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ABSTRACT

We give an explicit formula for the Casson-Walker invariant of double branched
covers of S3 branched along ribbon knots of 1-fusion.
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Introduction

Casson introduced an integer-valued invariant for oriented integral homology spheres
via constructions on representation spaces, which is called the Casson invariant ([1]).
Walker extended the Casson invariant to rational homology spheres, which is called
the Casson-Walker invariant ([14]). There has been a big deal of work on these invari-
ants. In particular, Mullins gives a relation between the Jones polynomial of a link
with non-zero determinant and the Casson-Walker invariant of its double branched
cover of S3 ([11, Theorem 5.1]).

In this paper, we give an explicit formula for the Casson-Walker invariant of double
branched covers of S3 branched along ribbon knots of 1-fusion (Theorem 1.17). To do
this we consider the Jones polynomial of ribbon knots of 1-fusion. Giving an explicit
formula for the Jones polynomial is extremely difficult, but we succeed in obtaining a
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formula for its first derivative at −1 (Proposition 1.14), which extends a formula in [12]
(see Example 1.9 in section 1). This formula, together with [11, Theorem 5.1] gives a
formula for the Casson-Walker invariant. In [10], we discuss the Casson invariant of
homology spheres of Mazur type by using this formula for the Casson invariant.

Our formula for the first derivative has independent interest, since we obtain
an application as follows: In [9], we define the ribbon number of a ribbon knot,
the minimal number of ribbon singularities needed for a ribbon disk bounded by
the ribbon knot, and by using this formula we determine the ribbon number of the
Kinoshita-Terasaka knot.

1. Definitions and results

Definition 1.1. The Jones polynomial JL(t) ∈ Z[t1/2, t−1/2] is an invariant of an
oriented link L in S3, defined by the following formulas:

t−1JL+(t) − tJL−(t) = (t1/2 − t−1/2)JL0(t),
JO(t) = 1,

where L+, L−, L0 are three oriented links, which are identical except near one point
where they are as shown in figure 1 and O denotes the trivial knot ([4]).

Definition 1.2. A band sum of K0 and K1, two separable components of a link in S3,
is obtained as follows: Embed I × I in S3 by a homeomorphism b such that

(i) b(I × I) ∩ (K0 ∪K1) = b(I × {0, 1}),
(ii) b(I × {0}) ⊂ K0; b(I × {1}) ⊂ K1.

The band sum of K0 and K1 along b is the knot

(K0 − b(I × {0})) ∪ (K1 − b(I × {1})) ∪ b({0, 1} × I),

denoted by K0 #bK1 (cf. [3]).

Definition 1.3. A ribbon disk is an immersed 2-disk of D2 into S3 with only trans-
verse double points such that the singular set consists of ribbon singularities, that is,
the preimage of each ribbon singularity consists of a properly embedded arc in D2

and an embedded arc interior to D2. A knot is a ribbon knot if it bounds a ribbon
disk in S3 (cf. [6]).
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Figure 2: DK

Definition 1.4. We call a knot K in S3 a ribbon knot of 1-fusion, if it has a knot
diagram DK as described in figure 2 (and figure 3), where n is even and each small
rectangle named Ci is determined by ci ∈ {−1, 0,+1 } (i = 1, 2, . . . , n) and there
are disjointly embedded (n + 1) subbands inside the “big rectangle”, being knotted,
twisted and mutually linked (cf. [8]). We call the diagram DK 1-fusion diagram of K.

Let αi (i = 1, 2, . . . , n + 1) denote the (right hand full) twisting number of i-th
subband inside the “big rectangle”, and let αi,j (i < j) denote the relative linking
number of i-th subband and j-th subband inside the “big rectangle”. That is: Direct
the subbands from left to right and attach a sign to each crossing of different subbands,
as shown in figure 4. Then αi,j is half the sum of the signs of the crossings of i-th
and j-th subband. (See figure 3, where (c1, c2) = (+1,+1), α1 = 1, α2 = 0, α3 = 0,

1

2

3

Figure 3: An example of DK
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α1,2 = 1, α1,3 = 0, and α2,3 = 1.)

Remark 1.5. DK gives a ribbon disk bounded by K.

Remark 1.6. A ribbon knot of 1-fusion is a band sum of 2-component trivial link and
viceversa.

Remark 1.7. For any Laurent polynomial f(t) with f(1) = ±1, there exists a ribbon
knot of 1-fusion whose Alexander polynomial is f(t)f(t−1) ([13]).

Remark 1.8. Let K be a ribbon knot of 1-fusion in Definition 1.4. The Alexan-
der polynomial of K is written as f(t)f(t−1), where f(t) =

∑n/2
i=1(t

φ(i) − tψ(i)) + 1,
φ(i) =

∑n
j=2i−1(−1)jcj , and ψ(i) =

∑n
j=2i(−1)jcj ([8]).

The main proposition of this paper is to express J ′
K(−1) of a ribbon knot of

1-fusion K in Definition 1.4 by using data of DK , which are ci(1 ≤ i ≤ n), αi

(1 ≤ i ≤ n+ 1) and αi,j (1 ≤ i < j ≤ n+ 1). Before stating the main proposition, we
give some examples.

Example 1.9. If K has the 1-fusion diagram with (c1, c2) = (+1,+1) as shown in the
left diagram of figure 5 (K is called 61-like ribbon knot in [12]), then Sakai shows

J ′
K(−1) = 16(α1 + α2 + α3 − α1,2 − α1,3 − α2,3) − 8.

Remark 1.10. It is well known that the Alexander polynomial of ribbon knots is of
the form f(t)f(t−1), where f(t) is a Laurent polynomial ([2]). Then it is natural to
ask whether the Jones polynomial of ribbon knots has some properties reflecting the
knots being ribbon. There are few works in this direction. In [12], Sakai also shows

J ′′′
K (1) = −72(α1 + α2 + α3 − α1,2 − α1,3 − α2,3)

and have
2J ′′′

K (1) = −9J ′
K(−1) − 72.

In the process of extending these formulas, we have succeed in giving formulas for
J ′(−1) and J ′′′(1) for ribbon knots of 1-fusion.

Example 1.11. If K has the 1-fusion diagram with (c1, c2, c3, c4) = (+1,+1, 0,+1) as
shown in the middle diagram of figure 5, then

J ′
K(−1) = 48(α2,3 − α2,4 − α3,5 + α4,5) − 24.
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Figure 5

Example 1.12. If K has the 1-fusion diagram with (c1, c2, c3, c4) = (0,+1,+1, 0) as
shown in the right diagram of figure 5, then J ′

K(−1) = 0. Note that the Alexan-
der polynomial of K is 1. The cases (c1, c2, c3, c4) = (0,+1,−1, 0), (0,−1,+1, 0),
(0,−1,−1, 0) are the same.

We use the following convention:

S = ∅ =⇒
∑
i∈S

ai = 0 and
∏
i∈S

ai = 1.

Now we define the following integers determined by ci ∈ {−1, 0,+1} (1 ≤ i ≤ n):
For 1 ≤ p, q, r, s ≤ n+ 1,

f(p, q) =
q∏

i=p

(−1)−ci ,

g(q, r) = 2|cq|
r∏

j=q+1

(−1)−cj ,

and

v(p, q) =
q∑

k=p

ck

q∏
i=p

(−1)−ci ,

w(p, q, r) =
(
−4|cq|

q−1∑
i=p

ci + 2|cq|
r∑

i=q+1

ci − cq

) r∏
j=q+1

(−1)−cj ,

x(p, q) = 2v(p, q)|cq+1| − f(p, q)cq+1,

y(p, q, r) = 2w(p, q, r)|cr+1| − g(q, r)cr+1.

We also define the following integers determined by αi (1 ≤ i ≤ n + 1) and αi,j

391 Revista Matemática Complutense
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(1 ≤ i < j ≤ n+ 1):

l(p, q) = −
q∑

i=p

αi − 2
q−1∑
i=p

q∑
j=i+1

(−1)j−iαi,j ,

l(p, q, r, s) = −
q∑

i=p

αi −
s∑

i=r

αi − 2
q−1∑
i=p

q∑
j=i+1

(−1)j−iαi,j − 2
s−1∑
i=r

s∑
j=i+1

(−1)j−iαi,j

− 2(−1)p+r−1

q∑
i=p

s∑
j=r

(−1)j−iαi,j .

Remark 1.13. As will be seen in section 2, l(p, q) is the linking number of 2-component
link L(p, q) (R(p, q)) defined in section 2 and l(p, q, r, s) is the linking number of
2-component link L(p, q, r, s) (R(p, q, r, s), LL(p, q, r, s) or RR(p, q, r, s)) defined in
section 2.

