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ABSTRACT

The purpose of this paper is to give a general and a simple approach to describe
the Sylow r-subgroups of classical groups.
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Introduction

Let G be a finite classical group over a finite field of characteristic p. The Sylow
r-subgroups of G, where r is a prime number, have been given by Weir [5] in the case
r # 2, r # p, and by Chevalley [3] and Ree [4] in the case r = p. In the later case
the normalizers of the Sylow p-subgroups were obtained as well. The remaining case
r =2, p # 2 has been investigated by Carter and Fong [2], where the description is
not easy to follow.
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The main purpose of this paper is to give a more general and simple approach to
describe the Sylow r-subgroups of the general linear group GL(n,q), the symplectic
group Sp(2n,q) over GF(¢), ¢ = p*, and the symmetric group S,,, using number
theoretic techniques, so that general readers simply can read it. Among other results
the conditions on r and G forcing the Sylow r-subgroups of GL(n,¢q) to be maximal
nilpotent are given.

Let V be a n-dimensional vector space over GF(q). In the case of GL(V) =
GL(n,q), if d is a divisor of n, we consider the set { V1, Va,...,V,, } of d-dimensional
subspaces such that V = Vi ®Vo@- - -@®V,,, where m = n/d. Then the stabilizer of this
set in GL(V) is obviously a wreath-product GL(V7)1.S;,. Then we show that for any
prime 7 # p, the number d can be chosen in such a way that this stabilizer contains a
Sylow r-subgroup. Hence the Sylow r-subgroups are of the form RT,,, < GL(V})1Sa,
where R is a Sylow r-subgroup of GL(V}) and Ty, is a Sylow r-subgroup of S,,,. From
this description the action of the Sylow r-subgroups on the underlying vector space
are obvious.

The approach for the other classical groups is quite similar. Let V be a vector
space endowed with a bilinear, unitary or quadratic form. Then we consider an
orthogonal decomposition V= V1V, 1 .- 1V, into non-degenerate subspaces of
equal dimension d say. The stabilizer of the set { V1, V5,...,V,, } is then obviously
isomorphic to I(V7) ! Sy, where I(V;) denotes the isometry group of Vi. Again by
choosing d properly we find the Sylow r-subgroups are contained in such stabilizer
and hence are isomorphic to R 7T, where R is a Sylow r-subgroup of I(V}) and T,
is a Sylow r-subgroup of S,,. Also the action on the underlying vector space can be
immediately seen.

1. Notation and basic definitions

Let n be an integer, p prime, we denote by n, the p part of n. If G is a finite group,
then |G| denotes the order of G. If p is prime Z,_; will denote the multiplicative
cyclic group (Z/pZ)* of the finite field GF(p). If g € G, o(g) denotes the order of g.
Throughout the paper r, p are primes, r # p, and ¢ = p®. H { K denotes the wreath
product of H by K. For more information about the wreath product see [1]. [H : K|
denotes the index of K in H. We write X" for a direct product of m copies of X.

2. The Sylow r-subgroups of GL(n, q)

To investigate the Sylow r-subgroups of GL(n,q), we prove the following Lemmata
which are of fundamental importance in this investigation.

Lemma 2.1. Let d be the order of ¢ + 17 € (Z/rZ)*, then (¢ — 1), # 1 if and only
ifd|i.
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Proof. Since |GL(n, q)| = ) [T",(¢" — 1), we have |GL(n,q)|, = [T/, (¢" — 1),. It
is clear that r | ¢° — 1 if and only if (¢ + rZ)" = 1+ rZ, and (¢ + rZ)" = 1 + rZ iff
d | i. Hence the Lemma is proved. O

Lemma 2.2. If r| g — 1, then the following properties hold:
() If r #2, then (¢ — 1), = i(q — 1),.
(i) Ifr=2 and ¢ =1 (mod 4), then (¢" — 1)y = i2(q — 1)s.
(iii) If r =2, and ¢ =3 (mod 4), then

; 2, if 1 is odd,
(¢"=1)2=1q. e
io(qg+ 1)a if i is even.

