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Correctness of horizontal and vertical
composition for implementation concepts
based on constructors and abstractors.

Hartmut EHRIG, Hans-Jorg KREOWSKI and Fernando OREJAS

Abstract

A new implementation concept for parameterized specifications
based on constructors and abstractors was recently introduced by
Orejas, Navarro and Sanchez which includes most of the imple-
mentation concepts in the literature for initial as well as loose
semantics. In this paper we redefine vertical and different kinds
of horizontal compositions using the new concept of semi-pushout
defined for a mixture of signature and specification morphisms.
The main results concerning correctness of horizontal and vertical
composition are based on new correctness requirements for con-
structors and abstractors.

1 Introduction

Inspired by various approaches in the literature a unifying implementa-
tion concept for unparameterized and parameterized specifications was
recently presented by Orejas, Navarro and Sanchez [ONS 93, ONS 96].
On one hand it is based on the ideas of constructors and abstractors
in the sense of Sannella and Tarlecki {ST88], on the other hand it in-
cludes explicitly extension and restriction steps as considered in vari-
ous other approaches (e.g.[Ehrich 82|, [EK 83], [EG 94]). Although the
problems of horizontal and vertical composition of unparameterized and
parameterized specifications have been discussed in {ONS 93, ONS 96|,
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only explicit conditions for correctness of vertical composition in the un-
parameterized case have been given up to now. It remains to study cor-
rectness of horizontal and vertical composition for parameterized speci-
fications in this framework.

The general case of horizontal composition of parameterized spec-
ifications allows to have a parameter passing morphism between the
parameter of the second and the body of the first specification. Hence
actualization is an essential part of horizontal composition, which has
been studied in our paper [EKO 95]. In this paper we study the general
case of horizontal and vertical composition. The main results of this pa-
per show under which conditions for contructors and abstractors we have
correctness of horizontal and vertical composition of implementations.

The constructions for horizontal and vertical composition of param-
eterized specifications are based on a new concept, called semi-pushouts
defined for a mixture of signature and specification morphisms. The
general case of horizontal composition can be obtained as a combination
of direct horizontal composition, where the given parameterized specifi-
cations are directly composable, and actualized implementation, where
a given implementation is actualized according to a given parameter
passing morphism. The constructions for vertical and horizontal com-
position are given in section 2 of this paper, where we assume to have
an implementation concept based on an institution in the sense of [GB
84|, which associates to each specifications morphism a constructor and
for each signature morphism an abstractor in the sense of [ONS 96].

In section 3 of this paper we define axiomatic properties for construc-
tors and abstractors and show under which of these properties we have
correctnes of vertical composition, direct horizontal composition, special
horizontal composition used in [ONS 96], actualized implementations
and of general horizontal composition of implementations. Moreover we
give some remarks how corresponding results in the literature can be
obtained as special cases, especially those in [EK 83| and [EG 94| for
initial and final semantics and a standard case for loose semantics.

Finally in section 4 we discuss some remaining conceptual problems
with the framework presented in sections 2 and 3 and several propos-
als how to solve these problems. Especially it is open to analyse the
implementation concepts and results known from the literature in a sys-
tematic way, to find out which are the corresponding constructors and
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abstractors and to analyse how far the axiomatic properties given in
section 3 are satisfied in each of these cases.

For a more detailed motivation of the general implementations based
on these concepts we refer to [ST 88, ONS 93, ONS 96).

2 Horizontal and vertical composition of
implementations

In this section we introduce a general implementation concept based on
constructors and abstractors in the sense of [ONS 93, ONS 96], which
are motivated by those in [ST 88]. With respect to this general notion
we define the implementation of parameterized specification as well as
different kinds of horizontal and vertical composition.

2.1 Implementations

In 1972 Hoare [Hoare 72] presented the first notion of data type im-
plementation in the literature. This was the beginning of a long series
of papers dealing with the same concept (see [ONS 96]). There are
several reasons for such a number of approaches: in some papers the
framework studied is different (“loose” vs “initial” specifications, param-
eterized vs non-parameterized specifications, partial vs total data types,
etc.), in other papers the aim is different (some approaches would stress
ounly “semantic” aspects of implemeéntation while others would focus on
“syntactic” or “proof-theoretic” aspects); nevertheless, the underlying
intuition is often the same.