Now we state the main proposition of this paper:

Proposition 1.14. Let K and DK be a ribbon knot of 1-fusion and its 1-fusion
diagram as in Definition 1.4 and let JK(t) be the Jones polynomial of K. Then we
have

J ′
K(−1) =

45∑
i=1

Ei +
13∑

i=1

Fi,

where each Ei is expressed by c1, c2, . . . , cn, and αi (1 ≤ i ≤ n + 1), and αi,j

(1 ≤ i < j ≤ n+ 1) and each Fi is expressed only by c1, c2, · · · , cn as follows:

E1 = 2
n/2∑
h=1

g(2h− 1, n)l(2h, n+ 1),

E2 = −4
n/2∑
k=1

k−1∑
h=1

n/2∑
r=k

g(2h− 1, 2k − 2)|c2k−1|g(2r, n)l(2h, 2k − 1),

E3 = −4
n/2∑
k=1

k−1∑
h=1

n/2∑
r=k+1

g(2h, 2k − 2)|c2k−1|g(2r − 1, n)l(2r, n+ 1),

E4 = −4
n/2∑
k=1

k−1∑
h=1

n/2∑
r=k

g(2h, 2k − 2)|c2k−1|g(2r, n)l(2h+ 1, 2k − 1, 2r + 1, n+ 1),

E5 = −4
n/2∑
k=1

k−1∑
h=1

g(2h, 2k − 2)|c2k−1|f(2k, n)l(2k, n+ 1),

E6 = −4
n/2∑
k=1

n/2∑
r=k+1

f(1, 2k − 2)|c2k−1|g(2r − 1, n)l(2r, n+ 1),

Revista Matemática Complutense
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E7 = −4
n/2∑
k=1

n/2∑
r=k

f(1, 2k − 2)|c2k−1|g(2r, n)l(1, 2k − 1, 2r + 1, n+ 1),

E8 = −4
n/2∑
k=1

f(1, 2k − 2)|c2k−1|f(2k, n)l(2k, n+ 1),

E9 = −4
n/2∑
k=1

k∑
h=1

n/2∑
r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r − 1, n)l(2r, n+ 1),

E10 = −4
n/2∑
k=1

k∑
h=1

n/2∑
r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r, n)l(2h, 2k, 2r + 1, n+ 1),

E11 = −4
n/2∑
k=1

k∑
h=1

g(2h− 1, 2k − 1)|c2k|f(2k + 1, n)l(2h, n+ 1),

E12 = −4
n/2∑
k=1

k−1∑
h=1

n/2∑
r=k+1

g(2h, 2k − 1)|c2k|g(2r, n)l(2h+ 1, 2k),

E13 = −4
n/2∑
k=1

k−1∑
h=1

g(2h, 2k − 1)|c2k|f(2k + 1, n)l(2h+ 1, 2k),

E14 = −4
n/2∑
k=1

n/2∑
r=k+1

f(1, 2k − 1)|c2k|g(2r, n)l(1, 2k),

E15 = −4
n/2∑
k=1

f(1, 2k − 1)|c2k|f(2k + 1, n)l(1, 2k),

E16 = 4
n/2∑
j=1

j−1∑
h=1

g(2h− 1, 2j − 2)|c2j−1|l(2h, 2j − 1),

E17 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

j−1∑
r=k

g(2h− 1, 2k − 2)|c2k−1|g(2r, 2j − 2)|c2j−1|l(2h, 2k − 1),

E18 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

j−1∑
r=k+1

g(2h, 2k − 2)|c2k−1|g(2r − 1, 2j − 2)|c2j−1|l(2r, 2j − 1),

E19 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

j−1∑
r=k

g(2h, 2k − 2)|c2k−1|g(2r, 2j − 2)|c2j−1|

× l(2h+ 1, 2k − 1, 2r + 1, 2j − 1),
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E20 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

g(2h, 2k − 2)|c2k−1|f(2k, 2j − 2)|c2j−1|l(2k, 2j − 1),

E21 = −8
n/2∑
j=1

j−1∑
k=1

j−1∑
r=k+1

f(1, 2k − 2)|c2k−1|g(2r − 1, 2j − 2)|c2j−1|l(2r, 2j − 1),

E22 = −8
n/2∑
j=1

j−1∑
k=1

j−1∑
r=k

f(1, 2k − 2)|c2k−1|g(2r, 2j − 2)|c2j−1|l(1, 2k − 1, 2r + 1, 2j − 1),

E23 = −8
n/2∑
j=1

j−1∑
k=1

f(1, 2k − 2)|c2k−1|f(2k, 2j − 2)|c2j−1|l(2k, 2j − 1),

E24 = −8
n/2∑
j=1

j−1∑
k=1

k∑
h=1

j−1∑
r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r − 1, 2j − 2)|c2j−1|l(2r, 2j − 1),

E25 = −8
n/2∑
j=1

j−1∑
k=1

k∑
h=1

j−1∑
r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r, 2j − 2)|c2j−1|

× l(2h, 2k, 2r + 1, 2j − 1),

E26 = −8
n/2∑
j=1

j−1∑
k=1

k∑
h=1

g(2h− 1, 2k − 1)|c2k|f(2k + 1, 2j − 2)|c2j−1|l(2h, 2j − 1),

E27 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

j−1∑
r=k+1

g(2h, 2k − 1)lvertc2krvertg(2r, 2j − 2)|c2j−1|l(2h+ 1, 2k),

E28 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

g(2h, 2k − 1)|c2k|f(2k + 1, 2j − 2)|c2j−1|l(2h+ 1, 2k),

E29 = −8
n/2∑
j=1

j−1∑
k=1

j−1∑
r=k+1

f(1, 2k − 1)|c2k|g(2r, 2j − 2)|c2j−1|l(1, 2k),

E30 = −8
n/2∑
j=1

j−1∑
k=1

f(1, 2k − 1)|c2k|f(2k + 1, 2j − 2)|c2j−1|l(1, 2k),

E31 = 4
n/2∑
j=1

j−1∑
h=1

g(2h, 2j − 1)|c2j |l(2h+ 1, 2j),

E32 = 4
n/2∑
j=1

f(1, 2j − 1)|c2j |l(1, 2j),
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E33 = −8
n/2∑
j=1

j∑
k=1

k−1∑
h=1

j∑
r=k+1

g(2h− 1, 2k − 2)|c2k−1|g(2r − 1, 2j − 1)|c2j |l(2h, 2k − 1),

E34 = −8
n/2∑
j=1

j∑
k=1

k−1∑
h=1

g(2h− 1, 2k − 2)|c2k−1|f(2k, 2j − 1)|c2j |l(2h, 2k − 1),

E35 = −8
n/2∑
j=1

j∑
k=1

k−1∑
h=1

j∑
r=k+1

g(2h, 2k − 2)|c2k−1|g(2r − 1, 2j − 1)|c2j |

× l(2h+ 1, 2k − 1, 2r, 2j),

E36 = −8
n/2∑
j=1

j∑
k=1

k−1∑
h=1

j−1∑
r=k

g(2h, 2k − 2)|c2k−1|g(2r, 2j − 1)|c2j |l(2r + 1, 2j),

E37 = −8
n/2∑
j=1

j∑
k=1

k−1∑
h=1

g(2h, 2k − 2)|c2k−1|f(2k, 2j − 1)|c2j |l(2h+ 1, 2j),

E38 = −8
n/2∑
j=1

j−1∑
k=1

j∑
r=k+1

f(1, 2k − 2)|c2k−1|g(2r − 1, 2j − 1)|c2j |l(1, 2k − 1, 2r, 2j),

E39 = −8
n/2∑
j=1

j−1∑
k=1

j−1∑
r=k

f(1, 2k − 2)|c2k−1|g(2r, 2j − 1)|c2j |l(2r + 1, 2j),

E40 = −8
n/2∑
j=1

j∑
k=1

f(1, 2k − 2)|c2k−1|f(2k, 2j − 1)|c2j |l(1, 2j),

E41 = −8
n/2∑
j=1

j−1∑
k=1

k∑
h=1

j∑
r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r − 1, 2j − 1)|c2j |l(2h, 2k, 2r, 2j),

