ek(DσP ) + ek(DσQ) + ek(DσR)
)
. (17)

holds. We estimate the three summands separately, taking k = 2N .
First summand. Here we use operator ideal techniques. To this end we consider

for n = 0, . . . , N −1 the projections Pn onto the coordinates j = 2n, . . . , 2n+1 −1 and
split DσP as

DσP =
N−1∑
n=0

DσPn.
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Select now a real number ρ > λ + 1. Moreover, note that there is a constant c =
c(α, δ) > 0 such that

σk ≤ c σm · m

k
for all k ≤ m,

For the entropy ideal norms of DσPn this implies (with k = 2n,m = 2N ),

L(e)
ρ (DσPn) ≤ σ2n · L(e)

ρ (id : �2
n

p → �2
n

q )

� 2N−nσ2N · 2(ρ−λ) n = σ2N · 2N+(ρ−λ−1) n.

From this estimate and the fact that the quasi-norm L
(e)
ρ is equivalent to an r-norm

for some 0 < r < 1, we conclude

2ρN · e2N (DσP ) ≤ L(e)
ρ

(
N−1∑
n=0

DσPn

)
�

(
N−1∑
n=0

L(e)
ρ (DσPn)r

)1/r

� σ2N · 2N ·
(

N−1∑
n=0

2r(ρ−λ−1)n

)1/r

∼ σ2N · 2(ρ−λ)N ,

where we used that ρ − λ − 1 > 0. This gives

e2N (DσP ) � σ2N · 2−λN . (18)

Second summand. From (2) it follows

e2N (DσQ) ≤ σ2N · e2N (id : �2
M

p → �2
M

q ) ∼ σ2N · 2−λN (M − N)λ,

and from our choice of M , M − N ∼ N1−δ log N , we derive

e2N (DσQ) ∼ σ2N ·
(

N1−δ log N

2N

)λ

. (19)

Third summand. By Proposition 3.1 we have

L
(e)
λ (DσR) � sup

k≥1
(1 + log k)λσ2M+k � sup

n≥M
nλσ2n ,

where we also used that σk ∼ σ2k. Since, for n and N large enough, the sequence
nλ σ2n is decreasing and M ≤ 2N , we obtain

sup
n≥M

nλσ2n = Mλσ2M ≤ (2N)λ exp(−α(M δ − N δ))σ2N .

By the mean value theorem there exists t ∈ (N,M) such that

M δ − N δ

M − N
= δtδ−1 ≥ δM δ−1 ≥ δ(2N)δ−1,
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hence our choice of M , M − N = [CN1−δ log N ] with C = 21−δλ
α δ , implies

α(M δ − N δ) ≥ αδ(2N)δ−1(M − N) = αδ 2δ−1C log N = λ log N,

and consequently
exp(−α(M δ − N δ)) ≤ N−λ.

This gives
e2N (DσR) ≤ 2−λNL

(e)
λ (DσR) � σ2N · 2−λN . (20)

Finally, combining the relations (17)–(20), we get the upper estimate

e3·2N (Dσ) � σ2N · (2−NN1−δ log N)λ,

and by a monotonicity argument the proof is finished.
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[8] T. Kühn, A lower estimate for entropy numbers, J. Approx. Theory 110 (2001), no. 1, 120–124.

[9] , Entropy numbers of diagonal operators of logarithmic type, Georgian Math. J. 8 (2001),
no. 2, 307–318.
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