Given specifications SP1 = (X1, E1) and SP2 = (X2, E2), where E1
and E2 are sets of formulae over any suitable institution (i.e. not nec-
essarily equations), we may consider that implementing the data type
specified by SP1 by the data type specified by SP2 consists in defining
the operations (and the data sorts) in 21 in terms of the operations (and
data sorts) from X2, in such a way that the enriched SP2—models “be-
have” like the SPl-—-models. In this sense, syntactically, an implemen-
tation would be an enrichment together with a mapping (technically, a
signature morphism) relating the sorts and operations from X1 with the
sorts and operations from the enriched £2 signature and, semantically,
it would be a construction (associated to the enrichment) together with
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some kind of abstraction (associated to the given signature morphism)
that relates the models of SP1 with the enriched SP2—models.

For example, suppose that we want to implement (finite) sets of inte-
gers by sequences of integers. The implemented (abstract) specification
is:

SP1=INTEGER+BOOLEAN+

sorts set

operations
@ :— set
add : sef X int — set
- is-in _: int x set — bool

var S: set;n,n': int

equations
add(add(S,n),n) = add(S, n)
add{add(S,n),n'} = add(add(S, n'),n)
n is-in @ =false
n is-in add(S,n’) = (negn’} or (n is-in S)

and the specification of the “implementing” (concrete) data type is:

SP2=INTEGER+
sorts seq
operations
e—38:— seq
app : seq X int — seq
head : seq — int
tail : seq — seq
var S :seg;n:int
equations
teil(app(S,n)) =S
taille—s)=e—s
head(app(S,n)) = n
Now, if we decide to represent the sets of integers by sequences without
repetitions then, the first step would consist in an enrichment, where all
the set operations are defined in terms of the sequence operations in an
adequate manner. For example:
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IMPL= SP2+
operations
D :— seq
add : seq X int — seq
-is-in _: int X seq — bool

var = S: seq;n: int
equations
D=e—3s

n is-in e — s =false

n is-in app(S,n’) = (negn’) or (n is-in )
add(S,n) =S if n is-in § =true
odd(S,n) = epp(S,n) if n is-in S =false

The second step would consist in relating the sorts and operations (to
be implemented) defined in SP1 with the sorts and operations (in the
implementation) defined in IMPL. As said above, this can be done by
means of a signature morphism mapping the sort set into the sort seq
and the operations @, add and is-in from SP1 into the operations @,
add and is-in from IMPL.

Semantically, the result of this enrichment would be an IMPL-algebra
A not satisfying some of the axioms in SP1. In particular, A does not
satisfy the equation

add(add(S,n),n’) = add(add(S,n’),n)

The reasson is that, in general, a set may be represented by several
different sequences. For instance, the set {1,2} is represented in this
algebra by two sequences: < 1,2 > and < 2,1 >. Nevertheless, A
“behaves” like the algebra of sets, in the sense that the evaluation of
any U(SP1l)—term ¢t of integer or boolean sort (and its corresponding
translation through the given signature morphism) yields the same value
in both algebras. X({SP1) is assumed to denote the signature of the
specification SP1.

These ideas can be easily generalized to deal with parameterized
specifications. In particular, if A : SP — SP1 and &' : SP — SP1' are
parameterized specifications (for simplicity, let us assume that A and A’
are inclusions, i.e. if SP = (¥, E), SP1 = (X1, El) and SP2 = (£2, E2)
then ¥ € Yiand ¥ C Ei,i = 1,2), we may also consider that implement-
ing the parameterized data type specified by k by the parameterized data
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type specified by k' consists in defining the operations and the data sorts
in 31 (or, rather, £1—X) in terms of the operations and data sorts from
¥2, in such a way that for every SP—model A, the enrichment applied
to Kp(A) “behaves” like Kj(A), where Kj and Ky are, respectively,
the meaning of the parameterizations h and h’. Therefore, again, syn-
tactically an implementation would be an enrichment together with a
signature morphism relating the sorts and operations from X1 with the
sorts and operations from the enriched X2 signature and, semantically,
it would also be a consiruction (associated to the enrichment) together
with some kind of abstraction (associated to the given signature mor-
phism) that relates the models of K3{SP) with the enriched K3:/{SP)
models.