Proof. Since r | ¢ — 1 we write ¢ = 1+ r% for a > 1 and ged(r,z) = 1. On the other
hand, ¢’ =1 = (¢—1)(1+g+---+¢"~!) implies (¢’ = 1), = (¢— 1), (1 +g+---+¢""),.
Since ¢ =1 (mod r) then 1+ ¢+ ---+ ¢t =4 (mod 7).

(i) Case 1: 7{i. Then (1+¢q+ -+ ¢ 1), =1 and we are done.
Case 2: 7|i. So i = r’j with ged(j,r) = 1. We need to prove that (1 + ¢+ --- +
¢ 1), = rb.
Since ¢ —1=¢"7 —1= (¢ —1)(¢?"" V) + ... 4+ ¢% + ¢ +1) then (¢' — 1), =
(@ = D@+ g+ 1), = (= D¢V + + ¢ +1),, by case 1.
We have also ¢/ =%) = (1 + ro2)i(""=k) = 1 4 j(#* — k)r% (mod r2%). Thus,

rb—1 b
. —1
1+ E qJ(Ttk) = rb(l Jrjrasc(rb —-1) - jramr

) (mod 72%)

because r # 2. Therefore

A+q 4+ 40, =1,

(ii) We consider the following two cases:

Case 1: i is odd. Then 1+ ¢+ ---+¢~! is odd, and this implies (¢" — 1)2 =
(@=12(l+q+ - +q 2= (g—1)2=i2(g— 1)2.

Case 2: i is even. So i = 2j and (¢' — 1)2 = (¢* — 1)2 = (¢ — 1)2(¢/ + 1),. Since
¢ =1 (mod 4) this implies ¢/ +1 =2 (mod 4). Hence (¢' — 1)y = (¢ —1)2-2 =
Jo(q —1)2 - 2 ='ig(q — 1)2 by induction.

(iii) Again we have two cases:
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Case 1: i is odd. Then (¢ —1)2 = (¢ —1)2(1+qg+---+¢ )= (¢g—1)2=2.

Case 2: i is even. Soi = 2j and since ¢ = 1 (mod 4), then by (ii) we have (¢°—1)y =

(¢ —=1)2 = j2(q® = D2 = ja(g = Da(g + D2 = j2 - 2 (¢ +1)2 = d2(¢ + 1)2. O

Lemma 2.3. Let v and p be distinct primes, ¢ = p*, and d = o(q + rZ) where
q+rZ € (Z/rZ)* then the following properties hold:

(i) If eitherr #2 orr =2 andq =1 (mod 4), then | GL(n,q)|, = (qd—l);]([%]!)r.
(i) Ifr =2, ¢ =3 (mod 4) and n is even, then |GL(n,q)|, = (22(g+1)2)% ((n/2)!)2

(iii) If r =2, ¢ =3 (mod 4) and n is odd, then

GLina)l, =22 ] ita+ 102 ).

i<n
i even

Proof. (i) We have

n

=1l -v.= [ @ -1

i=1 i<n, d|i

|GL(n, q)|» ‘ Hq—l

i=1

By Lemma 2.1, 7 | ¢* — 1 iff d | i. We obtain [],,, d‘i(qi 1), = Hﬁ]l(qdj —1), and
by Lemma 2.2, with ¢ replaced by ¢%, we obtain

(7]

a3

1

(3] ks
=1 = [Lta - 0= 0 - D 1= @'= (3]0,

Hence a Sylow r-subgroup of GL(n, ¢) is isomorphic to Z(ga_1), ! Tjz), where Tin) is
a Sylow r-subgroup of 5[z

(ii) |GL(n,q)|2 = ITi—,(¢" — 1)2. Let n = 2n, for some integer n;, then we have

J

n n—1
[ = D2= ][] =1 H
i=1 =0
n/2 n/2
=2"2T](¢¥ = 1)2 = 2" [[(24)2(g+ )2 =
j= » j=
= (g + 13 [ 12 = 2@+ DI (0/2)! = (22a+ D) ((n/2))e
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Hence if n is even and ¢ = 3 (mod 4), then a Sylow 2-subgroup of GL(n, ¢) is isomor-
phic to DT where D is a Sylow 2-subgroup of GL(2,¢) and T is a Sylow 2-subgroup
of the symmetric group S, /2.

