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ABSTRACT

Given a closed Riemann surface S together a group of its conformal automor-
phisms H ∼= Z

2
2, it is known that there are Schottky uniformizations of S real-

izing H. In this note we proceed to give an explicit Schottky uniformizations
for each of all different topological actions of Z

2
2 as group of conformal automor-

phisms on a closed Riemann surface.
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Introduction

A Schottky group of genus zero is just the trivial group. A Schottky group of positive
genus is defined as follows. Assume we have a collection of 2p (p > 0) pairwise disjoint
simple loops, say α1, α

′
1, . . . , αp, α

′
p, in the Riemann sphere bounding a common region

D of connectivity 2p, and that there are loxodromic transformations L1, . . . , Lp so that

(i) Lj(αj) = α′
j , for j = 1, . . . , p, and

(ii) Lj(D) ∩ D = ∅, for each j = 1, 2, . . . , p.
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The group G, generated by L1, . . . , Lp, is called a Schottky group of genus p > 0.
The collection of loops α1, α′

1, . . . , αp and α′
p, is called a fundamental system of loops

of G respect to the Schottky generators L1, . . . , Lp. In [3] was obtained that any set of
p generators of a Schottky group of genus p is in fact a set of Schottky generators. A
Schottky group of genus p is a free group of rank p, purely loxodromic and Kleinian.
That these properties define a Schottky group of genus p was obtained in [18]. If
we denote by Ω the region of discontinuity of a Schottky group G of genus p, then
the quotient S = Ω/G turns out to be a closed Riemann surface of genus p. The
reciprocal is valid by the retrosection theorem [12] (see [1] for a modern proof using
quasiconformal deformation theory). A triple (Ω, G, P : Ω → S) is called a Schottky
uniformization of a closed Riemann surface S if G is a Schottky group with Ω as its
region of discontinuity and P : Ω → S is a holomorphic regular covering with G as
covering group. A Schottky group G is called a hyperelliptic Schottky group if it
uniformizes a hyperelliptic Riemann surface and the hyperelliptic involution lifts to
such a covering. A set of Schottky generators L1, . . . , Lp of a Schottky group G is
called a set of hyperelliptic Schottky generators if there is an elliptic transformation E
of order 2 satisfying the equality E ◦Lj ◦E = L−1

j , for all j = 1, . . . , p. It was proved
by L. Keen [10] that every hyperelliptic Schottky group has a set of hyperelliptic
Schottky generators and that hyperelliptic Riemann surface may be uniformized by a
suitable hyperelliptic Schottky group. Given a closed Riemann surface S together a
group of conformal automorphisms H < Aut(S) isomorphic to Z

2
2 we know from the

results in [8] the existence of a Schottky uniformization (Ω, G, P : Ω → S) of S for
which H lifts, that is, for each h ∈ H there is a Möbius transformation k that keeps
Ω invariant and so that P ◦ k = h ◦ P . In this note, we provide explicitly a Schottky
uniformization as above for each possible topological action of Z

2
2. There are exactly

two different topological actions of Z
2
2 acting free fixed points. We observe that one

of these actions cannot be produced by hyperelliptic Riemann surfaces.

This note is organized as follows. In section 1 we recall some basic tools from
quasiconformal deformation of Kleinian group we will need in the last section. In
section 2 we recall a description of the different topological actions of Z

2
2 and we

observe that in the free fixed point action one of the two topological cases cannot
be produced by hyperelliptic Riemann surfaces. In section 3 we describe explicit
Schottky uniformizations for each of the two possible topological free actions of Z

2
2

and in section 4 we provide explicit Schottky uniformizations for each of the possible
topological actions of Z

2
2.

1. Quasiconformal deformations

Details of the following definitions and results concerning quasiconformal homeomor-
phisms can be found, for instance, in [2, 15].

Revista Matemática Complutense
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1.1. Quasiconformal homeomorphisms

Let us consider an orientation-preserving homeomorphism W : Ω1 → Ω2, where Ωj

is a region on the Riemann sphere, for j = 1, 2. We say that W is a quasiconformal
homeomorphism if:

(i) W has distributional partial derivatives ∂W and ∂̄W in L2
loc(Ω1), and

(ii) there is a measurable function μ ∈ L∞(Ω1) such that ‖μ‖∞ < 1 and

∂W (z) = μ(z)∂W (z) a.e. Ω1.

The measurable function μ is called a Beltrami coefficient of W . If there is some
K ≥ 1 so that

1 + ‖μ‖∞
1 − ‖μ‖∞

≤ K,

then we say that W is a K-quasiconformal homeomorphism.
An orientation-preserving homeomorphism between Riemann surfaces S and R

is said to be K-quasiconformal if, for every local coordinates of both S and R, we
have a K-quasiconformal homeomorphism. If the surfaces are compact, then W
is K-quasiconformal (some 1 ≤ K < ∞) if and only if is quasiconformal in local
coordinates. We will use the following fact.

Theorem 1.1 ([15]). Let S and R be closed Riemann surfaces and f : S → R be an
orientation-preserving homeomorphism. Then there is a quasiconformal homeomor-
phism w : S → R which is homotopic to f .

The above result permits us to assume all orientation-preserving homeomorphisms
between closed Riemann surfaces to be quasiconformal.

Theorem 1.2 (Ahlfors-Bers’ theorem [1]). Let μ be a function of L∞(Ĉ) of
norm strictly less than 1. Then, there is a unique quasiconformal homeomorphism
W : Ĉ → Ĉ that satisfies the following two properties:

(i) ∂̄W (z) = μ(z)∂W (z) a.e. Ω1,

(ii) W (0) = 0, W (1) = 1, and W (∞) = ∞.

1.2. Quasiconformal deformations of Kleinian groups

A Kleinian group is a group K of Möbius transformations acting discontinuously at
some point on the Riemann sphere. The region of discontinuity of a Kleinian group K
is the open set of points on which it acts discontinuously, which is denoted by Ω(K).
Generalities on Kleinian groups can be found in [17].

Let G be a Kleinian group, with region of discontinuity Ω(G), and μ be a measur-
able function defined on Ĉ such that:
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(i) ‖μ‖∞ ≤ k < 1, and

(ii) μ(g(z))g′(z) = μ(z)g′(z), a.e. Ĉ for all g ∈ G.

We say that μ is a Beltrami coefficient for G. Ahlfors-Bers’ theorem asserts that
there is a quasiconformal homeomorphisms W of the Riemann sphere with Beltrami
coefficient μ, which is unique if we require it to fix three different points. The group
W ◦G ◦W−1 turns out to be a Kleinian group with region of discontinuity Ω(W ◦G ◦
W−1) = W (Ω(G)) and is called a quasiconformal deformation of G.

If G is a Schottky group, then any quasiconformal deformation of it is again a
Schottky group of the same genus.

2. Topological classification

In [22] is considered the problem of classifying the (topological) effective actions of
the Abelian group Z

r
p = Zp ⊕ · · · ⊕ Zp (where the number p is a prime and the

number of summands is r) on a closed orientable surface. In there, it is determined
the equivalent classes in the sense of putting them into one-to-one correspondence
with the equivalence classes of some algebraic system. In some simple instances it
is also computed the number of different classes. In the particular case p = 2 and
r = 2 there is no mention of an explicit formula which permit to count such a number
of equivalence classes. On the other hand, in [4, 21] there are descriptions of the
topological actions of Z

2
2. Formula for the number of different type actions of Z

2
2 may

be obtained from these descriptions using similar methods to the ones in the works
of Alexander Mednykh [20] or Jin Ho Kwak [13, 14]. In this section we recall, as a
matter of completeness, (1) the description of all possible topological actions of Z

2
2,

as a group of orientation preserving homeomorphisms of a closed orientable surface,
and (2) a simple formula to count the different topological classes.