2.2 General assumptions

Given an institution in the sense of [GB 84] we have a category of signa-
tures and signature morphisms as well as a category of specifications and
specification morphisms and for each specifications SP a class Mod(SP)
of models over SP.

Moreover we assume to have an implementation concept IC de-
fined by the property that we have for each specification morphism
m : SP1 — SP2 a constructor Kjo(m) : Mod(SP1) — P(Mod(SP2)),
short K,,, and for each signature morphism f : L(SP1) — E(SP2)
between specifications, short f : SPl-e» SP2, an abstractor ajc(f) :
Mod(SP1) — P{Mod(SP1)), short ay, in the sense of [ONS 93, ONS
95]. ‘

2.3 Definition (implementation of parameterized specifi-
cations)

Given parameterized specifications h : SP — SP1 and b': SP — SP1/,
where k and k' are specification morphisms with same formal parameter
specifications SP, an implementation I = (m, f) of h by h'is given
by a specification morphism m : SP1' — SP2 and a signature morphism
f : SPl-e» SP2 with same target specifications SP2s.t. foh =moh'
(as signature morphisms).
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sp - sp1

Wl = ¢
sPl’ — SP2
m

The implementation I = (m,f) of h by h' is called correct, if for
all A € Mod(Sp) and all A2 € Kpom(A) there is Al € Kn(4) s.t.
Us(A2) € as(Al).

Remark. Uy : Mod(5(SP2)) — Mod(Z(SP1)) is the forgetful functor
corresponding to the signature morphism f : SP1-e S5P2 and L(SPi)
is the signature part of SP1 fori = 1,2.

2.4 Special cases of implementation concepts

For each choice of constructors and abstractors and by specialization of
the components of an implementation we obtain a specific implementa-
tion concept. Reachability in the sense of [EK 83] or [EG 94] leads to
an abstractor o defined by

B’ € a,(B1) & REACH,(B1') = Bl

where REACH,; (B1') is the intersection of all submodels B’ of B1' with
Us(B') = U (BY'). Standard abstraction a, is defined by

Bl' € ay,(B1) < 3 morphism m : BI' = BL.

For other notions of abstractors we refer to [ONS 93, ONS 96], where
especially behavioural abstraction is discussed as an important example.

If all constructors K, for s : SP1 — SP2 are free constructions Fjg :
Mod(5P1) — Mod(SP2) and « is the reachability abstractor we obtain
implementation of parameterized specifications with I R--semantics in
the sense of [EK 83]. If in addition the extension e is the identity we
obtain R-implementations and — without restriction — refinements of
parameterized specifications in the sense of [EG 94|, where restriction -
is given by a specification morphism. If, on the other hand, we keep
general monomorphic constructors and general abstractors, but have
only identical restrictions, then we obtain constructor and abstractor



372 Hartmut Ehrig, Hans-J6rg Kreowski and Fernando Orejas

implementations in the sense of Sannella and Tarlecki [ST 88|. For
other special cases we refer to [ONS 93, ONS 96).

In order to define vertical and horizontal composition of implemen-
tations in an elegant way we need the notion of semi-pushouts, defined
for a mixture of signature and specification morphisms.

2.5 Definition (semi-pushout)

Given a signature morphism f : SP—e—» SP1 and a specification mor-
phism g : SP — SP2 a specification SP3 together with a signature mor-
phism f': SP2-e+ SP3 and a specification morphism g’ : SP1 — SP3
is called semi-pushout of f and g if

1. ¢’ o f = f' o g as signature morphisms.

2. For all 1 : SP1 — SP4 and h2 : SP2-e+ SP4, with hlo f =
h2 o g, there is a unique A : SP3 — SP4 st. hog' = Rkl and
ho f' = 2, where hl and h are specification morphisms and A2 is
a signature morphism.

SP—2— o SP2

fl

Figure 1: Semi-Pushout

2.6 Fact (semi-pushout)

1. The semi-pushout of f : SP-e+ SP1 and g : SP — SP2 can
be constructed as the pushout X3 of f and g in the category of
signature morphisms, where SP3 = (X3, E3) with E3 = ¢'#(F1),
ie. the translated axioms of E1 for SP2 = (X1, E1).
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2. Semi-pushout objects are unique up to isomorphism in the cate-
gory of specification morphisms.