(ili) We have

n

IGL(n,q)la =J(¢' = D2=[] 2 [[ @ -1) =

i=1 i<n i<n
iodd ¢ even

=" H is(g+1)y =2 2771 H ias(q +1)2.

i<n i<n
7 even i even

Hence, if n is odd and ¢ = 3 (mod 4), then a Sylow 2-subgroup of GL(n, ¢) is isomor-
phic to Zs x S < GL(1,q) x GL(n —1,q9) < GL(n, q), where S is a Sylow 2-subgroup
of GL(n — 1,q). The Sylow r-subgroups of S,, will be discussed in section 4. O

Combining Lemma 2.1 and Lemma 2.2 we have

Lemma 2.4. Let v and p be distinct primes, ¢ = p*. Define d = o(q + rZ) where
q+7rZ € (Z/rZ)*, then we have

G) r| ¢ —1iffd]i.

(i) If d | i and either r # 2, or v = 2 and ¢ = 1 (mod 4), then (¢* — 1), =
(2)r(a® = 1)

(iil) Ifd|i, r =2, and ¢ =3 (mod 4), then

i 2, if 1 is odd,
(q - 1)7' =9 e
io(q+1)2, ifi is even.

Remark 2.5. For GL(n,q) there are obviously subgroups of the orders calculated
above. GL(n,q) contains the group of the monomial matrices M = Z,_11S,. So
in the case r | ¢ — 1, M contains a Sylow r-subgroup. In general, set d = o(q + rZ)
and write n = ngd + ny for integers ng, ny; with 0 < n; < d, then we have a
canonical embedding of GL(nod, q) into GL(n, q) as follows. Let V' be a vector space
of dimension n over GF(q) and write V' =V & V; where dim Vo = nod, dim Vi = nyq,
so, if H = GL(V1) x GL(Vp), then Cy (V) = GL(V;) = GL(n1,q) and Cy(V) =
GL(Vy) = GL(nod, q). Further, if W is a vector space of dimension ny over GF(q%),
then W is also a vector space over a subfield GF(q) € GF(q?) of dimension ngd, hence
we have a canonical embedding GL(W) C GL(V) or GL(ng, ¢%) € GL(nod, q). So we
get a sequence of embeddings GL(ng, ¢%) C GL(nod, q¢) € GL(nod+n1,q) = GL(n, q),
and GL(ng, ¢%) contains a monomial group M* = Zgi_1 1 Sp, which contains, as we
have shown above, a Sylow r-subgroup.
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3. The Sylow r-subgroups of Sp(2n, q)

To describe the Sylow r-subgroups of Sp(2n, q) we prove the following Lemmas.
Lemma 3.1. Let r and p be distinct primes, ¢ = p® and r odd, then
(i) Sp(2n,q) contains canonically a subgroup H isomorphic to GL(n,q).

(ii) Ifd is odd, then r does not divide the index of H in Sp(2n, q), where d = o(q+7Z),
q+7Z € (Z)rZ)*.

(iii) Any canonically embedded GL(n,q) contains a Sylow r-subgroup of Sp(2n,q).