Remark 2.1. As a consequence of the Nielsen’s realization theorem, proved in its
generality by Kerckhoff in [11], such a topological classification is equivalent to the
topological classification of the actions of Z

2
2 as a group of conformal automorphisms

of a closed Riemann surface. For that reason, we only need to deal with pairs (S, H),
where S is a closed Riemann surface and H ∼= Z

2
2 is a group of conformal automor-

phisms on S.

We denote by Fg the collection of pairs (S, H), where S is a closed Riemann surface
of genus g and H ∼= Z

2
2 is a group of conformal automorphisms of S. Two pairs

(S1, H1), (S2, H2) ∈ Fg are said to be topologically equivalent (some authors call this
weak equivalence) if there is an orientation preserving homeomorphism f : S1 → S2

so that f ◦ H1 ◦ f−1 = H2.
Assume we have a pair (S, H) ∈ Fg. We denote by g and γ the genus of S and

S/H, respectively, and by π : S → S/H the branched holomorphic regular covering
induced by H. In H there are three different non-trivial elements, say a, b, and
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a ◦ b, each one an involution. As a conformal involution has an even number of fixed
points, a consequence of the Riemann-Hurwitz formula [6], and the stabilizer of any
point in S by H is cyclic, we may assume that the number of fixed points of a, b,
and a ◦ b are, respectively, 2r, 2s, and 2t. The branch locus Bπ ⊂ S/H of π can
be decomposed into three pairwise disjoint sets, say Bπ = R ∪̇ S ∪̇ T , where R,
S, and T contain, respectively, the projections under π of the fixed points of a, b,
and a ◦ b. The cardinalities of R, S, and T are then, respectively, r, s, and t. The
Riemann-Hurwitz formula asserts the equality

g = 4(γ − 1) + 1 + r + s + t,

in particular {
r + s + t ≤ g + 3,

r + s + t ≡ g + 3 mod 4.

Let us denote by Fg,r,s,t the collection of pairs (S, H) ∈ Fg so that the number of
fixed points of the three different non-trivial elements of H are 2r, 2s and 2t. Our
definition asserts that Fg,r,s,t = Fg,s,t,r = Fg,t,r,s = Fg,s,r,t = Fg,r,t,s = Fg,t,s,r. In this
way, we have that Fg can be decomposed into a disjoint union of subfamilies Fg,r,s,t

(maybe some of them are empty ones), where⎧⎪⎨⎪⎩
0 ≤ r ≤ s ≤ t,

0 ≤ r + s + t ≤ g + 3,

r + s + t ≡ g + 3 mod 4.

(1)

Observe that if we have two pairs, say (S1, H1), (S2, H2) ∈ Fg, which are topolog-
ically equivalent, then both pairs should belong to the same subfamily Fg,r,s,t.

The following two theorems can be obtained from the descriptions obtained in [4,
21].

Theorem 2.2. If two pairs in Fg are topologically equivalent, then they belong to the
same subfamily Fg,r,s,t. Moreover, if (S1, H1), (S2, H2) ∈ Fg,r,s,t, where r + s + t > 0,
then the two pairs are topologically equivalent.

In particular, second part of theorem 2.2 tells us that the number of topologically
non-equivalent actions of Z

2
2 as group of orientation-preserving homeomorphisms on

closed orientable surfaces, acting with fixed points, is at most the number of solutions
of equation (1) for which r + s + t �= 0. Respect to the actions without fixed points
(freely acting), we have the following.

Theorem 2.3. (i) The family F1,0,0,0 consists exactly of one point.

(ii) If g �≡ 1 mod 4, then Fg,0,0,0 = ∅.

(iii) If g ≥ 2 and g ≡ 1 mod 4, then the family Fg,0,0,0 consists of exactly two
disjoint subfamilies, say F1

g,0,0,0 and F2
g,0,0,0, so that:

431 Revista Matemática Complutense
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(a) two pairs in the same subfamily are topologically equivalents, and

(b) pairs belonging to different subfamilies are topologically non-equivalents.

It is well known that on genus g = 1 there is exactly one topological free action
of the group Z

2
2. The third equation of (1) asserts part (ii).

Proposition 2.4. Let S be a closed Riemann surface of genus g admitting the Klein
group H as group of conformal automorphisms. Let, as before, denote by r, s, and t
the cardinalities of the subsets R, S, and T of S/H. Then r, s, t are simultaneously
even or simultaneously odd.

Proof. We only first need to observe that any simple closed loop on S/H bounding a
closed disc that contains all branching on its interior must lift to a simple loop, that
is, corresponds to the trivial element of H. This is consequence of the fact that such
a loop is homotopic to the product of commutators and the covering π : S → S/H
is Abelian. Secondly, if we have a simple loop bounding a close disc on S/H that
contains on its interior an even number of branch points, all of them belonging to the
same set R or S of T , then it should correspond to the trivial element of H, that
is, it lifts to a loop. Third, a simple loop bounding a closed disc on S/H containing
on its interior only at most one point from each set R or S of T will lift to a loop
if there is exactly one point from each such set. The above three observations imply
the result.

We have decomposed the family Fg into a disjoint union of subfamilies Fg,r,s,t,
where (r, s, t) are restricted to the conditions given in (1). As mentioned before, some
of them maybe are empty ones. We proceed to see which ones are non-empty, so we
may count the number of different topological actions. An extra restriction is given by
the Riemann-Hurwitz formula, which asserts that a conformal involution j : S → S,
where S is a closed Riemann surface of genus g ≥ 2, has at most 2(g +1) fixed points,
that is, t ≤ g + 1. Moreover, if the involution j has 2(g + 1) fixed points, then S is
hyperelliptic, j is the hyperelliptic involution and any other automorphism of S has
at most 4 fixed points [6]. It follows that if t = g+1, then we should have s ≤ 2. As a
consequence of these facts and proposition 2.4, we need to replace the restrictions (1)
by the following ones: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ r ≤ s ≤ t ≤ (g + 1),
r + s + t ≡ (g + 3) mod 4,

0 ≤ r + s + t ≤ g + 3,

r, s, t all have the same parity.

(2)

Let us denote by Ng the collection of the solutions (r, s, t) of the system (2). We
have, as a consequence of the Schottky constructions we provide later in section 4,
the following non-emptiness situation.
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Proposition 2.5. Let us fix a value of g. If (r, s, t) ∈ Ng, then Fg,r,s,t �= ∅. If
(r, s, t) /∈ Ng, then Fg,r,s,t = ∅.

Clearly, the second part of proposition 2.5 is consequence of the above arguments.
Let us denote by Ψg the cardinality of the set Ng formed by the triples (r, s, t) ∈ N

3
0

satisfying the conditions of (2). We observe first that as r, s, t all have the same parity
and since g + 3 is congruent to r + s + t module 4, both r + s + t and g + 3 also have
the same parity as for r.