E42 = −8
n/2∑
j=1

j−1∑
k=1

k∑
h=1

j−1∑
r=k+1

g(2h− 1, 2k − 1)|c2k|g(2r, 2j − 1)|c2j |l(2r + 1, 2j),

E43 = −8
n/2∑
j=1

j−1∑
k=1

k∑
h=1

g(2h− 1, 2k − 1)|c2k|f(2k + 1, 2j − 1)|c2j |l(2k + 1, 2j),

E44 = −8
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

j∑
r=k+1

g(2h, 2k − 1)|c2k|g(2r − 1, 2j − 1)|c2j |l(2h+ 1, 2k),

E45 = −8
n/2∑
j=1

j−1∑
k=1

j∑
r=k+1

f(1, 2k − 1)|c2k|g(2r − 1, 2j − 1)|c2j |l(1, 2k),
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F1 =
n/2∑
h=1

w(1, 2h, n), F2 = v(1, n),

F3 =
n/2∑
j=1

j−1∑
h=1

y(1, 2h, 2j − 2), F4 =
n/2∑
j=1

x(1, 2j − 2),

F5 =
n/2∑
j=1

j∑
h=1

y(1, 2h− 1, 2j − 1), F6 = 2
n/2∑
j=1

c2j−1,

F7 = −4
n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

g(2h, 2k − 2)|c2k−1|c2j−1,

F8 = −4
n/2∑
j=1

j−1∑
k=1

f(1, 2k − 2)|c2k−1|c2j−1,

F9 = −4
n/2∑
j=1

j−1∑
k=1

k∑
h=1

g(2h− 1, 2k − 1)|c2k|c2j−1,

F10 = 2
n/2∑
j=1

c2j , F11 = −4
n/2∑
j=1

j∑
k=1

k−1∑
h=1

g(2h, 2k − 2)|c2k−1|c2j ,

F12 = −4
n/2∑
j=1

j∑
k=1

f(1, 2k − 2)|c2k−1|c2j ,

F13 = −4
n/2∑
j=1

j−1∑
k=1

k∑
h=1

g(2h− 1, 2k − 1)|c2k|c2j .

By substituting l(p, q) and l(p, q, r, s) into each Ei and expanding them, we obtain

Theorem 1.15. Let K and DK be a ribbon knot of 1-fusion and its 1-fusion diagram
as in Proposition 1.14 and let JK(t) be the Jones polynomial of K. Then J ′

K(−1) is
a linear expression of αi and αi,j

J ′
K(−1) =

∑
1≤i≤n+1

Aiαi +
∑

1≤i<j≤n+1

Ai,jαi,j +B,

where each Ai, Ai,j and B is expressed by c1, c2, · · · , cn. To be more precise,

45∑
i=1

Ei =
∑

1≤i≤n+1

Aiαi +
∑

1≤i<j≤n+1

Ai,jαi,j ,
13∑

i=1

Fi = B.

Remark 1.16. In the appendix, we discuss some properties of Ai, Ai,j , and B.
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By [11, Theorem 5.1] we obtain the following theorem from Proposition 1.14.

Theorem 1.17. Let K and DK be a ribbon knot of 1-fusion and its 1-fusion diagram
as in Proposition 1.14. Let ΣK be a double branched cover of S3 branched along K.
Then λCW (ΣK), the Casson-Walker invariant of ΣK , is written as follows

λCW (ΣK) = − 1
6M

( 45∑
i=1

Ei +
13∑

i=1

Fi

)
,

where M = (f(−1))2 = (
∑n/2

i=1(−1)
∑ n

j=2i(−1)jcj ((−1)c2i−1 −1)+1)2 (Remark 1.8), Ei

and Fi are in Proposition 1.14.
In particular, when ΣK is an integral homology sphere that gives M = 1, the

Casson invariant λ = λCW /2 and

λ(ΣK) = − 1
12

( 45∑
i=1

Ei +
13∑

i=1

Fi

)
.

2. Some links associated to 1-fusion diagram

Let DK be the 1-fusion diagram in Definition 1.4. We shall introduce important
2-component links associated to DK and prove a lemma for their Jones polynomials.

From now on we often denote a link and its diagram by the same symbol.
Let p, q be the integers satisfying 1 ≤ p < q ≤ n+ 1.

Definition of L(p, q). Suppose that p is even and q is odd. We define a 2-component
link L(p, q) obtained from DK as follows (figure 6): We erase the outside of the big
rectangle of DK and erase subbands except i-th subbands (p ≤ i ≤ q). Then we add
subbands in the trivial manner as shown in the last picture in figure 6.

Definition of R(p, q). Suppose that p is odd and q is even. We define a 2-component
link R(p, q) obtained from DK as follows (see the left diagram in figure 7, where
n = 10, p = 3, and q = 4): We erase the outside of the big rectangle of DK and erase
subbands except i-th subbands (p ≤ i ≤ q). Then we add subbands in the trivial
manner as shown in the figure.

Let p, q, r, s be the integers satisfying 1 ≤ p < q < r < s ≤ n+ 1.

Definition of L(p, q, r, s). Suppose that p and q are even and r and s are odd. We
define a 2-component link L(p, q, r, s) obtained from DK as follows (see the middle
diagram in figure 7, where n = 10, p = 2, q = 4, r = 7, and s = 9): We erase
the outside of the big rectangle of DK and erase subbands except i-th subbands
(p ≤ i ≤ q) and j-th subbands (r ≤ j ≤ s). Then we add subbands in the trivial
manner as shown in the figure.
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4

R(3,4)

2

3

4
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8

9

L(2,4,7,9) R(1,3,6,8)

1

2

3

7

8

6

Figure 7

Definition of R(p, q, r, s). Suppose that p and q are odd and r and s are even. We
define a 2-component link R(p, q, r, s) obtained from DK as follows (see the right
diagram in figure 7, where n = 10, p = 1, q = 3, r = 6, and s = 8): We erase
the outside of the big rectangle of DK and erase subbands except i-th subbands
(p ≤ i ≤ q) and j-th subbands (r ≤ j ≤ s). Then we add subbands in the trivial
manner as shown in the figure.

Definition of LL(p, q, r, s). Suppose that p, q, r, and s are even. We define a
2-component link LL(p, q, r, s) obtained from DK as follows (see the left diagram in
figure 8, where n = 10, p = 2, q = 4, r = 8, and s = 10): We erase the outside of the
big rectangle of DK and erase subbands except i-th subbands (p ≤ i ≤ q) and j-th
subbands (r ≤ j ≤ s). Then we add subbands in the trivial manner as shown in the
figure.

Definition of RR(p, q, r, s). Suppose that p, q, r, and s are odd. We define a
2-component link LL(p, q, r, s) obtained from DK as follows (see the right diagram in
figure 8, where n = 10, p = 1, q = 3, r = 7, and s = 9): We erase the outside of the
big rectangle of DK and erase subbands except i-th subbands (p ≤ i ≤ q) and j-th
subbands (r ≤ j ≤ s). Then we add subbands in the trivial manner as shown in the
figure.
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2005, 18; Núm. 2, 387–425

400



Yoko Mizuma Ribbon knots of 1-fusion, the Jones polynomial. . .
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Figure 9

The following lemma is used in section 6.

Lemma 2.1. The following formulas hold:

JL(p,q)(−1) = JR(p,q)(−1) = (2i)l(p, q),
JL(p,q,r,s)(−1) = JR(p,q,r,s)(−1) = (2i)l(p, q, r, s),
JLL(p,q,r,s)(−1) = JRR(p,q,r,s)(−1) = (2i)l(p, q, r, s).

For l(p, q) and l(p, q, r, s) see before Proposition 1.14.

Proof. Recall that JL(−1) = ΔL(−1), where Δ denotes the normalized Alexander
polynomial ([4], cf. [6, 7]). L(p, q) bounds an annulus as a Seifert surface. Its Seifert
matrix is 1 × 1-matrix whose entry is −l(p, q). Hence JL(p,q)(−1) = ΔL(p,q)(−1) =
(−1)−

1
2 (−2)l(p, q) = (2i)l(p, q).

3. A formula for the Jones polynomial

The following proposition is useful for calculating the Jones polynomial.

Proposition 3.1. Let L be a link diagram which has c as the framed part on the left
in figure 9, where c ∈ {−1, 0,+1 }. Then we have

JL(t) = (1 − tc)JL1(t) + t−
c
2 (1 − t2c)JL2(t) + t−cJL3(t)

+ (1 − tc)JL4(t) + t−
c
2 (1 − tc)JL5(t),

where L1, L2, L3, L4, L5 are the following oriented link diagrams obtained from L,
which are identical with L except inside of the rectangle (figure 10).
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L1 L2 L4L3 L5

Figure 10

Proof. We apply the recursive formula of the Kauffman bracket ([5]) to four crossings
in the rectangle of L. If c = −1, then we have

〈L〉 = (2 +A2d)〈L1〉 + (A2 +B2 +A4d)〈L2〉 +B4〈L3〉
+ (2 +A2d)〈L4〉 + (2B2 + d)〈L5〉,

where d = −(A2 + B2), B = A−1. Here we notice that the writhes of L and these
five diagrams are the same, so we have

JL(t) = (1 − t−1)JL1(t) + t
1
2 (1 − t−2)JL2(t) + tJL3(t)

+ (1 − t−1)JL4(t) + t
1
2 (1 − t−1)JL5(t).