Proof. (i) Consider a symplectic base with respect to which the inner product matrix
is [ ° {]. Then the subgroup

H= {[g (gt)_1:| , g€ GL(n, Q)}

is contained in the corresponding symplectic group Sp(2n, q).
The index of H in Sp(2n,q) is
2 n i n
" Il (@ -1) _ i
e =¢"2 (e + ).
q*2 Hi:1 (q - 1) i=1

(i) Assume that r | g"("+1)/2 T (¢" 4+ 1). This implies that 7 | ¢' 4 1 for some
1 <i<mn,sor|¢*—1. This means that ¢* = 1 (mod r), thus d | 2i. As d is
odd, this implies that ¢ = 1 (mod r). Hence r | ¢ + 1 and r | ¢ — 1, thus r | 2, a
contradiction.

(iii) Asr 1 [Sp(2n,q) : H], then H contains a Sylow r-subgroup and the Sylow
r-subgroups of GL(n, ¢) have been determined in section 2. O

Remark 3.2. If n = ny +no, then Sp(2n, ¢) contains a canonically embedded subgroup
Sp(2n1, q) xSp(2na, ). This can be seen as follows. If V1 and V5 are symplectic spaces,
then V; ®V5 can be turned into a symplectic space, such that V; and V5 are orthogonal.
Let §; be a symplectic form on V;, ¢ = 1,2. Define a symplectic form g on V; & V5 by
B(vy + ve,v] + vh) = B1(vy,v]) + B2(va,vhy) where v;,v) € V;. At the same time, this
defines an embedding of Sp(V;) x Sp(Vz) into Sp(Vy4 L V). Here Vi L Va denotes
that V7 and V5 are orthogonal by the action

(,1)171}2)(91792) _ (vflwgz)

where v1 € Vi, vy € Vo, and g € Sp(V1), g2 € Sp(V2). So we have a canonical
embedding Sp(2n1, q) x Sp(2n2,q) C Sp(2(n1 +n2), q). Repeating this process we get
an embedding

Sp(2n17q) X Sp(2n27Q) X X Sp(2nk7q) g Sp(2(n1 +ng 40+ nk)vQ)7

for any n; # 0. We have also an embedding Sp(2n, q)¥ C Sp(2nk, q).
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The following Lemma is an immediate consequence of the above remark.

Lemma 3.3. Let W be a symplectic space, and assume that W can be written as
an orthogonal direct sum of Vi L Vo L -+ L Vi of subspaces V; all of the same
dimension. Let H be the stabilizer of { V1, Va, ..., Vi } in Sp(W), then H = Sp(V1 1S

Lemma 3.4. Let r and p be distinct primes, ¢ = p*. Let d = o(q + rZ) where
q+r1Z € Z._1. If d is even, then

Sp(2n, q)| = (¢ — 1)[%]([%”} !)T.

Proof. Let d = 2t for some integer t. Then

Sp(2n. )l = [ [(@* = 1) = [ = 1), = [T ~ D)
=1 i=1 i=1
d|2i tli

By setting i = tj we have

By Lemma 2.4, we obtain

Theorem 3.5. Let r be an odd prime, r # p, ¢ = p*, and d = o(q + rZ). Then the
following hold:

(i) Ifd is odd, then any canonically embedded GL(n,q) contains a Sylow r-subgroup
of Sp(2n,q).

(ii) If d is even, d = 2t for 1 <t < mandn = at+0b for 0 < b < t, then
any canonically embedded subgroup Sp(2t,q) 1 S, X Sp(2b,q) contains a Sylow
r-subgroup of Sp(2n,q) which is isomorphic to Zg_1), 1T, where T is a Sylow
r-subgroup of S, .

Proof. (i) Tt follows from Lemma 3.1.
(ii) It is an immediate consequence of Lemma 3.3 and Remark 2.5. O
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We are left with the remaining case r = 2, which will be settled by the following
theorem.

Theorem 3.6. The Sylow 2-subgroups of Sp(2n,q) are DT where D is a Sylow
2-subgroup of Sp(2,q) = SL(2,q), T is a Sylow 2-subgroup of Sy, and q is odd.