3. Horizontal and vertical composition of semi-pushouts are semi-
pushouts.

4, If f is a specification morphism the pushout of f and g is in general
different from the semi-pushout of f and g.

Proof.

1. By definiton of SP3 the signature morphism ¢’ in figure 1 becomes
a specification morphism. Moreover, given k1 and A2, as in 2.5.2,
there is a unique signature morphism b : SP3-e—+ SP4, where
h#(E3) = h#t(g'#(E1)) = (h o ¢')#(E1) = h14(E1) is derivable
fron E4 because hl is a specification morphism. Hence, also h is
a specification morphism.

9. Follows in the same way as uniqueness of pushouts using that & in
figure 1 is a specification morphism.

3. Follows as usual from the universal properties of the construction
in part 1 which is a characterization due to part 2.

4. If f is specification morphism the specification pushout is given by
SP3 = (53, g #(E1) U f'#(E2))

which is in general different from the semi-pushout
SP3 = (3, ¢'#(E1)).

2.7 Definition (vertical composition of implementations)

Given implementations I1 = (m1, f1) of A1 by h2 and I2 = (m2, f2) of
R2 by k3 for hi : SP ~» SPi(i = 1,2,3) the vertical composition I3 =
(m3, £3) of I1 and 12, written I3 = I2*I1, is given by m3 = m1' o m2
and f3 = f2' o f1 where (3) in figure 2 is the semi-pushout of m1 and
f2. I3 is an implementation of Al by k3.
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SP-——-’113 SP3
hi 2 @ m2

Y f2

SP1 (D Sp2——0—¥SP5
a ml 3 _ ml'

\ 4 v

Figure 2: Vertical composition of implementations

Remark. In [ONS 96] the vertical composition is defined by a pushout
36 of m1 and f2 considered as signature morphisms which causes the
problem making m3 a specification morphism.

Before we define the general horizontal composition we consider the
special cases of direct horizontal composition and actuslized implemen-
tations which allow to obtain the general case by combination of both
constructions.

2.8 Definition (direct horizontal composition of imple-
mentations)

Given implementations Il = (ml, f1) of k1 by A1’ and I2 = (m2, f2) of
h2 by h2' as shown in figure 3, where k1 and A2 are directly composable.
Then the direct horizontal composition I3 = (m3, f3) of I1 and
I2, written I3 = I2 o I'l, is an implementation of 23 by A3’ given by
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h3 = h2ohl, h3' = hdomlokl!, m3, f3 = f50 f2 as defined in figure
3 where (3) and (4) are constructed as semi-pushouts.

hl
SP1 —» SP2 h2 # SP3

' 2
h1' p f 2 o
@ m2
SP2' —_—p SP5

— ©)
SP1 p— SP4 f4 @ £

b4
SP6 ——5 ¥ SP7

Figure 3: Direct horizontal composition of implementations

2.9 Definition (actualized implementation)

Given an implementation I1 = (ml, f1) of 21 by k1’ and a specification
morphism g, called parameter passing morphism, the actualized
implementation 12 = (m2, f2) of I1 via g is an implementation of
h2 by h2', written I2 = g#(I1), h2 = g#(hl), h2' = g#(h1’}, where
h2, h?2', and m2 are constructed via the pushouts SP3, SP3' and SP4
in the back, left and front square of figure 4 and f2 is the induced
signature morphism.

sp ——# SPI
i’ a1 0!
g
Sp1r 21— SP2'
SP2 »>SP3 o el
g
n2’

P3 T SP4

Figure 4: Actuallized implementation

2.10 Definition (horizontal composition of implementa-
tions)

Given implementations I1 = (m1, f1) of k1 and h1' and I2* = (m2*, f2*)
of A2* by k2™ and a specification morphism g as shown in figure 5,
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i.e. the actualization g#(h2*) = h2 of h2* is composable with Al.
‘Then the horizontal composition I3 = (m3, f3) of Il and 12* via
g, written 3 = I2* o4 I, is an implementation of A3 by k3’ given by
h3 = h20hl, h3’ = hdomlohl’, f3 = f50 f2 as shown in figure 5
constructed as in figure 4 and then figure 3.