The case c = +1 is similar.
If c = 0, L is isotopic to L3, so we have JL(t) = JL3(t).

Remark 3.2. JL(t) is obtained by weighting JL1(t), JL2(t), JL3(t), JL4(t), and JL5(t)
and adding them. Note that the weight of JL1(t) and the weight of JL4(t) are the
same.

4. Calculation of the Jones polynomial

To apply Proposition 3.1 to the 1-fusion diagram DK in Proposition 1.14 we introduce
some links obtained from DK .

We denote DK by [C1, . . . , Cn].

4.1. A notation

We denote by [X1, . . . , Xi, Ci+1, . . . , Cn] the diagram obtained from [C1, . . . , Cn] by
changing C1 to X1, . . ., Ci to Xi, where X1, . . . , Xi ∈ {S,U, T, P,Q } and S, T , U , P ,
and Q are the figures as shown in the following table (see figure 11). Note that figures
T in Xodd and in Xeven are the same. So are U and Q, but for S and P they are not
same. For example, [U,U, S, S, S, U ] is in figure 12, [S,U, T, S, U, S] is in figure 13 and
[U, S, U, T, S, U, P,C8] is in figure 14. Note that the diagram in figure 12 gives a split
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S T U P Q

Xi (i: odd)

(i: even)Xi

Figure 11

Figure 12

[S, U, T, S, U, S]

S

T

U

U

S

S

L(2,3)

Figure 13
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U

U

S

S
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P

~~ ~~ ~~

[U, S, U, T, S, U, P, C  ]8 

C8

c 8 = 1 c 8 = 0 c 8 = 1- +

Figure 14
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link which consists of the trivial knot and L(6, 7) defined in section 2.
When i = 1, [X1, . . . , Xi−1, Y, Ci+1, . . . , Cn] is nothing but [Y,C2, . . . , Cn].
We denote [X1, . . . , Xi−1, P, Ci+1, . . . , Cn], [X1, . . . , Xi−1, Q,Ci+1, . . . , Cn] by

[X1, . . . , Xi−1, P ], [X1, . . . , Xi−1, Q] respectively, since their link types do not depend
on the values of ci+1, . . . , cn. For example, as it is seen from figure 14 the link type
of [U, S, U, T, S, U, P,C8] does not depend on the value of c8.

4.2. Symbols

We prepare the following symbols by the connection with Proposition 3.1. Let S(c) =
1 − tc, T (c) = t−

c
2 (1 − t2c), U(c) = t−c, P (c) = 1 − tc, Q(c) = t−

c
2 (1 − tc), where

c ∈ {−1, 0,+1}.
Note that S(c) = P (c) (Remark 3.2).

4.3. A notation

We denote
∑

X1∈J

∑
X2∈J · · ·∑Xm∈J F (X1, . . . , Xm) by

∑
Xi∈J F (X1, . . . , Xm).

From now on we use this convention.

4.4. Calculations

We apply Proposition 3.1 to C1 in [C1, . . . , Cn] and we have

JK(t) =S(c1)J[S,C2,...,Cn](t) + T (c1)J[T,C2,...,Cn](t) + U(c1)J[U,C2,...,Cn](t)
+ P (c1)J[P,C2,...,Cn](t) +Q(c1)J[Q,C2,...,Cn](t)

=
∑

X1∈{S,U,T}
X1(c1)J[X1,C2,...,Cn](t) + P (c1)J[P ](t) +Q(c1)J[Q](t).

Next we apply Proposition 3.1 to C2 of [X1, C2, . . . , Cn] (X1 ∈ {S, T, U }) and we
have

J[X1,C2,...,Cn](t) =S(c2)J[X1,S,...,Cn](t) + T (c2)J[X1,T,...,Cn](t) + U(c2)J[X1,U,...,Cn](t)
+ P (c2)J[X1,P,C3,...,Cn](t) +Q(c2)J[X1,Q,C3,...,Cn](t)

=
∑

X2∈{S,U,T}
X2(c2)J[X1,X2,C3,...,Cn](t) + P (c2)J[X1,P ](t)

+Q(c2)J[X1,Q](t).
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So we have

JK(t) =
∑

X1∈{S,U,T}
X1(c1)

∑
X2∈{S,U,T}

X2(c2)J[X1,X2,C3,...,Cn](t)

+
∑

1≤j≤2

∑
Xi∈{S,U,T}

j−1∏
i=1

Xi(ci)P (cj)J[X1,...,Xj−1,P ](t)

+
∑

1≤j≤2

∑
Xi∈{S,U,T}

j−1∏
i=1

Xi(ci)Q(cj)J[X1,...,Xj−1,Q](t).

Note that we use the convention in section 4.3.
We continue this until we come to Cn, and then we have

Proposition 4.1. Let [C1, . . . , Cn] be the 1-fusion diagram as above. Then JK(t) is
written as follows:

JK(t) =
∑

Xi∈{S,U,T}

n∏
i=1

Xi(ci)J[X1,...,Xn](t)

+
∑

1≤j≤n

∑
Xi∈{S,U,T}

j−1∏
i=1

Xi(ci)P (cj)J[X1,...,Xj−1,P ](t)

+
∑

1≤j≤n

∑
Xi∈{S,U,T}

j−1∏
i=1

Xi(ci)Q(cj)J[X1,...,Xj−1,Q](t).

Moreover, by decomposing
∑

1≤j≤n into the sum of
∑

j odd and
∑

j even, JK(t)
becomes the sum of five parts:

JK(t) = J1(t) + J2(t) + J3(t) + J4(t) + J5(t) (1)

where

J1(t) =
∑

Xi∈{S,U,T}

n∏
i=1

Xi(ci)J[X1,...,Xn](t),

J2(t) =
n/2∑
j=1

∑
Xi∈{S,U,T}

2j−2∏
i=1

Xi(ci)P (c2j−1)J[X1,...,X2j−2,P ](t),
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J3(t) =
n/2∑
j=1

∑
Xi∈{S,U,T}

2j−1∏
i=1

Xi(ci)P (c2j)J[X1,...,X2j−1,P ](t),

J4(t) =
n/2∑
j=1

∑
Xi∈{S,U,T}

2j−2∏
i=1

Xi(ci)Q(c2j−1)J[X1,...,X2j−2,Q](t),

J5(t) =
n/2∑
j=1

∑
Xi∈{S,U,T}

2j−1∏
i=1

Xi(ci)Q(c2j)J[X1,...,X2j−1,Q](t).

5. Lemmas

To calculate J ′
K(−1) we prepare some lemmas.

Lemma 5.1. Let ci ∈ {−1, 0,+1}. Then we have

∑
Xi∈{S,U}

q∏
i=p

Xi(ci) =
q∏

i=p

(t−ci + 1 − tci) (2a)

∑
Xi∈{S,U}

q∏
i=p

Xi(ci)|t=−1 = 1 (2b)

( ∑
Xi∈{S,U}

q∏
i=p

Xi(ci)
)′

(−1) = −2
q∑

i=p

ci (2c)

Proof. (2a) follows from

{S(cp) + U(cp)}{S(cp+1) + U(cp+1)} · · · {S(cq) + U(cq)}

=
∑

Xp∈{S,U}

∑
Xp+1∈{S,U}

· · ·
∑

Xq∈{S,U}

q∏
i=p

Xi(ci)

=
∑

Xi∈{S,U}

q∏
i=p

Xi(ci)

and

S(ci) + U(ci) = (1 − tci) + t−ci = t−ci + 1 − tci .

(2b) is trivial from (2a).
(2c) follows from (2a) and( q∏

i=p

(t−ci + 1 − tci)
)′

(−1) =
q∑

i=p

(−ci(−1)−ci−1 − ci(−1)ci−1) =
q∑

i=p

(−2ci).
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The following are lemmas for calculations with Jones polynomials, so we adopt
the convention (−1)

1
2 = −i.

We often use the following in the proof of the lemmas:

{(1 + t)2f(t)}′(−1) = 0,
{(1 + t)f(t)}′(−1) = f(−1).

Lemma 5.2. Let G(t) be a Laurent polynomial. Let d(t) denote −t− 1
2 (1 + t). Let

S(c), etc., be as in section 4.2. Then the following holds.

{G(t)d(t)}′(−1) = −iG(−1) (3a)
{T (c)G(t)}′(−1) = 2|c|iG(−1) (3b)
S(c)|t=−1 = P (c)|t=−1 = 2|c| (3c)
{T (c)d(t)G(t)}′(−1) = 0 (3d)

({S(c)}′(−1) = {P (c)}′(−1) = −c (3e)
Q(c)|t=−1 = 2ci (3f)
{Q(c)}′(−1) = 0 (3g)

Let

V (p, q) =
q∏

i=p

U(ci),

W (p, q, r) =
∑

Xi∈{S,U}

q−1∏
i=p

Xi(ci)S(cq)
r∏

j=q+1

U(cj).