Case g ≡ 0 mod 4

In this situation we must have r, s, t odd integers and r + s + t ≡ 3 mod 4. It follows
we need to consider the values r+s+ t = 3+4l, l = 0, 1, . . . , g/4. Now, for each value
of l as before, we may write t = 3 + 4l − 2q, where q a non-negative integer. Since
t ≤ g+1, we also must have 3+4l−2q ≤ g+1, that is, q ≥ q0,l = max{0, (4l+2−g)/2}.
We observe that q0,l = 0 for l = 0, 1, . . . , g/4−1 and q0,g/4 = 1. As r ≤ s ≤ t, we have
that 3+4l = r+s+ t ≤ 3t = 9+12l−6q. It follows that the maximum possible value
of q is given by ql = 1+ l, which is obtained by the triple (r = 1, s = 2l+1, t = 2l+1).
Now, for each value of q ∈ {q0,l, . . . , ql}, the possible triples we have are of the form

(r = 1 + 2u, s = 2q − (2u + 1), t = 3 + 4l − 2q),

where u ≥ 0 and 0 ≤ 1 + 2u ≤ 2q − 2u− 1 ≤ 3 + 4l− 2q. The last inequality is trivial
as q ≤ ql. It follows that the above is equivalent to have u ∈ {0, 1, . . . , [(q − 1)/2]}.

Case g ≡ 1 mod 4

In this situation we must have r, s, t even integers and r +s+ t ≡ 0 mod 4. It follows
we need to consider the values r + s + t = 4l, l = 0, 1, . . . , (g + 3)/4. Now, for each
value of l as before, we may write t = 4l − 2q, where q a non-negative integer. Since
t ≤ g + 1, we also must have 4l − 2q ≤ g + 1, that is, q ≥ max{0, (4l − g − 1)/2}. As
r ≤ s ≤ t, we have that the maximum possible value of q is ql = l, which is given by
the triple (r = 0, s = 2l, t = 2l), where ql = l. Now, for each value of q ∈ {0, 1, . . . , ql},
the possible triples we have are of the form (r = 2u, s = 2q − 2u, t = 4l − 2q), where
0 ≤ 2u ≤ 2q − 2u ≤ 4l − 2q. The last inequality is trivial since q ≤ ql. It follows that
the above is equivalent to have u ∈ {0, 1, . . . , [q/2]}.

Case g ≡ 2 mod 4

In this situation we must have r, s, t odd integers and r+s+t ≡ 1 mod 4. It follows we
need to consider the values r+s+t = 1+4l, l = 0, 1, . . . , (g+2)/4. Now, for value of l
as before, we may write t = 1+4l−2q, where q a non-negative integer. Since t ≤ g+1,
we also must have 1+4l−2q ≤ g+1, that is, q ≥ max{0, (4l−g)/2}. As r ≤ s ≤ t, we
have that the maximum possible value of q is ql = [(1 + 2l)/2], which is given by the
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triple (r = 1, s = 2ql−1, t = 1+4l−2ql). Now, for each value of q ∈ {0, 1, . . . , ql}, the
possible triples we have are of the form (r = 1+2u, s = 2q− (2u+1), t = 1+4l−2q),
where 0 ≤ 1 + 2u ≤ 2q − 2u − 1 ≤ 1 + 4l − 2q. The last inequality is trivial since
q ≤ ql. It follows that the above is equivalent to have u ∈ {0, 1, . . . , [(q − 1)/2]}.

Case g ≡ 3 mod 4

In this situation we must have r, s, t even integers and r +s+ t ≡ 2 mod 4. It follows
we need to consider the values r + s + t = 2 + 4l, l = 0, 1, . . . , (g + 1)/4. Now, for
each value of l as before, we may write t = 4l − 2q, where q a non-negative integer.
Since t ≤ g +1, we also must have 4l−2q ≤ g +1, that is, q ≥ max{0, (4l−1− g)/2}.
As r ≤ s ≤ t, we have that the maximum possible value of q is ql = l, obtained
by the triple (r = 0, s = 2l, t = 2l). Now, for each value of q ∈ {0, 1, . . . , ql}, the
possible triples we have are of the form (r = 2u, s = 2q − 2u, t = 4l − 2q), where
0 ≤ 2u ≤ 2q − 2u ≤ 4l − 2q. The last inequality is trivial since q ≤ ql. It follows that
the above is equivalent to have u ∈ {0, 1, . . . , [q/2]}.

It follows from the above

Ψg =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ g
4
l=0

∑1+l

q=max{0, 4l+2−g
2 }([

q−1
2 ] + 1), g ≡ 0 mod 4,∑ g+3

4
l=0

∑l
q=max{0, 4l−g−1

2 }([
q
2 ] + 1), g ≡ 1 mod 4,∑ g+2

4
l=0

∑[ 1+2l
2 ]

q=max{0, 4l−g
2 }

([
q−1
2

]
+ 1

)
, g ≡ 2 mod 4,∑ g+1

4
l=0

∑l
q=max{0, 4l−1−g

2 }
([

q
2

]
+ 1

)
, g ≡ 3 mod 4,

where [x] denotes the integral part of the real number x and max(a, b) denotes the
maximum between a and b. As a consequence of theorems 2.2, 2.3 and proposition
2.5, we have the following.

Theorem 2.6. For each non-negartive integer g there are exactly

(i) Ψg, for either case g �≡ 1 mod 4 or g = 1,

(ii) Ψg + 1, for g ≡ 1 mod 4 and g �= 1,

topologically non-equivalent pairs (S, H) ∈ Fg.

The first values of Ψg are given by

Ψ0 = 1, Ψ1 = 2, Ψ2 = 1, Ψ3 = 3, Ψ4 = 3.

In order to produce Schottky uniformizations as desired, we need a result that
permits to describe the different topological actions of Z

2
2. Let S be a closed Riemann

surface of genus g and H be a group of conformal automorphisms of S isomorphic
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to Z
2
2. We denote by S̃ the quotient Riemann (orbifold) surface S/H, by γ its genus

and by P : S → S̃ the natural holomorphic (branched) covering induced by the action
of H on S. If we fix a and b any two different elements of order two in H, then a
presentation of H is given by

H = 〈a, b : a2 = b2 = (a ◦ b)2 = 1〉.

Let η be any loop on S̃ disjoint from the branch locus of P . Choose any point
z ∈ η and choose a point x ∈ S such that P (x) = z. Lift the loop η starting at the x.
Let y be the end point of such a lifting. Since P (y) = z and our covering (branched)
is regular, there exists a unique element h ∈ H such that y = h(x). We say that the
loop η corresponds to the automorphism h or reciprocally. As the covering group H
is Abelian, this correspondence is well defined, that is, does not depends on the choice
of either x nor z. We denote this correspondence as

η → h.

The following lemma permits to construct a special family of loops on S̃ respect
to the above chosen generators a and b for H. This special loops gives an alternative
proof of theorems 2.2 and 2.3. This also permits to construct canonical homology
basis on S adapted to the action of H and may help in the computation of Riemann
period matrices of S (see also section 5).

Lemma 2.7 ([7]). If γ > 0, then there is a set of simple loops on S̃, say

α1, . . . , αγ , β1, . . . , βγ ,

satisfying the following properties:

(i) αi ∩ αj = φ, for i �= j,

(ii) βi ∩ βj = φ, for i �= j,

(iii) αi ∩ βj = φ, for i �= j,

(iv) αi ∩ βi consists of exactly one point,

(v) S̃−⋃γ
i=1(αi ∪βi) is topologically a sphere with γ pairwise disjoint deleted discs,

(vi) If some non-trivial element of H acts with fixed points, then⎧⎪⎨⎪⎩
α1 → a,

β1 → b,

αj , βj → 1, j ≥ 2.
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(vii) If H acts freely, then either ⎧⎪⎨⎪⎩
α1 → a,

β1 → b,

αj , βj → 1, j ≥ 2.