Proof. By Lemma 2.4, we obtain

Sp(2n,q)l2 = [[(¢* = 1)2 = [ i2(¢® = 1)2 = (¢ = D5 (1))

i=1 i=1
So we have an orthogonal decomposition subgroup Sp(2,¢) ! Sn < Sp(2n,q). Hence
the Sylow 2-subgroups of Sp(2n, ¢) are as in the Theorem. O
4. The Sylow r-subgroups of the symmetric group S,,

To complete the description of the Sylow r-subgroups of GL(n,q) and Sp(2n,q), we
investigate the Sylow r-subgroups of S,,. The following results are useful.

Lemma 4.1. Let r and p be different primes. If n = pm+1r, 0 < r < p. Then
(nl)p = pm([%]')p

Proof. We have the identities

B3
s
=3

&
Il
—
<
Il
—
<.
Il
—
<
Il
—

Corollary 4.2. A Sylow p-subgroup of S, is isomorphic to Z, T, where Z, is a
Sylow p-subgroup of Sp and T is a Sylow p-subgroup of Sy, .

Theorem 4.3. If T}, is a Sylow p-subgroup of Sy, then T, = Z, W (Zp W (Zp X T p3)))-
(It is a recursive relation.)

Proof. Let S, act on a set  of size n. Let n = pm + r, where 0 < r < p. Consider
a partition of Q by the sets Ay, Aa,..., A, T, where |4;] = p and |T'| = r. We
have that Q = (J!*, A; UT is a disjoint union. The stabilizer of this partition in
Sy is H = (Sp 1 Sm) x Sy, which contains a subgroup S = Z, (T where Z, is a
Sylow p-subgroup of S, and 7" is a Sylow p-subgroup of S,,. By changing the orders
we see that if T, is a Sylow p-subgroup of S, then T,, = Z, 1 T}, where T}, /p
is a Sylow p-subgroup of Sy, ,/,, and T, p) = Zp U Ln/p)/p) = Zp U p2). Hence
Thn = Zp U (Zp U Tin p2)) = Zp U (Zp U (Zp U T ps)))- 1t is a recursive relation. O
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5. A question

What are the conditions on r and ¢ that force the Sylow r-subgroups of GL(n,q) to
be maximal nilpotent? To answer this question we prove the following theorem.

Theorem 5.1. Let r, p be two distinct primes, d = o(q+1rZ) where q+rZ € (Z/rZ)*.
Suppose that n = md+k, 0 < k < d, and R is a Sylow r-subgroup of GL(n,q). If R is
mazimal nilpotent, then n = 0,1 (mod d) and ¢@ — 1 = 7' for some positive integer i.
Proof. Let S be a Sylow r-subgroup of GL(d,q). By Schur’s Lemma S is cyclic and
|S| = (¢* — 1),. If R is a Sylow r-subgroup of GL(n,q), then R = ST where T is a
Sylow r-subgroup of Sy, .
In a matrix form,
T
T2

where x; is a d X d matrix and [ is the identity k£ x k matrix. Now we prove that
CGL(n,q)(R) is contained in R if R is maximal nilpotent.

Let © € Cgrn,q(R). This implies that (R,z) is again nilpotent. Since R is
maximal nilpotent, it follows that R = (R,x). Thus « € R. It is obvious that all
elements

K

where K is any k x k matrix and x € Cgrq,k)(S5), are contained in Cgr,(n,q)(R). So
if R is maximal nilpotent, all these elements must be contained in R. Finally, set

U = xr € CGL(d,q)(S)7 K e GL(k,q)

K

Then U < Cgr(n,q)(R). So, if R is maximal nilpotent, this implies U < R and hence
U must be a r-group. Thus |U| = |Cqr(4,q)(S)| |GL(k, q)| = (¢* — 1)|GL(k, ¢)| must
be a power of r. Thus d? — 1 = r* and |GL(k, q)| = 7, this implies, k£ must be at
most 1, hence k = 0 or 1, which means n = 0,1 (mod d). O
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