spre—12t o gpy3e
w ﬂ*
g o

Sp2'* ———————ofp SP5*

Y
sp1 —_p spp— B2 | psp3

2
2 \
hil f1
P2'wweo——Pp SPS

m2

b4

SP7
SP6—-—mT—>

Figure 5: Horizontal composition of implementations

Remark. The horizontal composition considered in [ONS 96] is the
special case of horizontal composition above where only an implemen-
tation It of k1 by h1’, h2* and g but no implementation F2* of h2* by
h2'* are given. This means that in figure 4 we have A2* = A2'*, B2 = K2/
and m2* m2,m3, and f5 are identities.

2.11 Fact (composability of horizontal composition)

The horizontal composition I3 = I2*0gI'1 of 11 and I2* via g is equal to
the direct horizontal composition I3 = 120 71 of /1 with the actualized
implementation 12 = g#(12*) of I2* via g, i.e.

I2% 04 Il == g#(12%) o I1
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3 Correctness results

In order to prove correctness of horizontal and vertical composition of
implementations we have to formulate several axiomatic properties for
the constructor and abstractor of the implementation concept which are
defined below. In addition to the general assumptions in 2.2 we assume
that the given institution has amalgamation in the sense of [EG 94], i.e.
the model functor Mod transforms pushouts into pullbacks.

3.1 Definition (axiomatic properties of constructors)

1. The constructor K is functorial, if we have
Kfpopn=KpoKn

for all specification morphisms f1: SP — SP2 and f2: SP2 —
SP3, where Ksz 0 Kp1(Al) = U{Kr2(A2)/A2 € Kp(Al)} C
Mod(SP3). -

2. The constructor K is persistent, if foreach f1: SP1 — SP2, Al €
Mod(SP1), A2 € K51(A1) we have Uy;(A2) = AL

3. The constructor K is compatible with amalgamation if K is
persistent and for all pushout

sp M sp1

2l (PO) 1o

5P2 — SP3
g2

and all A € Mod(SP), Al € Kpni(4), A2 € Mod(SP2) with
Una(A2) = A we have

Al +4 A2 € K;2(A2).
If moreover we have
Kgg(AQ) ={Al +4 A2/Al € Kpi(A) and A = Uno(A2)}

then K is called strongly compatible with amalgamation.
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4. The constructor K has the extension property if for all pushouts
as given above we have

Khloth=Ug]0K92

3.2 Fact (strong compatibility of constructors)

A constructor is strongly compatible with amalgamation if and only if
it has the extension property and is compatible with amalgamation.

Proof. If K is strongly compatible then it is also compatible and Al €
Kny 0 Uno(A2) = Kp1(A) implies A1+ 4 A2 € Kg2(A2) and hence Al €
Ug1 o Kg2(A2). Conversely, Al € Ug 0 K g2(A2) implies A3 € K2(A2)
with Al = Ugn(A3) and Ugp(A3) = A2 by persistency of K. Hence
we have A3 = Al +4 A2 € K,0(A2) with A = Upo(A2) which implies
Al € Kpy(A) = Kpy o Upo(A2) by strong compatibility of K. Hence we
have Kp1 o Upg = Uy 0 Kgo. Conversely, let K be a compatible with
extension property. It remains to show that A3 = A1 44 A2 € Kg(A2)
implies A1 € Kp1(A). But A3 € K (A2) implies Al € Uy o Kgo(A2) =
Kny1 o Un2(A2) = Kp1(A).

3.3 Definiton (axiomatic properties of abstractors}

1. An abstractor o is compatible with amalgamation if for all dia-
grams (1) and (2)

hl fl
_— -—

SP SP1 spP2

gl (1) lar (2} g
SP2 —s SP}3 — SP4
h2 12

where (1) is a pushout and (2) a signature PO (not necessarily semi-
pushout as given in figure 4) then for all A1 € Mod(SP1), A2 €
Mod(SP2) with Uy(A2) = A and all A1’ € oy (A1) with Up (A1) =
A = Up1(Al) we have

(Al' +4 A2) € ago(Al +4 A2)
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Remark. Reachability absiractors and standard abstractors are com-
patible with amalgamation.