(3a)

or ⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1 → a,

α2 → b,

αj → 1, j ≥ 3,

βj → 1, j ≥ 1.

(3b)

We have two different topological actions of Z
2
2 acting free fixed points; these two

actions are described below in an explicit manner.

2.0.1. First action

Let us consider the set G formed of the edges of the cube Q ⊂ R
3 with vertices

(±1,±1,±1). Let V (G) be a regular tubular neighborhood of G, invariant under the
Euclidean isometry group

H0 = 〈A(x, y, z) = (x,−y,−z), B(x, y, z) = (−x, y,−z)〉 ∼= Z
2
2.

Let SG be the boundary of V (G). We have that SG is a closed orientable surface
of genus g = 5 with H0 as group of orientation preserving homeomorphisms. Let us
consider a closed disc DS ⊂ S so that h(DS) ∩ DS = ∅, for all h ∈ H. Set S∗ to be
S minus the interior of DS and its H-translates. Let R be a closed Riemann surface
of genus (g − 5)/4 and DR ⊂ R a closed disc. Set R∗ to be R minus the interior of
DR. We proceed to glue R∗ to S∗ along the boundary of DR and DS . Then we use
the action of H to glue three other copies of R∗ to S∗ along the other three boundary
components. We end with a closed orientable surface S′, of genus g admitting H as
a freely acting group of orientation preserving homeomorphisms.

2.0.2. Second action

Let us consider τ ∈ H
2, the upper-half-plane. Let A(z) = z + 1/2, Bτ (z) = z + τ/2

and Λτ = 〈A2, B2
τ 〉. The torus

Tτ = C/Λτ

admits the group Hτ = 〈A, Bτ 〉/Λτ
∼= Z

2
2 as group of conformal automorphisms

acting freely. Let us consider a small closed Euclidean disc Δ centered at the origin
so that it is disjoint from all its translates under the Euclidean group 〈A, Bτ 〉. If C
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is the boundary circle of Δ and σ the reflection on C, then we consider the group Γ
generated by the transformations

A2, B2
τ , σ ◦ A2 ◦ σ, σ ◦ B2

τ ◦ σ,

A ◦ σ ◦ A2 ◦ σ ◦ A, A ◦ σ ◦ B2
τ ◦ σ ◦ A,

B ◦ σ ◦ A2 ◦ σ ◦ B, B ◦ σ ◦ B2
τ ◦ σ ◦ B,

B ◦ A ◦ σ ◦ A2 ◦ σ ◦ A ◦ B, B ◦ A ◦ σ ◦ B2
τ ◦ σ ◦ A ◦ B.

We have that, if Ω denotes the region of discontinuity of Γ, then S = Ω/Γ is a
closed Riemann surface of genus g = 5 with the group H = 〈A, Bτ 〉/Γ ∼= Z

2
2 as group

of conformal automorphisms acting freely.
Now we may proceed as in the previous case. Let us consider a closed disc DS ⊂ S

so that h(DS) ∩ DS = ∅, for all h ∈ H. Set S∗ to be S minus the interior of DS and
its H-translates. Let R be a closed Riemann surface of genus (g − 5)/4 and DR ⊂ R
a closed disc. Set R∗ to be R minus the interior of DR. We proceed to glue R∗ to S∗

along the boundary of DR and DS . Then we use the action of H to glue three other
copies of R∗ to S∗ along the other three boundary components. We end with a closed
orientable surface S′, of genus g admitting H as a freely acting group of orientation
preserving homeomorphisms.
Remark 2.8. A description of the two free actions of Z

2
2 at the level of Schottky groups

is given in section 3.
The next result asserts that one of these actions cannot be produced using hyper-

elliptic Riemann surfaces.

Theorem 2.9. In Theorem 2.3, part (iii), one of the two subfamilies consists only of
non-hyperelliptic Riemann surfaces. The other family has the property that if (S, H)
is one of its members so that S/H is hyperelliptic, then S is necessarily hyperelliptic.

Proof. Let us denote by F1
g,0,0,0 the subfamily of Fg,0,0,0 that corresponds to the

topological class described in section 2.0.1 and by F2
g,0,0,0 the subfamily corresponding

to the one described in section 2.0.2.
Let (S, H) ∈ Fg,0,0,0 so that S is hyperelliptic. We have by the previous descrip-

tions that the hyperelliptic involution jS : S → S is not in H. We consider the natural
2-fold branched covering π : S → Ĉ induced by jS . As jS belongs to the center of
Aut(S) and jS /∈ H, we have that H descends to a subgroup K ∼= Z

2
2 of Möbius

transformations that keep invariant the 2(g + 1) branch values of π. As none of the
non-trivial element in H has fixed points, we have also that no non-trivial element
of K fixes one of the branch values of π. In fact, assume we have some non-trivial
element of ĥ ∈ H/〈jS〉 that fixes a branch value q of π. Let h ∈ H be so that
π ◦h = ĥ◦π. In this way, if we denote by p ∈ S the fixed point of jS so that π(p) = q,
then we have π(h(p)) = ĥ(π(p)) = ĥ(q) = q = π(p), that is, h(p) ∈ {p, jS(p)}. But
as p is fixed point of jS , we have that h(p) = p, a contradiction to the fact that H is
acting free fixed points.
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Up to conjugation in the Möbius group, we may assume K is generated by A(z) =
−z and B(z) = 1/z. It follows that S can be then represented by an algebraic curve
of the form

y2 =
(g+1)/2∏

j=1

(
x4 −

(
λ2

j +
1
λ2

j

)
x2 + 1

)
,

where λj ∈ C − {0,±1,±i}, are so that

λ2
j +

1
λ2

j

�= λ2
k +

1
λ2

k

, for j �= k.

It follows that the topological action of H is uniquely determined in the hyper-
elliptic case. (see Remark 2.10 below). In this way, we have that one of the two
families F1

g,0,0,0 or F2
g,0,0,0 cannot have hyperelliptic Riemann surfaces. By looking

at the action in the algebraic curve, we may see that the hyperelliptic case belongs
to the family F2

g,0,0,0 (see also theorem 3.6). This gives half part of theorem 2.9; the
other half will be consequence of theorem 3.6.

Remark 2.10. Let us consider a pair (S, H) ∈ F2
g,0,0,0 so that S is hyperelliptic. As

previously seen, S is represented by an algebraic curve of the form

y2 =
(g+1)/2∏

j=1

(
x4 −

(
λ2

j +
1
λ2

j

)
x2 + 1

)
,

where λj ∈ C − {0,±1,±i}, are so that

λ2
j +

1
λ2

j

�= λ2
k +

1
λ2

k

, for j �= k.

The quotient surface S/H corresponds to the algebraic curve

w2 = (u2 − 1)
(g+1)/2∏

j=1

(
u − 1

2

(
λ2

j +
1
λ2

j

))
,

the Weierstrass values are given by the points

±λ1, . . . ,±λ(g+1)/2,±λ−1
1 , . . . ,±λ−1

(g+1)/2

and π : S → S/H corresponds to the map

w = Q(z) =
1
2

(
z2 +

1
z2

)
.

Let us assume we have two tuples of points as above, say (λ1, . . . , λ(g+1)/2) and
(λ∗

1, . . . , λ
∗
(g+1)/2). Let S and S∗ be the corresponding hyperelliptic Riemann surfaces
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and let H < Aut(S) and H∗ < Aut(S∗) the corresponding groups of automorphisms
induced by A and B, where A(z) = −z, B(z) = 1/z. We have that any homeomor-
phism f : Ĉ → Ĉ so that:

(i) f ◦ A ◦ f−1 = A and f ◦ B ◦ f−1 = B, and

(ii) f sends λj , λ
−1
j ,−λj ,−λ−1

j onto λ∗
j , λ

∗
j
−1,−λ∗

j ,−λ∗
j
−1, respectively,

then lifts to an homeomorphism f̂ : S → S∗ that conjugate H into H∗.

