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ABSTRACT

We present a mathematical model allowing formally define the concepts of em-
pirical and theoretical knowledge. The model consists of a finite set P of predi-
cates and a probability space (Ω,S, P ) over a finite set Ω called ontology which
consists of objects ω for which the predicates π ∈ P are either valid (π(ω) = 1)
or not valid (π(ω) = 0). Since this is a first step in this area, our approach is as
simple as possible, but still nontrivial, as it is demonstrated by examples. More
realistic approach would be more complicated, based on a fuzzy logic where the
predicates π ∈ P are valid on the objects ω ∈ Ω to some degree (0 ≤ π(ω) ≤ 1).
We use the classical information divergence to introduce the amount of infor-
mation in empirical and theoretical knowledge. By an example is demonstrated
that information in theoretical knowledge is an extension of the “sematic infor-
mation” introduced formerly by Bar Hillel and Carnap as an alternative to the
information of Shannon.
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Introduction

Already Whitehead and Russell [9] distinguished the knowledge based on empirical
evidence called “knowledge by acquaintance”, and the alternative knowledge called
“knowledge by description”. The empirical evidence usually means statistical data
or statistical estimates obtained from such data. The alternative to the empirical
knowledge is a theoretical knowledge which is based on procedures of logical induction
and deduction.

To illustrate the difference between the empirical and theoretical knowledge we
can refer to Hobza and Vajda [5]. These authors studied a “law” formulated in
Benford [3], namely that the relative frequencies p̂i of the first nonzero digits 1 ≤ i ≤ 9
in a statistical ensemble of decimal measurements taken on real objects and varying
in a large internal are surprisingly often close to

pi = log10

i + 1
i

.

Here (p1
.= 0.301, p2

.= 0.176, . . . , pq = 0.046) is a Benford distribution from which
we see that the leading significant digit 1 is almost twice as frequent as the digit
2 in the samples satisfying the Benford law, and almost seven times more frequent
than the digit 9. Hobza and Vajda mentioned on one hand the empirical distributions
(p̂1, p̂2, . . . , p̂q) presented in Benford [3] and related to as diverse data sources the areas
of rivers, specific heats and molecular weights of various chemical compounds, Ameri-
can League sport statistics, numbers appearing on front pages of newspapers, etc. All
these distributions close to the theoretical distribution (p1, p2, . . . , pq) of Benford can
serve as examples of empirical knowledge. The Benford theoretical distribution which
is obtained as a limit from the Theorem of Hobza and Vajda [5], or this Theorem itself,
can serve as examples of theoretical knowledge.

These examples indicate that the formalization of empirical knowledge is relatively
simple. Formalization of the theoretical knowledge procedures can be based on the
mathematical model of scientific theories developed by Carnap [4] and others, see,
e.g., Chapter 4 in Watanabe [12]. We present a version of this model in the frame of
which we can simply define the empirical and theoretical knowledge.

In this paper we are interested in the amount of information resulting from empir-
ical and theoretical knowledge. The classical information of mathematical statistics
—the Fisher information— characterizes informativity of the statistical models with
continuous parameters and it is thus not applicable here. Similarly, the classical in-
formation of the Shannon information theory is the information in data about signals
statistically correlated with these data. Thus this concept is too narrow to be used
for the present purposes. But we use the fact that both the Fisher and Shannon
information can be defined by means of the information divergence

D(p ‖ q) =
m∑

i=1

pi log
pi

qi
(1)
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of probability distributions p = (p1, . . . , pm) and q = (q1, . . . , qm) where p log p/q = 0
if p = 0, q ≥ 0 and p log p/q = ∞ if p > 0 and q = 0. As it is well known (see, e.g.,
Menedez et al [7]) this divergence and other similar divergences play a principal role
in the statistical data processing. We use the divergence (1) to define the information
in empirical and theoretical knowledge.

Our concept of information differs from the extensions of the Shannon information
in the literature on generalized uncertainty and fuzzy logic, see, e.g., Morales et al [8]
and Klir and Wierman [6]. It is motivated by the need to formalize and estimate
informations in empirical data and theoretical statements in some disciplines, e.g., in
the medical informatics (see Bemmel [1] and Zvárová [13]).