2. An abstractor « is compositional if for all signature morphisms f1 :
SP1-e+ SP2 and f2: SP2-e+ SP3 and all Ai € Mod(SPi)i=1,2,3
with

Ug1(A2) € ap1(Al), Up(A3) € apa(A2)

we also have Ufgofl(A:;) € af2of1(A1)-

Remark. This condition is similar to C1 in [ONS 96], especially satis-
fied for a defined by reachability and free constructions K provided that
Al and A3 are freely generated.

3. An abstractor a has amalgamation complements w.r.t. a con-
structor K if for all semi-pushouts

SP N SP2

n¢  (S—PO) ¢

SP1 — SP3
gl

and all A € Mod(SP), Ai € Mod(SPi)i = 1,3 with A3 € Kq(Al)
and Us(Al) € ay(A) there is A2 € Mod(SP2) with A2 € K4(A) and
Ufr(A3) € afr(A2).

Remark. If f, f' are specification morphisms and o =equality then the

condition is satisfied for translation constructors.

3.4 Theorem (correctnes of vertical composition)

Given correct implementations 71 and I2 the vertical composition I3 =
I2*I1 is correct provided that

1. The constructor K is functorial.
2. The abstractor « is compositional.

3. The abstractor « has amalgamation complements w.r.t. K.

Proof. Given correct I1 and 12, and I3 as defined in figure 2 we have
to show for all A € Mod(SP) and A6 € Kmaon3(A) the existence of
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Al € Kpi{A) with Ug3(A6) € aps(Al). For A6 € Kmpmaons(A4) we
have by functoriality of K some A5 € Kmoon(A) with A6 € Kpy/(AS5).
Correctness of 12 implies that there is A2 € Kjo(A) with Uga(AS5) €
as2(A2). Since o has amalgamation complements and (3) in figure 2
is semi-pushout we have some A4 € Mod(SP4) with A4 € K,;1(A2)
and Ugp(A6) € ayy(A4). Now correctness of I1 implies that there is
Al € Kp1(A) with Ug1(A4) € af1(A4) € afi1(Al). Finally composition-
ality of a applied to f3 = f2'0 f1 implies Usa(A6) € ay3(Al). Since we
have already A1 € Kp)(A) this implies correctness of I3. [
Remark. The correctness of vertical composition of refinements and
R—implementations in [EG 94] restricted to identical parameter speci-
fications is & special case of this result.

3.5 Theorem (correctness of direct horizontal composi-
tion)

Given correct implementations 71 and 12 the direct horizontal compo-
sition I3 = I2 ¢ Il is correct provided that

1. The censtructor K is functorial
2. The abstractor « is compositional

3. The abstractor « has amalgamation complements w.r.t. K.

Proof. Given correct I1 and 72, and I3 as defired in figure 3 we have
to show for all A1 € Mod(SP1) and A7 € Ky3.n3{Al) the existence of
A3 € Kn3(Al) with Us3(AT7) € ay3(A3). For Al € Mod(5P1) and A7 €
Km3oni(Al) we have by functoriality of K some A4 € Kmionit(Al)
with A7 € Kmaons(A4). Correciness of 71 implies the existence of
A2 € Kpy(Al) with Up(A4) € af1(A2). Since o has amalgamation
complements and (3) U (4) in figure 3 is a semi-pushout we have some
A5 € Mod(SP5) with A5 € Kpg0r2(A2) and Uss(AT) € aps(A5). Now
correctness of /2 implies the existence of A3 € Kpo(A2) with Uype(AS5) €
ayfa(A3), and compositionality of o applied to f3 = f5 o f2 implies
Uss(AT) € af3(A3). Finally A2 € Kp (A1) and A3 € Knz(A2) imply
A3 € Kpa(Al) by functioriality of K and 23 = h2 o k1, which implies
correctness of 73.
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3.6 Corollary (correctness of special horizontal composi-
tion)

The correctness of special horizontal composition considered as prop-
erty P2 in [ONS 96| (see Remark below 2.10) holds provided that the
constructor K is functorial and the abstractor o has amalgamation com-
plements w.r.t. K.