3. Constructions of Schottky uniformizations for the free fixed
point case

In this section we will construct Schottky uniformizations of each pair (S, H) ∈
Fg,0,0,0, where g > 1. These Schottky uniformizations will have the property that
the H-action is reflected on a set of generators of the corresponding Schottky group.
Recall that for Fg,0,0,0 �= ∅, we necessary need to have g ≡ 1 mod 4, which will be
assumed in the rest of this section. As a consequence of our construction, we will
have that such a condition is also sufficient, proving proposition 2.5 at least for this
case. We also obtain the last part of theorem 2.9. In theorem 2.3 we have that there
are at most two possible topological actions of Z

2
2 in this case. They give us a decom-

position of Fg,0,0,0 into two subfamilies F1
g,0,0,0 and F2

g,0,0,0. The family F1
g,0,0,0 has

only non-hyperelliptic Riemann surfaces.

3.1. The family F1
g,0,0,0

As g ≡ 1 mod 4 and g > 1, we have that γ = (g + 3)/4 ∈ { 2, 3, . . . }. Let us
consider a Schottky group K of genus γ, and a set of Schottky generators of K, say
L1, . . . , Lγ . We may now consider the biggest normal subgroup GK of K containing
the elements L2

1, L2
2, (L2 ◦ L1)2, L3, . . . , Lγ . It follows that K/GK

∼= Z
2
2. As GK

is a subgroup of index 4 of a free group of rank γ, we have that GK is itself a free
group of rank g [16], that is a Schottky group of genus g, which is a normal subgroup
of the Schottky group K. If we denote by ΩK the region of discontinuity of K,
then (SK = ΩK/GK , HK = K/GK) ∈ F1

g,0,0,0. As a consequence of quasiconformal
deformation theory and theorem 2.3, we have the following.

Theorem 3.1. If g ≡ 1 mod 4 and g > 1, then F1
g,0,0,0 �= ∅. Moreover, if (S, H) ∈

F1
g,0,0,0, then there is a Schottky group K of genus (g + 3)/4 so that (S, H) is biho-

morphically equivalent to (SK , HK).

3.1.1. The particular case: F1
5,0,0,0

In the genus g = 5 situation we can be more precise.
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Proposition 3.2. Let K be a Schottky group of genus 2 and set G = 〈U2 : U ∈ K〉.
Then:

(i) G � K, K/G ∼= Z
2
2.

(ii) G is a Schottky group of genus 5.

(iii) If K = 〈A, B〉, then

G = 〈C1 = A2, C2 = B2, C3 = B−1 ◦ A2 ◦ B,

C4 = B−1 ◦ A−1 ◦ B ◦ A, C5 = A−1 ◦ B ◦ A ◦ B〉.

(iv) If α1, α
′
1, α2, α

′
2 is a fundamental set of loops for K, respect to the genera-

tors A and B, then a fundamental set of loops for G, respect to the generators
C1, C2, C3, C4, C5 is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ1 = A−1(α1), δ′1 = α′
1,

δ2 = B−1(α2), δ′2 = α′
2,

δ3 = B−1(δ1), δ′3 = B−1(α′
1),

δ4 = A−1(α2), δ′4 = B−1(A−1(α′
2)),

δ5 = B−1(A−1(α2)), δ′5 = A−1(α′
2).

(v) If Ω is the region of discontinuity of K, then it is also the region of discontinuity
of G and (Ω/G, K/G) ∈ F1

5,0,0,0.

(vi) Each pair (S, H) ∈ F1
5,0,0,0 can be obtained as above.

Proof. Part (i) is clear. Part (ii) is consequence of the fact that a finite index 4
subgroup of a free group of rank 2 is a free group of rank 5 [16]. To obtain part (iii),
we only need to observe that the subgroup L, generated by C1, C2, C3, C4, C5, is a
normal subgroup of K so that K/L ∼= Z

2
2 and L < G. Then apply (i). Part (iv) is

easy to see from figure 1. Part (v) is due to the facts that S = Ω/G is a genus 5
closed Riemann surface with H = K/G as group of automorphisms so that S/H is
the genus two surface Ω/K, and that the topological action coincides with the cube
description. Part (vi) is just a consequence of Theorem 2.3.

Remark 3.3. We also have the following equalities which we will not use in the rest
of this paper, but which may be used in order to construct Riemann period matrices
of the corresponding uniformized Riemann surfaces (see section 5):

A ◦ C1 ◦ A−1 = C1, B ◦ C1 ◦ B−1 = C2 ◦ C3 ◦ C−1
2 ,

A ◦ C2 ◦ A−1 = C1 ◦ C5 ◦ C4 ◦ C−1
1 , B ◦ C2 ◦ B−1 = C2,

A ◦ C3 ◦ A−1 = C1 ◦ C−1
4 ◦ C3 ◦ C4 ◦ C−1

1 , B ◦ C3 ◦ B−1 = C1,

A ◦ C4 ◦ A−1 = C1 ◦ C−1
4 ◦ C−1

3 , B ◦ C4 ◦ B−1 = C5 ◦ C−1
2 ,

A ◦ C5 ◦ A−1 = C2 ◦ C3 ◦ C4 ◦ C−1
1 , B ◦ C5 ◦ B−1 = C2 ◦ C4.
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Figure 1

Remark 3.4. The above, in particular, asserts that the family F1
5,0,0,0 can be uni-

formized by the Schottky space of genus 2.
Let us consider a Schottky group K = 〈A, B〉 of genus 2. If we denote by E =

A ◦ B − B ◦ A, then we have that [10]

E2 = I,

E ◦ A ◦ E = A−1,

E ◦ B ◦ E = B−1.

The involution E defines the hyperelliptic involution on the surface of genus 2
given by R = Ω/K, where Ω is the region of discontinuity of K. If we consider the
Schottky group of genus 5

G = 〈x2 : x ∈ K〉 = 〈C1 = A2, C2 = B2, C3 = B−1 ◦ A2 ◦ B,

C4 = B−1 ◦ A−1 ◦ B ◦ A, C5 = A−1 ◦ B ◦ A ◦ B〉,

we observe that E ◦G◦E = G. It follows that E also induces a conformal involution e
on S = Ω/G, a lifting of the hyperelliptic involution on R. If we denote by a and b
the conformal involutions in H = K/G induced by A and B, respectively, equal-
ity (1) asserts that 〈a, b, e〉 ∼= ⊕3

Z2. This observation and Proposition 3.2 ensure the
following.

441 Revista Matemática Complutense
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Corollary 3.5. Let (S, H) ∈ F1
5,0,0,0. Then the hyperelliptic involution on S/H

lifts to a conformal involution on S, which together H generate a group of conformal
automorphisms of S isomorphic to Z

3
2. The lifted involution has exactly 8 fixed points

on S.