1. Theoretical and empirical knowledge

Every knowledge area (empirical science) is usually based on a certain set P =
{π1, π2, . . . , πr } of predicates describing various properties of the objects of inter-
est, or various relations involving these objects. Moreover, there is given an ontology
(reality) (Ω,S, P ) where Ω is a set of the above considered objects, S is a σ-algebra
of events E ⊂ Ω, and P : S → [0, 1] is a probability measure on S such that P (E) > 0
if E �= ∅. The ontology is assumed to verify the predicates π ∈ P in the sense of
specification the values

π(ω) =

⎧⎨
⎩

1 (object ω ∈ Ω has the property π),

0 (object ω ∈ Ω has not the property π).

By means of the logical operators π → π̃ interpreted as implication (i.e., π̃ is valid
if π is valid) and ¬π interpreted as negation (i.e., ¬π is valid if π is not valid) are
constructed formulas α, β (formal statements). Examples are, e.g.,

α = π1 → π2, β = π3 → α, γ = α → β.

Very important examples are the “logical zero”

∅ = α → ¬α

which is never valid (i.e., ∅(ω) = 0 for all ω ∈ Ω) and the “logical unit”

� = α → α

which is always valid (i.e., �(ω) = 1 for all ω ∈ Ω). The set F of all formulas is
infinite and represents possible statements in the knowledge area

〈(Ω,S, P ),P〉.
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However, some statements α, β in F are equivalent in the sense α ≡ β. This equiva-
lence is defined as follows:

α ≡ β = (α → β) ∩ (β → α)

where
α ∩ β = ¬(α → ¬β) (conjunction of α and β).

Similarly we define

α ∪ β = ¬α → β (disjunction of α and β).

The equivalence ≡ defines a decomposition of F into a set B of mutually equivalent
statements. It is known (see, e.g., pp. 321–324 in Watanabe [12]) that B is a finite
Boolean algebra with respect to the operators ¬,∪,∩ where ∅ and � are the zero
and unit of the algebra and if β, β1 and β2 are the equivalence classes from B then
¬β, β1 ∪ β2 and β1 ∩ β2 are the equivalence classes of the statements ¬α, α1 ∪α2 and
α1 ∩ α2 for α ∈ β, α1 ∈ β1, α2 ∈ β2. (These classes are independent of the choice of
α, α1 and α2.) Similarly we define β1 ≡ β2, β1 → β2 for β1, β2 ∈ B. Moreover, it is
known that there exists a set of atoms,

A = {α1, α2, . . . , α2r} ⊂ B (2)

(spectrum of the algebra B) such that

αj ∩ αk = ∅ for j �= k (3)

and for every β ∈ B there exists unique subset Aβ ⊂ A with the property

β =
⋃

α∈Aβ

α (4)

We suppose that all functions αj : Ω → {0, 1} are S-measurable, i.e., that the sets
α−1

j (1) = {ω ∈ Ω : αj(ω) = 1} belong to S. We also remind that r denotes the number
of predicates in P. By (2), p = 2r is the number of atoms. By the property (4), the
number od statements in B is 2p = 22r

.
Example 1.1. The set P = {π1, π2 } defines the Boolean algebra of figure 1 with the
atoms of figure 2. Since r = 2, the number of atoms is 22 = 4 and the number of
statements in the Boolean algebra is 24 = 16.

Definition 1.2. The state of the knowledge area 〈(Ω,S, P ),P〉 is a pair 〈X , q〉 where
X = {x1, x2, . . . , xk} with 1 < k ≤ 2r is a subset of the spectrum A such that

P (α−1(1)) = 0 for every α ∈ A− X (5)

and q = (q1, q2, . . . , qk) is an estimate of the probability distribution

p = (pi = P (x−1
i (1)) : 1 ≤ i ≤ k). (6)
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β1 β2 β3 β4 β5 β6 β7 β8

∅ π1 ∩ π2 π1 ∩ ¬π2 π1 π2 π1 � π2 π1 ∪ π2 π1 ∪ ¬π2

β9 β10 β11 β12 β13 β14 β15 β16

� ¬π1 ∩ ¬π2 ¬π1 ∪ π2 ¬π1 ¬π2 ¬(π1 � π2) ¬π1 ∩ ¬π2 ¬π1 ∩ π2

Figure 1: Statements of B where A � B = (A ∪ B) ∩ ¬(A ∩ B) stands for “exclusive
or”, usually denoted as “xor”.

α1 α2 α3 α4

π1 ∩ π2 π1 ∩ ¬π2 ¬π1 ∩ π2 ¬π1 ∩ ¬π2

Figure 2: Atoms of the algebra B from figure 1.