Proof. Special case of the proof of theorem 3.5 where h2 = 12" and
m2, m3, f2 and f5 are identities. Hence we only have to use the ex-
istence of amalgamation complements applied to semi-pushout (3) in
figure 2 but do not need compositionality of a.

3.7 Theorem (correctness of actualized implementations)

Civen a correct implementation I1 of k1 by hl’ and a parameter passing
morphism g the actualized implementation I2 = g#(I1) of A2 = g# (k1)
by h2' = g#(h1’) is correct provided that

1. The constructor K is functorial and is strongly compatible with
amalgamation, i.e. persistent, compatible with amalgamation and
has the extension property.

2. The abstractor o is compatible with amalgamation.

Proof. Given correct I1 of k1 by hl’ and the actualized implementation
12 of Il via g as shown in figure 4 correctness of I2 requires to show
for each A2 € Mod(SP2) and A4 € K ypaonar(A2) the existence of A3 €
Kro(A2) with Upo(A4) € aga(A3). For A2 and A4 as above we define
A = Uy(A2) and A2’ = Ug:(A4). The extension property of K applied
to the composed pushout of left and front square in figure 4 means
Kmioni' - Ug= Ut + Km2ono- Hence we have

A2 = Ugll(A-i) € Uglr-szohgl(AQ) = Kmlohll-Ug(AQ) = Kyion1'(4).

Now correctness of I1l, implies the existence of A1 € Kpi(A) with
Us1(A2) € af1(Al). Let A3 = Al +4 A2 € Mod(SP3)} which is well-
defined because Al € Kp1(A) implies Up1(A1) = A by persistency of K
and we have already Ug(A2) = A. It remains to show A3 € Kp2(A42)
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and Uso(A4) € apo(A3). The first property follows from compatibility
of K with amalgamation using A3 = Al +4 A2 and Al € Ky1(A4). In
order to show the second property we apply compatibility of a with
amalgamation applied to diagrams (1) and (2) in 3.3.1, where (2) is
a signature pushout as a consequence of the construction in figure 4.
Let Al' = Uf (A2'), then Al' = Us(A2') € aypi(Al) and we have
Uni(A1) = Upy - Up1 - (A2') = Uf1001(A2') = Umion1(A2') = A using
A2' € K1 0n1/(A) as shown above and persistency of K. Hence we have
AY € ap1(Al), Un(AY) = A = Up1(Al), and Uy(A2) = A s.t. compat-
ibility of a with amalgamation implies (A1’ +4 A2) € ayo(Al+4 A2) =
afa(A3) (see 3.3.1). In order to show Upa(A4) € ar2(A3) it remains to
show Usg(A4) = A1’ +4 A2 and hence by uniqueness of amalgamation
we only have to show equality after application of Uy and Upg. In fact
we have:

Ugl - Uso(A4) = Uy - Ugir(A4) = Ufl(AQ’) = Al' = Up1 (Al +4 A2)
and using persistency of K in the case A4 € Kyy9,42'(A2) we have

Upg - Upa(Ad) = Unponor(Ad) = A2 = Unz(Al' +4 A2).

Remarks.

1. According to 2.4 we obtain implementation of parameterized spec-
ifications with I R-semantics in the sense of [EK 83] if all construc-
tors are persistent {ree constructions and « is the reachability ab-
stractor. The assumptions of theorem 3.7 are satisfied, because
persistent free constructions which are closed under extension (see
e.g. [EM 835]) and reachability is compatible with amalgamation as
shown in [EKO 95]. The reason is that if REACHg(AL +4 A2) =
REACHg(Al' +4 A2) then REACHg(A1) = REACHg(A1') since
REACH commutes with the forgetful functor. Hence theorem 3.7
can be applied leading to I R— correctness of actualized implemen-
tations, which is shown explicitly in [EK 83].

2. If in addition in Remark 1 the specification morphism m is the
identity we obtain correctness of actualized R—implementations
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and -without restriction— refinements of parameterized specifica-
tions in a suitable institution, which is explictly shown in [EG 94).
The approach in [EG 94] also includes final semantics.