3.2. The family F2
g,0,0,0

As g ≡ 1 mod 4 and g > 1, we have that γ = (g + 3)/4 ∈ { 2, 3, . . . }. Let us consider
the circles (see figure 2 for γ = 2)

Σ1 = {z ∈ C : |z| = 1},
Σ2 = {z ∈ C : |z| = 5},
Σj , j = 3, 4, . . . , γ + 1,

so that

(i) each circle Σj , for j = 3, . . . , γ + 1, is orthogonal to the imaginary axis,

(ii) each circle is contained in the upper-half plane {Im(z) > 0},

(iii) each circle is contained in the annulus {1 < |z| < 5},

(iv) all circles are pairwise disjoint, and

(v) no circle Σj , for j ≥ 3, separates any of them from Σ1.

Let σj be the reflection on Σj , for j = 1, . . . , γ +1. If σ00(z) = z and σ01(z) = −z,
then we set

J(z) = −z,

T (z) =
−1
z

,

L(z) = σ01 ◦ σ2(z),
Nj(z) = σ01 ◦ σj(z), j = 3, . . . , γ + 1.

If we denote by K0 the group generated by J, T, L, N3, . . . , Nγ+1, then we have
the presentation

K0 = 〈J, T, L, N3, . . . , Nγ+1 :

J2 = T 2 = L2 = N2
3 = · · · = N2

γ+1 = (J ◦ T )2 = (J ◦ L)2 = I〉.

In figure 2 there is shown (the dashed part) a fundamental domain for K0 in the
case γ = 2. If Ω0 denotes the region of discontinuity of K0, then Ω0 is connected
and Ω0/K0 has signature (0; 2, . . . , 2︸ ︷︷ ︸

2γ+2

). If we denote by K1 the group generated by J ,
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A = L ◦ T , Bj = T ◦ Nj , for j = 3, . . . , γ + 1, then we have K1 � K and of index 2.
The quotient R0 = Ω0/K1 is a hyperelliptic closed Riemann surface of genus γ, where
the involution T induces the hyperelliptic involution on R0.

Inside K0 we have a Schottky group G0, of genus g = 4(γ − 1) + 1, generated by
the following Schottky generators (see figure 3 for γ = 2):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A1 = A2,

Aj−1 = Bj , j = 3, . . . , γ + 1,

Aγ+j−2 = J ◦ Aj−1 ◦ J, j = 3, . . . , γ + 1,

A2γ+j−3 = T ◦ L ◦ T ◦ Aj−1 ◦ L, j = 3, . . . , γ + 1,

A3γ+j−4 = J ◦ A2γ+j−3 ◦ J, j = 3, . . . , γ + 1.

(4)

It is not hard to see the following facts:

• G0 � K0,

• G0 � K1,

• K1/G0
∼= Z

2
2,

• K0/G0
∼= Z

3
2,
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• G0 is a hyperelliptic Schottky group, of genus g, respect to the involution T ,

• (Ω/G0, K0/G0) ∈ F2
g,0,0,0.

Any group obtained by quasiconformal deformation of K1 will be called a Klein
type Schottky group. (The reason for the name is that the group K1 contains a
Schottky group G0 so that K1/G0 is the four Klein group.)

It follows from the above that if K̂ is a Klein type Schottky group, then

(i) K̂ has a presentation of the form

K̂ = 〈J, A, B3, . . . , Bγ+1 : J2 = J ◦ A ◦ J ◦ A−1 = 1〉,

where the subgroup
K̂∗ = 〈A, B3, . . . , Bγ+1〉,

is a Schottky group of genus γ,

(ii) K̂ contains a Schottky group of genus g, which we denote by GK̂ , having a set
of Schottky generators as in (4),

(iii) if Ω denotes the region of discontinuity of K, then

(SK̂ = Ω/GK̂ , HK̂ = K̂/GK̂) ∈ F2
g,0,0,0,
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(iv) if SK̂ is hyperelliptic, then there is a quasiconformal deformation of K0, say K,
so that K̂ is the quasiconformal image of the respective K1. In particular, the
Schottky group GK̂ is a hyperelliptic Schottky group respect to the conformal
involution corresponding to T . Let us observe that in the case that if we consider
the quasiconformal deformation above to be normalized so that it fixes 0, 1,
and ∞, then the transformations J is sent to J and T is sent to a conformal
involution T ∗ commuting with J and having 1 as fixed point. It follows that
T ∗ = T .

We have then obtained, as consequence of the above and Theorem 2.3 the follow-
ing.

Theorem 3.6. If g ≡ 1 mod 4 and g > 1, then F2
g,0,0,0 �= ∅. If (S, H) ∈ F2

g,0,0,0,
then there is a Klein type Schottky group K̂, with region of discontinuity ΩK̂ , so that
(ΩK̂/GK̂ , K̂/GK̂) is holomorphically equivalent to (S, H). Moreover, if the surface
S/H is hyperelliptic, then the surface S is also hyperelliptic. In particular, for g = 5
we have that if (S, H) ∈ F2

5,0,0,0, then S is hyperelliptic.

4. Schottky uniformizations for the general situation

4.1. Admissible five-tuples

Let us consider a triple (r, s, t) ∈ Ng. As the values r, s, t all have the same parity, we
may write

r = n1 + 2n2,

s = n1 + 2n3,

t = n1 + 2n4,

(5)

where
γ, n2, n3, n4 ∈ { 0, 1, 2, . . . }, n1 ∈ {0, 1}.

The rest of conditions (2) on the triple (r, s, t) correspond to the following ones:⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ n2 ≤ n3 ≤ n4 ≤ (g + 1 − n1)/2;
3n1 + 2(n2 + n3 + n4) ≤ g + 3;
3n1 + 2(n2 + n3 + n4) ≡ (g + 3) mod 4;
if n1 + 2n4 = g + 1, then n1 + 2n3 ≤ 2.

(6)

An admissible five-tuple is a tuple

(γ, n1, n2, n3, n4),

satisfying properties (5) and (6) for some g ≥ 0.
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Lemma 4.1. The complete list of admissible five-tuples is the following:

(i) (γ, 1, n2, n3, n4), with γ ≥ 0 and n2 ≤ n3 ≤ n4,

(ii) (γ, 0, n2, n3, n4), with γ ≥ 1 and n2 ≤ n3 ≤ n4, and

(iii) (0, 0, n2, n3, n4), with n3 ≥ 1.

Proof. (i) Let us consider a tuple (γ, 1, n2, n3, n4) so that n2 ≤ n3 ≤ n4. With

g = 4γ + 2(n2 + n3 + n4),

we obtain that such a tuple is in fact admissible.
(ii) Let us consider a tuple (γ, 0, n2, n3, n4) so that γ ≥ 1 and n2 ≤ n3 ≤ n4.

With
g + 3 = 4γ + 2(n2 + n3 + n4),

we obtain that such a tuple is in fact admissible.
(iii) Let us consider a tuple (0, 0, n2, n3, n4) so that n2 ≤ n3 ≤ n4. If we want

such a tuple to be admissible, we need to have the existence of some g ≥ 0 so that

g + 3 = 2(n2 + n3 + n4),

in particular, we need to have n2 + n3 + n4 ≥ 2. All conditions are valid except for
the condition n4 ≤ (g + 1)/2. To have it valid, we need the condition n2 + n3 ≥ 1,
that is, n3 ≥ 1.

4.2. The idea of the construction

We proceed, for any admissible five-tuple (γ, n1, n2, n3, n4), as follows:

(P1) We construct, by use of the Maskit-Klein combination theorem [17], a Kleinian
group K̃, with region of discontinuity Ω, containing a Schottky group F as a
normal subgroup, so that

(P2) H = K̃/F is isomorphic to Z
2
2, and

(P3) if S = Ω/F , then S/H has genus γ and the corresponding sets R, S and T have
cardinalities r = n1 + 2n2, s = n1 + 2n3, t = n1 + 2n4, respectively.