Then we have

Lemma 5.3.

V (p, q)|t=−1 = f(p, q) (4a)
W (p, q, r)|t=−1 = g(q, r) (4b)
{V (p, q)}′(−1) = v(p, q) (4c)

{W (p, q, r)}′(−1) = w(p, q, r) (4d)
{V (p, q)P (cq+1)}′(−1) = x(p, q) (4e)

{W (p, q, r)P (cr+1)}′(−1) = y(p, q, r) (4f)

Note that the right hand side of (4b) does not depend on p.

Proof. (4a) follows from

V (p, q) =
q∏

i=p

U(ci) =
q∏

i=p

t−ci
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and

V (p, q)|t=−1 =
q∏

i=p

(−1)−ci = f(p, q).

(4b) follows from (2b), (3c), and (4a). (4c) follows from

q∏
i=p

U(ci) =
q∏

i=p

t−ci = t−
∑ q

i=p ci .

(4d) follows from (2b), (2c), (3c), (3e), (4a), and (4c).

6. Proof of Proposition 1.14

Now we begin to calculate J ′
K(−1).

Note that the first derivative at −1 of a Laurent polynomial which has (1 + t)2 as
a factor is 0. If at least two of Xi’s in a term of (1) in Proposition 3.1 are T , then the
first derivative at −1 of the term is 0. In fact, let Xi and Xj be T . Then the term
has T (ci)T (cj) = t−

ci
2 (1− t2ci)t−

cj
2 (1− t2cj ) as a factor. So if ci �= 0 and cj �= 0, the

term has (1 + t)2 as a factor. If at least one of ci or cj is 0, then the term is 0.
Thus, to calculate J ′

K(−1), it is enough to consider the terms of (1) in Proposi-
tion 4.1 without T and with a single T and calculation proceeds as follows: In [i-0]
(1 ≤ i ≤ 5), we consider the terms in Ji(t) without T . In [i-1], we consider the terms
in Ji(t) with a single T . Moreover, [i-1] divides into [i-1-odd] and [i-1-even] in terms
of position of the T being right or left. In [i-1-odd], we consider the terms with a
single T which appears in Xodd (i.e. in the right). In [i-1-even], we consider the terms
with a single T which appears in Xeven (i.e. in the left).

6.1. We consider the part J1(t) in Proposition 4.1.

[1-0] Picking up the terms without T from J1(t), we obtain

∑
Xi∈{S,U}

n∏
i=1

Xi(ci)J[X1,...,Xn](t).

We divide these terms into three groups by the link type of

[X1, . . . , Xn] (Xi ∈ {S,U});

(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ n/2). Precisely X2h−1 = S,
Xi ∈ {S,U} (1 ≤ i ≤ 2h− 2), Xj = U (2h ≤ j ≤ n).

(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ n/2). Precisely X2h = S,
Xi ∈ {S,U} (1 ≤ i ≤ 2h− 1), Xj = U (2h+ 1 ≤ j ≤ n).
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(3) [U, . . . , U ]. Precisely Xi = U (1 ≤ i ≤ n).

The link type of [X1, . . . , Xn] is as follows, where O is the trivial knot and ∪
means the split sum. Note that in group 1 the link type does not depend on
X1, · · · , X2h−2:

1 O ∪ L(2h, n+ 1)
2 O
3 O

For example [U,U, S, S, S, U ] = O ∪ L(6, 7) (see figure 12).

The derivative at −1 of the sum of the terms in each group is calculated as
follows:

(1) The sum of the terms in this group is

n/2∑
h=1

∑
Xi∈{S,U}

2h−2∏
i=1

Xi(ci)S(c2h−1)
n∏

j=2h

U(cj)JO∪L(2h,n+1)(t)

=
n/2∑
h=1

W (1, 2h− 1, n)JL(2h,n+1)(t)d(t).

By using (3a) and (4b), the derivative at −1 is E1.

(2) The sum is

n/2∑
h=1

∑
Xi∈{S,U}

2h−1∏
i=1

Xi(ci)S(c2h)
n∏

j=2h+1

U(cj)JO(t) =
n/2∑
h=1

W (1, 2h, n).

By using (4d), the derivative is F1.

(3) The term is
n∏

i=1

U(ci)JO(t) = V (1, n).

By using (4c), the derivative is F2.

[1-1] Picking up the terms with a single T from J1(t), we obtain

n∑
l=1

∑
Xi∈{S,U}

l−1∏
i=1

Xi(ci)T (cl)
n∏

i=l+1

Xi(ci)J[X1,...,Xl−1,T,Xl+1,...,Xn](t).

We divide
∑

1≤l≤n into two parts
∑

l odd ([1-1-odd]) and
∑

l even ([1-1-even]).
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[1-1-odd ] We consider the following terms (in which l is odd).

n/2∑
k=1

∑
Xi∈{S,U}

2k−2∏
i=1

Xi(ci)T (c2k−1)
n∏

i=2k

Xi(ci)J[X1,...,X2k−2,T,X2k,...,Xn](t).

We divide these terms into nine groups by the link type of

[X1, . . . , X2k−2, T,X2k, . . . , Xn] (Xi ∈ {S,U});
[X1, . . . , X2k−2] is divided into three groups:
(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h− 1, 2k − 2),
(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h, 2k − 2),
(3) [U, . . . , U ]: f(1, 2k − 2).

[X2k, . . . , Xn] is divided into three groups:
(a) [X2k, . . . , X2r−2, S, U, . . . , U ] (k + 1 ≤ r ≤ n/2): g(2r − 1, n),
(b) [X2k, . . . , X2r−1, S, U, . . . , U ] (k ≤ r ≤ n/2): g(2r, n),
(c) [U, . . . , U ]: f(2k, n).
(The reason why g, f are written there will be found in (1,b).)

Then we have nine groups (1,a)–(3,c). The link type of [X1, . . . , X2k−2,
T,X2k, . . . , Xn] is as follows, where each link in (1,a) and (1,c) is a split
link which consists of the trivial knot and some link:

a b c
1 L(2h, 2k − 1)
2 L(2r, n+ 1) RR(2h+ 1, 2k − 1, 2r + 1, n+ 1) L(2k, n+ 1)
3 L(2r, n+ 1) RR(1, 2k − 1, 2r + 1, n+ 1) L(2k, n+ 1)

As an example of (1,b), [S,U, T, S, U, S] = L(2, 3) (see figure 13).

The derivative at −1 of the sum of the terms in each group is calculated
as follows:
(1,b): The sum of the terms is

n/2∑
k=1

k−1∑
h=1

n/2∑
r=k

∑
Xi∈{S,U}

2h−2∏
i=1

Xi(ci)S(c2h−1)
2k−2∏
j=2h

U(cj)T (c2k−1)·

2r−1∏
i=2k

Xi(ci)S(c2r)
n∏

j=2r+1

U(cj) × JL(2h,2k−1)(t)

=
n/2∑
k=1

k−1∑
h=1

n/2∑
r=k

W (1, 2h− 1, 2k − 2)T (c2k−1)W (2k, 2r, n)JL(2h,2k−1)(t).
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By using (3b) and (4b), the derivative is

n/2∑
k=1

k−1∑
h=1

n/2∑
r=k

g(2h− 1, 2k − 2)(2i)|c2k−1|g(2r, n)(2i)l(2h, 2k − 1)

= −4
n/2∑
k=1

k−1∑
h=1

n/2∑
r=k

g(2h− 1, 2k − 2)|c2k−1|g(2r, n)l(2h, 2k − 1).

This is E2.

As we see from this calculation, we can calculate the derivative of the terms
with a single T automatically by the following procedure:

[X1, . . . , X2h−2, S, U, . . . , U︸ ︷︷ ︸,
1

T,X2k, . . . , X2r−1, S, U, . . . , U︸ ︷︷ ︸
b

] = L(2h, 2k − 1)

����
��

�

����
��
��
�

����
��

����
��
��
�

g(2h− 1, 2k − 2) (2i)|c2k−1|

�� �
��
�
��
��
g(2r, n) (2i)l(2h, 2k − 1)

−4g(2h− 1, 2k − 2)|c2k−1|g(2r, n)l(2h, 2k − 1).

By summing up we have E2.