3. If all constructors are translations and abstraction is standard ab-
stractions (see 2.4) then again the assumptions of theorem 3.7 are
satisfied. In fact, it is easy to show that translations are (persis-
tent) constructors which are closed under extension, i.e.

translatest’(P’) = {P' +, B1/B1 € translates1(P)}.

Moreover standard abstraction is compatible with amalgamation,
because Bl* € as(B1) according to 2.4 means existence of m :
B1* — B1 which implies

m'=P' +pm: P'+p, B1' = P' 4+, Bl

and hence B1'* € o/(B1’). This means that theorem 3.7 can be
applied in this case leading to correct actualized implementations
in the framework of loose semantics.

3.8 Theorem (correctness of horizontal composition of
implementations)

Horizontal composition of correct implementations is correct provided
that the constructor K and the abstractor « satisfy all the properties
stated in 3.1 and 3.2.

Proof. Direct consequence of fact 2.11, theorem 3.5 and 3.7.

Remark. It remains to check how far the properties stated in 3.1 and
3.2 are satisfied for various cases of implementations of parameterized
specifications studied in the literature. Some examples have been dis-
cussed already in the remarks of 3.3, 3.4 and 3.7.
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4 Open problems

Although we have shown, for some of the correctness results in section 3,
how to obtain several results in the literature as special cases, it remains
open to analyse all the results in the literature in a systematic way to
see how far they can be obtained as special cases of the general approach
in this paper.. Moreover, there are still some conceptual problems which
are discussed in 4.1-4.3 below.

4.1 Conceptual problem with semi-PO for composition

According to Def. 2.5 (semi-pushout) the specifications SP6 in the semi-
PO of (3) in figure 2 includes only translated axioms from SP5 (relevant
for 72) but not from SP4 (relevant for I1). Similarly SP7 in figure 3
lacks translated axioms from SP5 (relevant for J2}. This problem can
be solved by redefinition of semi-PO's in Def. 2.5 requiring f' and 22 in
figure 1 to be specification morphisms. This can be achieved by defining
E3 = g'#(E1) U f'#(E2). The eflect of this new definition is that f2'
in figure 2 (vertical composition), and f4, f5 in figure 3 and 5 (direct
and general horizontal composition) become specification morphisms.
Moreover the translated axioms of SP2 in figure 2 are derivable from
those of SP6, because f2' o m1 is specification morphism, although f2
is only signature-morphism.

4.2 Syntactical representation of compaosite implementa-
tions

Even with a redefinition of Semi-PO as ahove it might be too restrictive
to require that the vertical composition 12*I1 and the (direct) horizontal
composition 2 o Il have an explicit syntactical representation. This
could be avoided by the following semantical redefinition of Def. 2.3 (in
the spirit of Sannella-Tarlecki [ST 88}) which is partly included in our
paper [EKO $5].

The parameterized specifications h, h' are given by the constructors
Kp : Mod(SP) — P(Mod(X1)) and Kp : Mod(SP) — P(Mod(X1')),
based on h : £(SP) — L1 and &' : £(SP)} — L' and the implementation
uses a constructor K, : Mod(2') — P(Mod(X2)) based on m : L1’ —
32,
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Correctness: VA € Mod(SP)VA2 € Ky © Kpr(A)
JAL € Kp(A) s.t. Up(A2) € ap(Al) (or an(Al))

In this case all constructions and results are essentially the same. But
it might be too restrictive to require that K, is defined on Mod(31'}
and not only on a subclass Def(K,,) C Mod(X1'} with image (Kn') C
Def(K ). This additional correctness condition would have to be shown
for all constructions of composite implementations and may lead to ad-
ditional requirements for K (e.g. closure properties w.r.t. abstractors).
In both cases we have to require an extension property for constructors
w.r.t. pushouts and semi-PQ.

4.3 Abstractors are based on f in (m, f)

For reachability and behavioural abstractors it seems to be more suitable
to consider ap, instead of ay in Def. 2.3 of implementations. This,
however, means that we have to redefine the axiomatic properties of
abstractors (Del. 3.3) s.t. theorem 3.4-3.8 are still valid. Hence also
reformulation of the proofs of these theorems are necessary. Moreover,
it has to be checked for which kind of abstractors and constructors these
conditions are satisfied. In [EKO 95| we have assumed already that
abstractors can be depend on morphisms f and / or A.
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