Notice that the sets α−1(1) and x−1
i (1) considered in (5) and (6) belong by as-

sumption to the σ-algebra S. Further, by (4),

� =
⋃

α∈A
α

so that ⋃
α∈A

α−1(1) = �−1(1) = Ω

where the sets α−1(1) and α̃−1(1) are by (3) disjoint for α �= α̃. Consequently

P

( ⋃
α∈A

α−1(1)
)

=
∑
α∈A

P (α−1(1)) = P (Ω) = 1.

Therefore, by (5),

0 =
∑

α∈A−X
P (α−1(1)) = 1 −

∑
x∈X

P (x−1(1))

so that
k∑

i=1

pi =
∑
x∈X

P (x−1(1)) = 1,

i.e., (6) is a probability distribution, as asserted in Definition 1.2.

Definition 1.3. Empirical knowledge in the knowledge area 〈(Ω,S, P ),P〉 which is in
a state 〈X , q〉 is an estimate q̂ = (q̂1, q̂2, . . . , q̂k) of the distribution (6). This knowledge
transforms the knowledge area into a new state 〈X , q̂〉.
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We call the elements β ∈ B statements but, as said above, B consists of classes
of mutually equivalent statements. Therefore two different elements β1, β2 ∈ B are
never equivalent (i.e., β1 ≡ β2 is always false). In what follows we use the relation

β ≡ � (mod Ω)

for β ∈ B different from � ∈ B. By this relation we mean that β is equivalent to �
conditionally in the ontology (Ω,S, P ) in the sense that

β(ω) = 1 for all ω ∈ Ω.

According to (3) and (4), this means that if α is an atom from A−Aβ then

α−1(1) = ∅, i.e., α(ω) = 0 for all ω ∈ Ω.

In other words, the atoms from Aβ = A − Aβ can be ignored as they represent
statements which are always false in the ontology (Ω,S, P ).

Definition 1.4. Theoretical knowledge in the knowledge area 〈(Ω,S, P ),P〉 which
is in a state 〈X , q〉 is the statement β ≡ � (mod Ω) for some β from the Boolean
algebra B. This knowledge transforms the knowledge area into a new state 〈X̃ , q̃〉.
Here X̃ = X − Āβ where Āβ = A−Aβ is the uniquely defined set of atoms with the
property

¬β =
⋃

α∈Āβ

α (cf. (4)) (7)

and q̃ is the corresponding restriction of the distribution q. If X = {x1, x2, . . . , xk},
q = (q1, q2, . . . , qk), and X̃ = {x1, x2, . . . , xm} for 1 < m ≤ k then the restriction is
q̃ = (q̃1, q̃2, . . . , q̃m) defined by

q̃i =
qi

q1 + q2 + · · · + qm
, 1 ≤ i ≤ m.

Example 1.5. Consider in Example 1.1 the theoretical knowledge β ≡ � (mod Ω) for
β = π1 → π2. For example let Ω be a collection of persons, let the predicate π1 means
that a person is ill and π2 that a person has increased the body temperature. Since
π1 → π2 is equivalent to ¬π1 ∪ π2 which is in turn equivalent to ¬(π1 ∩ ¬π2), we see
that

¬β = π1 ∩ ¬π2 = α2 (cf. figure 2).

Hence we obtain from (7) that Āβ = {α2}. This means that the theoretical know-
ledge “(π1 → π2) ≡ � (mod Ω)” transforms the initial state 〈X = {α1, α2, α3, α4},
q = (q1, q2, q3, q4)〉 into the new state

〈
X̃ = {α1, α3, α4}, q̃ =

(
q1

q1 + q3 + q4
,

q3

q1 + q3 + q4
,

q4

q1 + q3 + q4

)〉
.
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Since p4 = P (α−1
4 (1)) is the probability of no disease and no increased temperature,

in the normal population p4 will be much larger than p1 +p3 while p2 = P (α−1
2 (1)) is

zero. Therefore the estimate q4 may also be expected much larger than q1 + q2, i.e.,
the first two components of q̃ will be close to zero while the last component will be
close to 1.

2. Information in empirical and theoretical knowledge

The amount of information resulting from empirical and theoretical knowledge will
be evaluated by comparing distribution q of the actual state 〈X , q〉 of the knowledge
area with the true distribution p defined by (6).