By using this procedure we have the following, where each link in (1,a)
and (1,c) is a split link which consists of the trivial knot and some link,
and hence by using (3d) the derivative of the terms is 0:

a: g(2r − 1, n) b: g(2r, n) c: f(2k, n)
1: g(2h− 1, 2k − 2) 0 E2 0
2: g(2h, 2k − 2) E3 E4 E5

3: f(1, 2k − 2) E6 E7 E8

[1-1-even ] We consider the following terms (in which l is even).

n/2∑
k=1

∑
Xi∈{S,U}

2k−1∏
i=1

Xi(ci)T (c2k)
n∏

i=2k+1

Xi(ci)J[X1,...,X2k−1,T,X2k+1,...,Xn](t).

We divide these terms into nine groups by the link type of

[X1, . . . , X2k−1, T,X2k+1, . . . , Xn] (Xi ∈ {S,U}).
[X1, . . . , X2k−1] is divided into three groups:
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(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ k): g(2h− 1, 2k − 1),
(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h, 2k − 1),
(3) [U, . . . , U ]: f(1, 2k − 1).

[X2k+1, . . . , Xn] is divided into three groups:

(a) [X2k+1, . . . , X2r−2, S, U, . . . , U ] (k + 1 ≤ r ≤ n/2): g(2r − 1, n),
(b) [X2k+1, . . . , X2r−1, S, U, . . . , U ] (k + 1 ≤ r ≤ n/2): g(2r, n),
(c) [U, . . . , U ]: f(2k + 1, n).

Then we have nine groups (1,a)–(3,c). The link type of [X1, . . . , X2k−1, T,
X2k+1, . . . , Xn] is as follows, where each link in (2,a) and (3,a) is a split
link which consists of the trivial knot and some link:

a b c
1 L(2r, n+ 1) L(2h, 2k, 2r + 1, n+ 1) L(2h, n+ 1)
2 R(2h+ 1, 2k) R(2h+ 1, 2k)
3 R(1, 2k) R(1, 2k)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r − 1, n) b: g(2r, n) c: f(2k + 1, n)
1: g(2h− 1, 2k − 1) E9 E10 E11

2: g(2h, 2k − 1) 0 E12 E13

3: f(1, 2k − 1) 0 E14 E15

Each link in (2,a) and (3,a) is a split link which consists of the trivial
knot and some link. By using (3d) the derivative of the terms is 0.

6.2. We consider the part J2(t) in Proposition 4.1.

[2-0] Picking up the terms without T from J2(t), we obtain

n/2∑
j=1

∑
Xi∈{S,U}

2j−2∏
i=1

Xi(ci)P (c2j−1)J[X1,...,X2j−2,P ](t).

We divide these terms into three groups by the link type of

[X1, · · · , X2j−2, P ] (Xi ∈ {S,U}):

(1) [X1, . . . , X2h−2, S, U, . . . , U, P ] = O ∪ L(2h, 2j − 1) (1 ≤ h ≤ j − 1),

(2) [X1, . . . , X2h−1, S, U, . . . , U, P ] = O (1 ≤ h ≤ j − 1),

(3) [U, · · · , U, P ] = O.

The sum of the terms in each group and its derivative at −1 are as follows:
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(1)
∑n/2

j=1

∑j−1
h=1W (1, 2h− 1, 2j − 2)P (c2j−1)JL(2h,2j−1)(t)d(t). The derivative

is E16.

(2)
∑n/2

j=1

∑j−1
h=1W (1, 2h, 2j − 2)P (c2j−1). By using (4f), the derivative is F3.

(3)
∑n/2

j=1 V (1, 2j − 2)P (c2j−1). By using (4e), the derivative is F4.

[2-1] Picking up the terms with a single T from J2(t), we obtain

n/2∑
j=1

2j−2∑
l=1

∑
Xi∈{S,U}

l−1∏
i=1

Xi(ci)T (cl)

·
2j−2∏
i=l+1

Xi(ci)P (c2j−1)J[X1,...,Xl−1,T,Xl+1,...,X2j−2,P ](t).

[2-1-odd ] We consider the following terms (in which l is odd).

n/2∑
j=1

j−1∑
k=1

∑
Xi∈{S,U}

2k−2∏
i=1

Xi(ci)T (c2k−1)

·
2j−2∏
i=2k

Xi(ci)P (c2j−1)J[X1,...,X2k−2,T,X2k,...,X2j−2,P ](t).

We divide these terms into nine groups by the link type of

[X1, . . . , X2k−2, T,X2k, . . . , X2j−2, P ] (Xi ∈ {S,U}):

[X1, . . . , X2k−2] is divided into three groups:

(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ k − 1); g(2h− 1, 2k − 2),
(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ k − 1); g(2h, 2k − 2),
(3) [U, . . . , U ]; f(1, 2k − 2).

[X2k, . . . , X2j−2] is divided into three groups:

(a) [X2k, . . . , X2r−2, S, U, . . . , U ] (k + 1 ≤ r ≤ j − 1); g(2r − 1, 2j − 2),
(b) [X2k, . . . , X2r−1, S, U, . . . , U ] (k ≤ r ≤ j − 1); g(2r, 2j − 2),
(c) [U, . . . , U ]; f(2k, 2j − 2).

The link type of [X1, . . . , X2k−2, T,X2k, . . . , X2j−2, P ] is as follows, where
each link in (1,a) and (1,c) is a split link which consists of the trivial knot
and some link:
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a b c
1 L(2h, 2k − 1)
2 L(2r, 2j − 1) RR(2h+ 1, 2k − 1, 2r + 1, 2j − 1) L(2k, 2j − 1)
3 L(2r, 2j − 1) RR(1, 2k − 1, 2r + 1, 2j − 1) L(2k, 2j − 1)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r − 1, 2j − 2) b: g(2r, 2j − 2) c: f(2k, 2j − 2)
1: g(2h− 1, 2k − 2) 0 E17 0
2: g(2h, 2k − 2) E18 E19 E20

3: f(1, 2k − 2) E21 E22 E23

Each link in (1,a) and (1,c) is a split link which consists of the trivial
knot and some link. By using (3d) the derivative of the terms is 0.

[2-1-even ] We consider the following terms (in which l is even).

n/2∑
j=1

j−1∑
k=1

∑
Xi∈{S,U}

2k−1∏
i=1

Xi(ci)T (c2k)

·
2j−2∏

i=2k+1

Xi(ci)P (c2j−1)J[X1,...,X2k−1,T,X2k+1,...,X2j−2,P ](t).

We divide these terms into nine groups by the link type of

[X1, . . . , X2k−1, T,X2k+1, . . . , X2j−2, P ] (Xi ∈ {S,U}):

[X1, . . . , X2k−1] is divided into three groups:

(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ k): g(2h− 1, 2k − 1),
(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h, 2k − 1),
(3) [U, · · · , U ]: f(1, 2k − 1).

[X2k+1, . . . , X2j−2] is divided into three groups:

(a) [X2k+1, . . . , X2r−2, S, U, . . . , U ] (k + 1 ≤ r ≤ j − 1): g(2r − 1, 2j − 2),
(b) [X2k+1, . . . , X2r−1, S, U, . . . , U ] (k + 1 ≤ r ≤ j − 1): g(2r, 2j − 2),
(c) [U, . . . , U ]: f(2k + 1, 2j − 2).

The link type of [X1, . . . , X2k−1, T,X2k+1, . . . , X2j−2, P ] is as follows, where
each link in (2,a) and (3,a) bounds a disconnected Seifert surface:

a b c
1 L(2r, 2j − 1) L(2h, 2k, 2r + 1, 2j − 1) L(2h, 2j − 1)
2 R(2h+ 1, 2k) R(2h+ 1, 2k)
3 R(1, 2k) R(1, 2k)

415 Revista Matemática Complutense
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The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r − 1, 2j − 2) b: g(2r, 2j − 2) c: f(2k + 1, 2j − 2)

1: g(2h − 1, 2k − 1) E24 E25 E26

2: g(2h, 2k − 1) 0 E27 E28

3: f(1, 2k − 1) 0 E29 E30

Each link in (2,a) and (3,a) bounds a disconnected Seifert surface (see figure 14
for an example of (2,a)), so the Alexander polynomial is 0 (cf. [7, Proposi-
tion 6.14]), and then the Jones polynomial evaluated at −1 is 0. Hence the
derivative is 0.

6.3. We consider the part J3(t) in Proposition 4.1.

[3-0] Picking up the terms without T from J3(t), we obtain

n/2∑
j=1

∑
Xi∈{S,U}

2j−1∏
i=1

Xi(ci)P (c2j)J[X1,...,X2j−1,P ](t).