As a consequence, we have a Schottky uniformization (Ω, F, P : Ω → S), so that S
admits Z

2
2 as group of conformal automorphisms, which can be lifted by the covering

map P . Moreover, the pair (S, H) ∈ Fg,r,s,t, in particular, this gives an alternative
proof of Proposition 2.5.

Once we have an explicit example of such Schottky uniformizations (for each
possible admissible five-tuple), we get, as a consequence from theorem 2.2 and the
quasiconformal deformation theory, that for every pair (Ŝ, Ĥ) ∈ Fg,r,s,t there is a
quasiconformal deformation of the group K so that (Ŝ, Ĥ) can be obtained as before.
We shall return to this at the end of the constructions.
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4.3. Auxiliary regions and groups

In order to make our constructions, we will need the following auxiliary regions,

R1 = {z ∈ C : |z| < 1, Re(z) > 0},

R2 = {z ∈ R1 : |z| >
1
8
},

R3 = {z ∈ R2 : |z − 5
4
| >

3
4
},

and the following Möbius transformations,

J(z) = −z, E(z) =
1
z
, U(z) =

1
64z

, and V (z) =
4z + 3
−3z − 4

.

Let us define the group G1 to be generated by J and E, We have that G1 is iso-
morphic to Z

2
2. The region R1 is a fundamental domain (after adding some boundary

points) for G1. The group G2, generated by G1 and U , has R2 (after adding some
boundary points) as a fundamental domain. The group G3, generated by G2 and V ,
has R3 (after adding some boundary points) as a fundamental domain. These three
groups are Kleinian groups of the second kind, geometrically finite, with connected
region of discontinuity and every non-loxodromic element is elliptic of order two.

4.4. Case 1

Let us consider the five-tuple (γ, 1, n2, n3, n4), with γ ≥ 0, n2 ≤ n3 ≤ n4, and nj ≥ 1
for j = 1, 2, 3, 4.

Let us consider elliptic transformations of order two, J1, . . . , Jn2 , E1, . . . , En3 ,
T1, . . . , Tn4 , and loxodromic transformations C1, . . . , Cγ , such that all their isometric
circles (including of those of the inverses of the loxodromic ones) are pairwise disjoint
and contained in the region R1. We can apply the first Maskit-Klein combination
theorem to obtain a group K̃, generated by G1 and all the above transformations.
Moreover, it has presentation

K̃ = G1 ∗ K1 ∗ K2 ∗ K3 ∗ K4,

where K1 = 〈J1〉 ∗ · · · ∗ 〈Jn2〉, K2 = 〈E1〉 ∗ · · · ∗ 〈En3〉, K3 = 〈T1〉 ∗ · · · ∗ 〈Tn4〉, and
K4 = 〈C1〉 ∗ · · · ∗ 〈Cγ〉.

If F is the smallest normal subgroup of K̃ containing the elements Cl, J ◦ Ji,
E ◦Ej and J ◦E ◦ Tk for all l, i, j, k, then F is a Schottky group. The pair of groups
K̃ and F are the ones we are looking so that (P1), (P2), and (P3) are satisfied for
the chosen admissible five-tuple.
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4.5. Case 2

Let us consider the five-tuple (γ, 1, n2, n3, n4), where γ ≥ 0, n2 ≤ n3 ≤ n4, and
n2 + n3 + n4 ≤ 2. We need to consider the following five-tuples:

(i) (n2, n3, n4) = (0, 0, 0),

(ii) (n2, n3, n4) = (0, 0, 1), and

(iii) (n2, n3, n4) = (0, 1, 1).

4.5.1. Subcase (i)

We consider the region R1 and loxodromic elements C1, . . . , Cγ , so that their isometric
circles (including of those of C−1

i ) are pairwise disjoint and contained in the above
region. As a consequence of the first Maskit-Klein combination theorem, the group
K̃ generated by G1 has presentation

K̃ = G1 ∗ 〈C1〉 ∗ · · · ∗ 〈Cγ〉.

If F is the smallest normal subgroup of K̃ containing the elements C1, . . . , Cγ ,
then F is a Schottky group. The pair of groups K̃ and F are the ones we are looking
so that (P1), (P2), and (P3) are satisfied for the chosen admissible five-tuple.

4.5.2. Subcase (ii)

We consider the region R3 and loxodromic elements C1, . . . , Cγ , such that their iso-
metric circles (including those of the inverses) are pairwise disjoint and contained in
the above region. Again Maskit-Klein combination theorem asserts that the group K̃,
generated by the group G3 and the above loxodromic transformations has presentation

K̃ = G3 ∗ 〈C1〉 ∗ · · · ∗ 〈Cγ〉.

If F is the smallest normal subgroup of K̃ containing the elements C1, . . . , Cγ ,
J ◦ E ◦ U , and J ◦ E ◦ V , then F is a Schottky group. The pair of groups K̃ and F
are the ones we are looking so that (P1), (P2), and (P3) are satisfied for the chosen
admissible five-tuple.

4.5.3. Subcase (iii)

We consider the region R1, two elliptic transformations of order two, say T1 and
E1, and loxodromic transformations C1, . . . , Cγ , such the isometric circles of these
transformations (including inverses of the loxodromic ones) are pairwise disjoint and
contained in the above region. The first Maskit-Klein combination asserts that the
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group K̃, generated by G1 and all the above transformations, is a geometrically finite
Kleinian group and it has presentation

K̃ = G1 ∗ 〈E1 : E2
1 = 1〉 ∗ 〈T1 : T 2

1 = 1〉 ∗ 〈C1〉 ∗ · · · ∗ 〈Cγ〉.

If F is the smallest normal subgroup of K̃ containing the elements C1, . . . , Cγ ,
E ◦ E1, and J ◦ E ◦ T1, then F is a Schottky group. The pair of groups K̃ and F
are the ones we are looking so that (P1), (P2), and (P3) are satisfied for the chosen
admissible five-tuple.

4.6. Case 3

Let us consider the five-tuple (γ, 0, n2, n3, n4), where γ ≥ 1 and n2 ≤ n3 ≤ n4.

4.6.1. Subcase (n2, n3, n4) = (0, 0, 0)

This case was already considered. Anyway, we give a new description of Schottky
uniformizations. We have to consider two possibilities. Let A(z) = 8z and consider
loxodromic transformations C1, . . . , Cγ , with isometric circles (including those of their
inverses) pairwise disjoint and contained in the region R2. Maskit-Klein combination
theorem asserts that the group K̃, generated by J , A, C1, . . . , Cγ , is a geometrically
finite Kleinian group that has presentation

K̃ = 〈J, A : J2 = 1, AJ = JA〉 ∗ 〈C1〉 ∗ · · · ∗ 〈Cγ−1〉.

Let F 1 be the smallest normal subgroup of K̃ containing the elements C1, . . . , Cγ

and A2, and F 2 be the smallest normal subgroup of K̃ containing the elements A2,
A ◦ C1, C2, . . . , Cγ .

If F is any of the two groups F 1 or F 2, then F is a Schottky group. The pair of
groups K̃ and F are the ones we are looking so that (P1), (P2), and (P3) are satisfied
for the chosen admissible five-tuple. The choice of either F1 or F2 corresponds to the
fact that there are two topological actions of Z

2
2 acting free fixed points.