Definition 2.1. Let q̂ = (q̂1, q̂2, . . . , q̂k) be the empirical knowledge in the state 〈X =
(x1, x2, . . . , xk), q = (q1, . . . , qk)〉, and let q̂i > 0 if pi > 0 for the true distribution p =
(p1, . . . , pk) defined by (6). Then the information I(q̂) resulting from this knowledge
is the decrement of information divergence

I(q̂) = D(p ‖ q) − D(p ‖ q̂) (cf. (1)). (8)

We see that the information I(q̂) is infinite if D(p ‖ q) is infinite which takes place
if qi = 0 when pi > 0. If the information is finite then it may be positive, negative or
zero, depending in whether the improved estimate q̂ is closer to the tine distribution p
than the initial estimate q. If q̂ is errorless, i.e., if q̂ = p then D(p ‖ q̂) = D(p ‖ p) = 0
so that it follows from (8) that

I(q̂) = D(p ‖ q) ≥ 0

where D(p ‖ q) = 0 only if q = p, i.e., only if the initial estimate was errorless. For
unbiased estimates q̂, i.e., for the estimates whose expectations satisfy the condition
Eq̂ = p, we obtain from the concavity of the logarithmic function the upper bound

EI(q̂) = D(p ‖ q) − ED(p ‖ q̂)
≤ D(p ‖ q) − D(p ‖ Eq̂)
= D(p ‖ q) − D(p ‖ p),

i.e., expected information EI(q̂) at most equals the information divergence D(p ‖ q).
We formulate the following property as a theorem.

Theorem 2.2. The information I(q̂) of Definition 2.1 is given by the formula

I(q̂) =
k∑

i=1

pi log
q̂i

qi
. (9)
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Proof. By (9) and (1),

I(q̂) =
k∑

i=1

pi log
pi

qi
−

k∑
i=1

pi log
pi

q̂i
(10)

where the difference is well defined under the assumption of Definition 2.1. By the
convention behind the sum in (1), both sums in (10) extend over all i such that pi > 0.
Therefore we may assume without loss of generality that pi > 0 for all 1 ≤ i ≤ k. If
qi > 0 for all 1 ≤ i ≤ k then (9) is a trivial consequence of (10). If qi = 0 for some
1 ≤ i ≤ k then (10) implies I(q̂) = ∞ and it is easy to see that then (9) implies
I(q̂) = ∞ too.

Definition 2.3. Let β ≡ � (mod Ω) be the theoretical knowledge in a state
〈X = (x1, . . . , xk), q = (q1, . . . , qk)〉 which transforms this state into a new state
〈X̃ , q̃〉 with X̃ ⊂ X specified in Definition 1.4. Further, let q∗ = (q∗1 , . . . , q∗k) be the
extension of q̃ defined by q∗i = 0 for xi �∈ X̃ . Then the information I(β) resulting
from this knowledge is the decrement of information divergence

I(β) = D(p ‖ q) − D(p ‖ q∗).

Now we shall formulate an important consequence of Definition 2.3.

Theorem 2.4. Let β ≡ � (mod Ω) be a theoretical knowledge in a state 〈X =
(x1, . . . , xk), q = (q1, . . . , qk)〉 transformed by this knowledge into a new state

〈X̃ = (x1, . . . , xk), q̃ = (q̃1, . . . , q̃k̃)〉, q ≤ k̃ < k. (11)

Then

I(β) = − log
k̃∑

i=1

qi.

Proof. By the definition of theoretical knowledge in Definition 1.4 and by (11),

pi = 0 for k̃ < i ≤ k

and

q̃i =
qi

c
for c =

k̃∑
i=1

qi.

Therefore (11) together with Definition 2.3 imply

I(β) =
k̃∑

i=1

pi log
pi

qi
−

k̃∑
i=1

pi log
pi

qi/c
= − log c

which completes the proof.
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This theorem has many interesting applications. One of them is mentioned in the
following example.

Example 2.5. If under the assumptions of Theorem 2.4 the initial distribution is
uniform, i.e., if

q = (qi = 1/|X | : 1 ≤ i ≤ k),

then

I(β) = − log
k̃∑

i=1

1/|X | = log
|X |
|X̃ | .

In other words, the information is the reduction

I(β) = log|X | − log|X̃ |

of logarithms of the number of atoms due to the knowledge. This is the formula for
the so-called semantic information introduced by Bar-Hillel and Carnap [2] (see also
Tondl [11]).
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