We divide these terms into three groups by the link type of

[X1, . . . , X2j−1, P ] (Xi ∈ {S,U}):
(1) [X1, . . . , X2h−2, S, U, . . . , U, P ] = O (1 ≤ h ≤ j),

(2) [X1, . . . , X2h−1, S, U, . . . , U, P ] = O ∪ L(2h+ 1, 2j) (1 ≤ h ≤ j − 1),

(3) [U, . . . , U, P ] = O ∪ L(1, 2j).

The sum of the terms in each group and its derivative at −1 are as follows:

(1)
∑n/2

j=1

∑j
h=1W (1, 2h− 1, 2j − 1)P (c2j). The derivative is F5.

(2)
∑n/2

j=1

∑j−1
h=1W (1, 2h, 2j−1)P (c2j)JL(2h+1,2j)(t)d(t). The derivative is E31.

(3)
∑n/2

j=1 V (1, 2j − 1)P (c2j)JL(1,2j)(t)d(t). The derivative is E32.

[3-1] Picking up the terms with a single T from J3(t), we obtain

n/2∑
j=1

2j−1∑
l=1

∑
Xi∈{S,U,}

l−1∏
i=1

Xi(ci)T (cl)

·
2j−1∏
i=l+1

Xi(ci)P (c2j)J[X1,...,Xl−1,T,Xl+1,...,X2j−1,P ](t).
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[3-1-odd ] We consider the following terms (in which l is odd).

n/2∑
j=1

j∑
k=1

∑
Xi∈{S,U}

2k−2∏
i=1

Xi(ci)T (c2k−1)

·
2j−1∏
i=2k

Xi(ci)P (c2j)J[X1,...,X2k−2,T,X2k,...,X2j−1,P ](t).

We divide these terms into nine groups by the link type of

[X1, . . . , X2k−2, T,X2k, . . . , X2j−1, P ] (Xi ∈ {S,U}):

[X1, . . . , X2k−2] is divided into three groups:

(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h− 1, 2k − 2),
(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h, 2k − 2),
(3) [U, . . . , U ]: f(1, 2k − 2).

[X2k, . . . , X2j−1] is divided into three groups:

(a) [X2k, . . . , X2r−2, S, U, . . . , U ] (k + 1 ≤ r ≤ j): g(2r − 1, 2j − 1),
(b) [X2k, . . . , X2r−1, S, U, . . . , U ] (k ≤ r ≤ j − 1): g(2r, 2j − 1),
(c) [U, · · · , U ]: f(2k, 2j − 1).

The link type of [X1, . . . , X2k−1, T,X2k+1, . . . , X2j−1, P ] is as follows,
where each link in (1,b) bounds a disconnected Seifert surface:

a b c
1 L(2h, 2k − 1) L(2h, 2k − 1)
2 R(2h+ 1, 2k − 1, 2r, 2j) R(2r + 1, 2j) R(2h+ 1, 2j)
3 R(1, 2k − 1, 2r, 2j) R(2r + 1, 2j) R(1, 2j)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r − 1, 2j − 1) b: g(2r, 2j − 1) c: f(2k, 2j − 1)

1: g(2h − 1, 2k − 2) E33 0 E34

2: g(2h, 2k − 2) E35 E36 E37

3: f(1, 2k − 2) E38 E39 E40

Each link in (1,b) bounds a disconnected Seifert surface, so the Alexander
polynomial is 0, and then the Jones polynomial evaluated at −1 is 0. Hence
the derivative is 0.
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[3-1-even ] We consider the following terms (in which l is even).

n/2∑
j=1

j−1∑
k=1

∑
Xi∈{S,U}

2k−1∏
i=1

Xi(ci)T (c2k)

·
2j−1∏

i=2k+1

Xi(ci)P (c2j)J[X1,...,X2k−1,T,X2k+1,...,X2j−1,P ](t).

We divide these terms into nine groups by the link type of

[X1, . . . , X2k−1, T,X2k+1, . . . , X2j−1, P ] (Xi ∈ {S,U}):

[X1, . . . , X2k−1] is divided into three groups:

(1) [X1, . . . , X2h−2, S, U, . . . , U ] (1 ≤ h ≤ k): g(2h− 1, 2k − 1),
(2) [X1, . . . , X2h−1, S, U, . . . , U ] (1 ≤ h ≤ k − 1): g(2h, 2k − 1),
(3) [U, . . . , U ]: f(1, 2k − 1).

[X2k+1, . . . , X2j−1] is divided into three groups:

(a) [X2k+1, . . . , X2r−2, S, U, . . . , U ] (k + 1 ≤ r ≤ j): g(2r − 1, 2j − 1),
(b) [X2k+1, . . . , X2r−1, S, U, . . . , U ] (k + 1 ≤ r ≤ j − 1): g(2r, 2j − 1),
(c) [U, · · · , U ]: f(2k + 1, 2j − 1).

The link type of [X1, . . . , X2k−2, T,X2k, . . . , X2j−1, P ] is as follows, where
each link in (2,b), (2,c), (3,b), (3,c) is a split link which consists of the
trivial knot and some link:

a b c
1 LL(2h, 2k, 2r, 2j) R(2r + 1, 2j) R(2k + 1, 2j)
2 R(2h+ 1, 2k)
3 R(1, 2k)

The derivative at −1 of the sum of the terms in each group is as follows:

a: g(2r − 1, 2j − 1) b: g(2r, 2j − 1) c: f(2k + 1, 2j − 1)

1: g(2h − 1, 2k − 1) E41 E42 E43

2: g(2h, 2k − 1) E44 0 0

3: f(1, 2k − 1) E45 0 0

Each link in (2,b), (2,c), (3,b), (3,c) is a split link which consists of the
trivial knot and some link. By using (3d) the derivative of the terms is 0.

6.4. We consider the part J4(t) in Proposition 4.1.
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[4-0] Picking up the terms without T from J4(t), we obtain

n/2∑
j=1

∑
Xi∈{S,U}

2j−2∏
i=1

Xi(ci)Q(c2j−1)J[X1,...,X2j−2,Q](t).

The link type of [X1, . . . , X2j−2, Q], Xi ∈ {S,U}, is the 2-component trivial
link. So we have

n/2∑
j=1

∑
Xi∈{S,U}

2j−2∏
i=1

Xi(ci)Q(c2j−1)d(t).

By using (3a), (2b), and (3f), the derivative at −1 is F6.

[4-1] Picking up the terms with a single T from J4(t), we obtain

n/2∑
j=1

2j−2∑
l=1

∑
Xi∈{S,U}

l−1∏
i=1

Xi(ci)T (cl)

·
2j−2∏
i=l+1

Xi(ci)Q(c2j−1)J[X1,...,Xl−1,T,Xl+1,...,X2j−2,Q](t).

[4-1-odd ] We consider the following terms (in which l is odd).

n/2∑
j=1

j−1∑
k=1

∑
Xi∈{S,U}

2k−2∏
i=1

Xi(ci)T (c2k−1)

·
2j−2∏
i=2k

Xi(ci)Q(c2j−1)J[X1,...,X2k−2,T,X2k,...,X2j−2,Q](t).

We divide these terms into three groups by the link type of

[X1, . . . , X2k−2, T,X2k, . . . , X2j−2, Q] (Xi ∈ {S,U}):
(1) [X1, . . . , X2h−2, S, U, . . . , U, T,X2k, . . . , X2j−2, Q] (1 ≤ h ≤ k − 1) is a

split link which consists of the trivial knot and some link. By using (3d)
the derivative of the terms is 0.

(2) [X1, . . . , X2h−1, S, U, . . . , U, T,X2k, . . . , X2j−2, Q] = O (1 ≤ h ≤ k−1).
So the sum of the terms is

n/2∑
j=1

j−1∑
k=1

k−1∑
h=1

W (1, 2h, 2k − 2)T (c2k−1)
2j−2∏
i=2k

(t−ci + 1 − tci)Q(c2j−1).

The derivative is F7.
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(3) [U, . . . , U, T,X2k, . . . , X2j−2, Q] = O. So the sum of the terms is

n/2∑
j=1

j−1∑
k=1

V (1, 2k − 2)T (c2k−1)
2j−2∏
i=2k

(t−ci + 1 − tci)Q(c2j−1).

The derivative is F8.

[4-1-even ] We consider the following terms (in which l is even).

n/2∑
j=1

j−1∑
k=1

∑
Xi∈{S,U}

2k−1∏
i=1

Xi(ci)T (c2k)

·
2j−2∏

i=2k+1

Xi(ci)Q(c2j−1)J[X1,...,X2k−1,T,X2k+1,...,X2j−2,Q](t).

We divide these terms into three groups by the link type of

[X1, . . . , X2k−1, T,X2k+1, . . . , X2j−2, Q] (Xi ∈ {S,U}):

(1) [X1, . . . , X2h−2, S, U, . . . , U, T,X2k+1, . . . , X2j−2, Q] = O (1 ≤ h ≤ k).
As in (2) in [4-1-odd], the derivative of the terms is F9.