4.6.2. Subcase ni ≥ 1, for i = 2, 3, 4

We consider the transformation A(z) = 8z, elliptic transformations of order two,
J1, . . . , Jn2 , E1, . . . , En3 , T1, . . . , Tn4 , and loxodromic transformations C1, . . . , Cγ ,
such that all their isometric circles (included those of inverses of the loxodromic
ones) are pairwise disjoint and contained in the region R2. The Maskit-Klein com-
bination theorem asserts that the group K̃, generated by J , A, and all the above
transformations, is a geometrically finite Kleinian group that has presentation

K̃ = 〈J, A : J2 = 1, A ◦ J = J ◦ A〉 ∗ K1 ∗ K2 ∗ K3 ∗ K4,
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where K1 = 〈J1〉 ∗ · · · ∗ 〈Jn2〉, K2 = 〈E1〉 ∗ · · · ∗ 〈En3〉, K3 = 〈T1〉 ∗ · · · ∗ 〈Tn4〉, and
K4 = 〈C1〉 ∗ · · · ∗ 〈Cγ−1〉.

If F is the smallest normal subgroup of K̃ containing the elements A2, C1, . . . , Cγ ,
J ◦J1, . . . , J ◦Jn2 , A◦E1, . . . , A◦En3 , J ◦A◦T1, . . . , J ◦A◦Tn4 , then F is a Schottky
group. The pair of groups K̃ and F are the ones we are looking so that (P1), (P2),
and (P3) are satisfied for the chosen admissible five-tuple.

4.7. Case 4

Let us consider the five-tuple (0, 0, n2, n3, n4), where n2 + n3 + n4 ≥ 2.

4.7.1. Subcase ni ≥ 1

We consider elliptic transformations of order two, J1, . . . , Jn2 , E1, . . . , En3 , T1, . . . ,
Tn4 , such that their isometric circles are pairwise disjoint. The Maskit-Klein combi-
nation theorem asserts that the group K̃, generated by the above transformations, is
a geometrically finite Kleinian group with presentation

K̃ = 〈J1〉 ∗ · · · ∗ 〈Jn2〉 ∗ 〈E1〉 ∗ · · · ∗ 〈En3〉 ∗ · · · ∗ 〈T1〉 ∗ · · · ∗ 〈Tn4〉.

If F the smallest normal subgroup of K̃ containing the elements J1◦J2, . . . , J1◦Jn2 ,
E1 ◦ E2, . . . , E1 ◦ En3 , T1 ◦ T2, . . . , T1 ◦ Tn4 , and J1 ◦ E1 ◦ T1, then F is a Schottky
group. The pair of groups K̃ and F are the ones we are looking so that (P1), (P2),
and (P3) are satisfied for the chosen admissible five-tuple.

4.7.2. Subcase n2 + n3 + n4 = 2

We need to consider the case n2 = 0, n3 = n4 = 1. Let E1 and T1 be two elliptic
transformations of order two with disjoint isometric circles. The group K̃, generated
by these two transformations, has presentation

K̃ = 〈E1 : E2
1 = 1〉 ∗ 〈T1 : T 2

1 = 1〉.

If F is the smallest normal subgroup of K̃ containing the element (T1 ◦E1)2, then
F is a Schottky group of genus 1. The pair of groups K̃ and F are the ones we are
looking so that (P1), (P2), and (P3) are satisfied for the chosen admissible five-tuple.

4.8. The quasiconformal deformation technique

Let R be a closed Riemann surface of genus g, and let H∗ be a group of conformal
automorphisms of R. Assume H∗ to be isomorphic to Z

2
2. We denote by R̃ the

quotient Riemann surface R/H∗ of genus γ. Set π : R → R̃ the natural holomorphic
branched covering induced by the action of H∗ on R. Choose two different elements
of H∗ of order two, say a and b. The number of fixed points of a, b, and a ◦ b have
(by Proposition 2.4) the forms 2(n1 + 2n2), 2(n1 + 2n3), and 2(n1 + n4), respectively,
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where n1 is either zero or one and n2, n3, and n4 are non-negative integers. The
Riemann-Hurwitz formula asserts that

g = 4(γ − 1) + 1 + 3n1 + 2(n2 + n3 + n4),

and we also have that the five-tuple (γ, n1, n2, n3, n4) is admissible.
If γ is greater or equal to one, then we construct on R̃ a set of loops as in

Lemma 2.7. If the five-tuple has the form (γ, 0, 0, 0, 0), then we have one of two
possibilities.

We now consider the Schottky uniformization (Ω, F, Q : Ω → S) (of genus g) con-
structed in one of the examples above corresponding to the above five-tuple and, in
the case of the tuple (γ, 0, 0, 0, 0), the one that corresponds to the correct topolog-
ical action. Together with this uniformization, we have the Kleinian group K̃, the
Riemann surface S, and the conformal group H = K̃/F .

Theorems 2.2 and 2.3 assert the existence of quasiconformal homeomorphisms
f̃ : S/H → R̃ and f : S → R, such that π ◦ f = f̃ ◦ πS , where πS : S → S/H is the
natural holomorphic (branched) covering induced by H.

Let us consider the Beltrami differential μ of the map f̃ . We can lift it as a
measurable function on a fundamental domain of K̃. We extend it to all of Ω by the
action of K̃. On the limit set we extend it as zero. We get in this way a Beltrami
coefficient for the group K̃, which we still denoting by μ.

Let W : Ĉ → Ĉ be the unique solution, given by Ahlfors-Bers’ theorem, of the
Beltrami equation given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂̄W (z) = μ(z)∂W (z), a.e. Ĉ,

W (0) = 0,

W (1) = 1,

W (∞) = ∞.

We conjugate the group K̃ by W to obtain the group of linear fractional trans-
formations H̃ = W ◦ K̃ ◦ W−1. Its region of discontinuity is W (Ω) and G =
W ◦ F ◦ W−1 is a Schottky group. Moreover, H̃ contains G as a normal subgroup,
and H̃/G is isomorphic to Z

2
2. By the construction of W and section 1, we have that

(W (Ω), G, f̃ ◦Q ◦W−1 : W (Ω) → R) is a Schottky uniformization of R for which H∗

lifts. As a consequence of all the above is the following.

Theorem 4.2. Let S be a closed Riemann surface and H < Aut(S) a group of
conformal automorphisms isomorphic to Z

2
2. Then, there is a Schottky uniformization

of S which is a quasiconformal deformation of one as described in the previous cases
for which H lifts.
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5. Ending remark

Let us assume we have a closed Riemann surface S, of genus g ≥ 2, and H < Aut(S)
so that there is a Schottky uniformization (Ω, G, P : Ω → S) for which every element
of H lifts. Let us denote by K the Kleinian group obtained by lifting all H under P .
In this way, G�K and K/G ∼= H. We have the existence [9] of a canonical homology
basis

α1, . . . , αg, β1, . . . , βg

for which we have a symplectic representation ρ : H → Sp2g(Z) with

ρ(h) =
[
Ah Bh

0 tAh
−1

]
and the integral matrix Ah is given by the automorphism h∗ : G → G : x �→ h◦x◦h−1.
In this way, the Riemann period matrix of S defined by the above canonical homology
basis is a solution of the linear equation

Bh + Z tA−1
h = AhZ.

In the general situation, to obtain a Riemann period matrix one has to solve
quadratic equations. This makes interesting to have groups H as above. In our
case, we have that for each H ∼= Z

2
2 a symplectic representation as above can be

found and then, the algebraic form of a Riemann period matrix can be computed. Of
course, this is not enough to compute the Riemann period matrix (still to compute the
transcendental part). In the case that we have real structures that commute with H,
then this can be done [9].
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