(2) [X1, . . . , X2h−1, S, U, . . . , U, T,X2k+1, . . . , X2j−2, Q] (1 ≤ h ≤ k − 1)
is a split link which consists of the trivial knot and some link. By
using (3d) the derivative of the terms is 0.

(3) [U, . . . , U, T,X2k+1, . . . , X2j−2, Q] is a split link which consists of the
trivial knot and some link. By using (3d) the derivative of the terms
is 0.

6.5. We consider the part J5(t) in Proposition 4.1.

[5-0] Picking up the terms without T from J5(t), we obtain

n/2∑
j=1

∑
Xi∈{S,U}

2j−1∏
i=1

Xi(ci)Q(c2j)J[X1,...,X2j−1,Q](t).

The link type of [X1, . . . , X2j−1, Q], Xi ∈ {S,U} is the 2-component trivial link.
So we have

n/2∑
j=1

∑
Xi∈{S,U}

2j−1∏
i=1

Xi(ci)Q(c2j)d(t).

By using (3a), (2b), and (3f), the derivative is F10.
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[5-1] Picking up the terms with a single T from J5(t), we obtain

n/2∑
j=1

2j−1∑
l=1

∑
Xi∈{S,U}

l−1∏
i=1

Xi(ci)T (cl)

·
2j−1∏
i=l+1

Xi(ci)Q(c2j)J[X1,...,Xl−1,T,Xl+1,...,X2j−1,Q](t).

[5-1-odd ] We consider the following terms (in which l is odd).

n/2∑
j=1

j∑
k=1

∑
Xi∈{S,U}

2k−2∏
i=1

Xi(ci)T (c2k−1)

·
2j−1∏
i=2k

Xi(ci)Q(c2j)J[X1,...,X2k−2,T,X2k,...,X2j−1,Q](t).

We divide these terms into three groups by the link type of

[X1, . . . , X2k−2, T,X2k, . . . , X2j−1, Q] (Xi ∈ {S,U}):
(1) [X1, . . . , X2h−2, S, U, . . . , U, T,X2k, . . . , X2j−1, Q] (1 ≤ h ≤ k − 1) is a

split link which consists of the trivial knot and some link. By using (3d)
the derivative of the terms is 0.

(2) [X1, . . . , X2h−1, S, U, . . . , U, T,X2k, . . . , X2j−1, Q] = O (1 ≤ h ≤ k−1).
The derivative of the terms is F11.

(3) [U, . . . , U, T,X2k, . . . , X2j−1, Q] = O. The derivative of the terms
is F12.

[5-1-even ] We consider the following terms (in which l is even).

n/2∑
j=1

j−1∑
k=1

∑
Xi∈{S,U}

2k−1∏
i=1

Xi(ci)T (c2k)

·
2j−2∏

i=2k+1

Xi(ci)Q(c2j−1)J[X1,...,X2k−1,T,X2k+1,...,X2j−2,Q](t).

We divide these terms into three groups by the link type of

[X1, . . . , X2k−1, T,X2k+1, . . . , X2j−2, Q] (Xi ∈ {S,U}):
(1) [X1, . . . , X2h−2, S, U, . . . , U, T,X2k+1, . . . , X2j−2, Q] = O (1 ≤ h ≤ k).

The derivative of the terms is F13.
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(2) [X1, . . . , X2h−1, S, U, . . . , U, T,X2k+1, . . . , X2j−2, Q] (1 ≤ h ≤ k − 1) is
a split link which consists of the trivial knot and some link. By using
(3d) the derivative of the terms is 0.

(3) [U, . . . , U, T,X2k+1, . . . , X2j−2, Q] is a split link which consists of the
trivial knot and some link. By using (3d) the derivative of the terms
is 0.

This completes the proof of Proposition 1.14.

Acknowledgements. The author is grateful to Professor Yukio Matsumoto and
Professor Tsuyoshi Sakai for their useful advice.

Appendix: Some properties of the derivative

By Tsuyoshi SAKAI

Department of Mathematics and Computer Science, Tsuda College

Let K, c1, · · · , cn, Ai, Ai,j and B be as in Proposition 1.14 and Theorem 1.15 in section 1.
Then we have

Proposition A. Ai,j is divisible by 16 for any i, j.

Proposition B. A1 = A2 = · · · = An+1 = 2ΔK(−1) − 2.

Proposition C. Moreover, if we suppose that ΔK(−1) = 1, then

(i) Ai,j is divisible by 48 for any i, j.

(ii) Ai = 0 for all i.

(iii) B is divisible by 24.

Proof of Proposition A. By Theorem 1.15 in section 1,

∑
1≤i<j≤n+1

Ai,jαi,j +
∑

1≤i≤n+1

Aiαi =

45∑
i=1

Ei.
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By the explicit formula for Ei in Proposition 1.14 in section 1,

E1 + E8 = 2

n/2∑
k=1

g(2k − 1, n)l(2k, n + 1) + (−4)

n/2∑
k=1

f(1, 2k − 2)|c2k−1|f(2k, n)l(2k, n + 1)

= 4

n/2∑
k=1

|c2k−1|
n∏

j=2k

(−1)−cj l(2k, n + 1)

− 4

n/2∑
k=1

2k−2∏
j=1

(−1)−cj |c2k−1|
n∏

j=2k

(−1)−cj l(2k, n + 1)

= 4

n/2∑
k=1

n∏
j=2k

(−1)−cj |c2k−1|{1 −
2k−2∏
j=1

(−1)−cj}l(2k, n + 1).

By definition of l(p, q), the coefficient of αi,j in l(p, q) has 2 as a factor. Moreover
1 − ∏2k−2

j=1 (−1)−cj = 0 or 2. Hence the coefficient of αi,j in E1 + E8 has 16 as a factor.
Similarly the coefficient of αi,j in E15 + E32 has 16 as a factor.

By definition g(q, r) has 2 as a factor and the coefficient of αi,j in l(p, q), l(p, q, r, s) has 2
as a factor. Hence the coefficient of αi,j in Ek (k �= 1, 8, 15, 32) has 16 as a factor. This
completes the proof.

Proof of Proposition B. Let K0, Ki (i = 1, · · · , n + 1) denote the knot obtained from K as
follows: K, K0, and Ki are identical except for the big rectangle where they are as shown in
figure 15. All subbands in the big rectangle of K0 are untwisted and unlinked. All subbands
in the big rectangle of Ki are unlinked. The i-th subband in the big rectangle of Ki is the only
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one full twisted and the other subbands are untwisted. Then it follows from Theorem 1.15
in section 1 that J ′

K0(−1) = B, J ′
Ki

(−1) = B + Ai. Note that the Ki’s are all equivalent.
Hence A1 = A2 = · · · = An+1.

By using the skein relation for the Jones polynomial, we have

JK0(t) = t2JK1(t) + (1 − t2)

and
J ′

K0(−1) = −2JK1(−1) + J ′
K1(−1) + 2.

Since the Alexander polynomial of ribbon knot of 1-fusion is determined by c1, . . . , cn,

ΔK0(t) = ΔK1(t) = ΔK(t)

and
JK1(−1) = ΔK1(−1) = ΔK(−1).

Hence we have
B = −2ΔK(−1) + (B + A1) + 2.

That is,
A1 = 2ΔK(−1) − 2.

Proof of Proposition C. (ii) immediately follows from Proposition B. To prove (i) and (iii),
we use the following fact that is a consequence to a result in [11].

Let K be a ribbon knot with ΔK(−1) = 1. Then J ′
K(−1) is divisible by 24. (*)

By [11, Theorem 5.1], the Casson invariant of Σ2(K) is equal to −J ′
K(−1)/12. Since

mod 2 reduction of the Casson invariant is equal to the Rochlin invariant ([1]), we have (*).
We return to the proof of Proposition C. Note that K0 is also a ribbon knot and

ΔK0(−1) = ΔK(−1) = 1. Hence by (*) J ′
K0(−1) is divisible by 24, and (iii) is proved.

Let Ki,j denote the knot obtained from K as follows: Kand Ki,j are identical except for
the big rectangle where they are as shown in figure 16. All subbands in the big rectangle of
Ki,j , except the i-th subband and the j-th subband, are untwisted and unlinked. The i-th
subband and the j-th subband are linked with relative linking number one.

By Theorem 1.15 in section 1 again, J ′
Ki,j

(−1) = B + Ai,j . By (*), B + Ai,j is divisible
by 24. Hence by (iii), Ai,j is divisible by 24. By Proposition A, Ai,j is also divisible by 16.
Hence Ai,j is divisible by 48. Thus (i) is proved.
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