REVISTA MATEMÁTICA de la Universidad Complutense de Madrid

Volumen 9, número 1: 1996

http://dx.doi.org/10.5209/rev REMA.1996.v9.n1.17615

Approximation of Almost Periodic Functions by Convolution Type Operators

P. PYCH-TABERSKA and M. TOPOLEWSKA

ABSTRACT. For S^p - and S^* -almost periodic functions f the convolution type operators $L_{\mu}f$ are considered. The rates of convergence of $L_{\mu}f(x)$ to f(x) at the Lebesgue or Lebesgue-Denjoy points x of f are estimated.

1. PRELIMINARIES

Let L^p_{loc} $(1 \leq p < \infty)$ be the class of all measurable complex-valued functions. Lebesgue-integrable with p-th power on each finite interval and let D^*_{loc} be the set of all complex-valued functions integrable in the Denjoy-Perron sense on each finite interval. Denote by S^p and by S^* the spaces of all functions $f \in L^p_{loc}$ and $f \in D^*_{loc}$ which are S^p -almost periodic and S^* -almost periodic, respectively, with the norms

$$||f||_{S^p} := \sup_{-\infty < v < \infty} \left(\int_{v}^{v+1} |f(t)|^p dt \right)^{1/p}$$

1991 Mathematics Subject Classification: 41A25, 42A75 Servicio publicaciones Univ. Complutense. Madrid, 1996. and

$$||f||_{S^*} := \sup_{-\infty < v < \infty} \left(\sup_{0 \le u \le 1} \left| \int\limits_{v}^{v+u} f(t) dt \right| \right).$$

Write $S = S^1$ and use the symbol B for the space of all complex-valued functions f almost periodic in the Bohr sense, i.e. uniformly almost periodic, with the norm

$$||f||_B := \sup_{-\infty \le v \le \infty} |f(v)|.$$

The theory of Bohr's and S^p -almost periodic functions is given in [6]. Some properties of S^* -almost periodic functions can be found e.g. in [7], [8].

Let E be a set of positive numbers, having the accumulation point at infinity. Introduce the convolution type operators L_{μ} ($\mu \in E$), defined for functions $f \in S$ or $f \in S^*$ by the improper Denjoy-Perron integral

$$L_{\mu}f(x):=(f*\psi_{\mu})(x)\equiv\int\limits_{--\infty}^{-\infty}f(x-t)\psi_{\mu}(t)dt\ (x\in R:=(-\infty,\infty)),\ (1)$$

where ψ_{μ} are measurable (complex-valued) functions satisfying some additional assumptions. In particular, if $f \in S^p$ with some $p \geq 1$ and if ψ_{μ} is Lebesgue-integrable on R (in symbols $\psi_{\mu} \in L$), then $L_{\mu}f$ is of class S^p . If $f \in S^p$ (p > 1), $\psi_{\mu} \in L^q_{loc}$ (where $\frac{1}{q} = 1 - \frac{1}{p}$) and

$$||\psi_{\mu}||_q:=\sum_{k=-\infty}^{\infty}igg(\int\limits_{1}^{k+1}|\psi_{\mu}(t)|^qdtigg)^{1/q}<\infty,$$

then $L_{\mu}f$ is uniformly almost periodic; the same is also true if $f \in S$, $\psi_{\mu} \in L^{\infty}_{loc}$ (i.e. ψ_{μ} is measurable and essentially bounded on each finite interval) and if

$$||\psi_{\mu}||_{\infty}:=\sum_{k=-\infty}^{\infty}\operatorname*{ess\,sup}_{k\leq t\leq k+1}||\psi_{\mu}(t)|<\infty.$$

In the case when $f \in S^*$, the assumptions

$$||\psi_{\mu}||_{\infty} < \infty$$
 and $\operatorname{var}_{-\infty < t < \infty} \psi_{\mu}(t) < \infty$

imply the uniform almost periodicity of $L_{\mu}f$, too (see [8], [9]).

In this paper, letting $\mu \to \infty$, we present some estimates for the rate of convergence of $L_{\mu}f$ at the Lebesgue or Lebesgue-Denjoy points x of f. As a measure of deviation of $L_{\mu}f(x)$ from f(x) we take the quantities

$$w_x(h;f) := rac{1}{h} \int\limits_0^h |arphi_x(t)| dt \quad ext{if } f \in S,$$

$$w_x^*(h;f) := \sup_{0 < v \le h} \frac{1}{v} \left| \int\limits_0^v arphi_x(t) dt
ight| \quad ext{if } f \in S^*,$$

where h > 0 and $\varphi_x(t) := f(x+t) + f(x-t) - 2f(x)$. For $f \in S$ we also use the quantity

$$\bar{w}_x(h;f) := \sup_{0 < v \le h} w_x(v;f).$$

Clearly, $w_x(h; f) < \infty$ for all x and h > 0. In view of the well-known Lebesgue theorem and the fundamental properties of the Denjoy-Perron integral [5], for almost every x,

$$\lim_{h \to 0+} w_x(h; f) = \lim_{h \to 0+} \bar{w}_x(h; f) = 0 \text{ and } \lim_{h \to 0+} w_x^*(h; f) = 0$$

(we call these x the Lebesgue and the Lebesgue-Denjoy points of f, respectively). Further, $\bar{w}_x(h;f)$ and $w_x^*(h;f)$ are non-decreasing functions of h on $(0,\infty)$, provided they are finite at x. The so-called local integral modulus $\bar{w}_x(h;f)$ (in a slightly different form) was first used in [1] to obtain the quantitative version of the known Fejér-Lebesgue theorem.

For $f \in S^p$ (p > 1) we introduce also the quantities

$$w_x(h;f)_p:=\left(rac{1}{h}\int\limits_0^h|arphi_x(t)|^pdt
ight)^{1/p}\,(h>0),$$

which have the properties similar to that of $w_x(h; f)$.

Throughout, the integral part of a real number a is denoted by [a]. The symbol $\zeta(s)$, s > 1, means the well-known Riemann zeta function.

2. MAIN RESULTS

Consider operators L_{μ} defined by (1), in which ψ_{μ} are even measurable functions such that $||\psi_{\mu}||_{\infty} < \infty$ or $||\psi_{\mu}||_q < \infty$ with some q > 1 (clearly, this implies that ψ_{μ} are Lebesgue-integrable on R).

Theorem 1. Suppose that $||\psi_{\mu}||_{\infty} < \infty$,

$$\int_{-\infty}^{\infty} \psi_{\mu}(t)dt = 1 \text{ for all } \mu \in E$$
 (2)

and that there exist positive numbers σ, α_{μ} such that

$$|\psi_{\mu}(t)| \le \alpha_{\mu} t^{-\sigma}$$
 for a.e. $t \in (0,1]$ and all $\mu \in E$. (3)

If $f \in S$, then for every real x,

$$|L_{\mu}f(x) - f(x)| \le 2(||f||_S + |f(x)|)(\alpha_{\mu} + \gamma_{\mu})$$

$$+ \beta_{\mu} \delta_{\mu} w_{x}(\delta_{\mu}; f) + \sigma \alpha_{\mu} \int_{\delta_{\mu}}^{1} t^{-\sigma} w_{x}(t; f) dt,$$

$$(4)$$

where δ_{μ} are arbitrary positive numbers not greater than 1 and

$$eta_{\mu} := \operatorname*{ess\ sup}_{0 < t \leq \delta_{\mu}} |\psi_{\mu}(t)|, \quad \gamma_{\mu} := \sum_{k=1}^{\infty} \operatorname*{ess\ sup}_{k \leq t \leq k+1} |\psi_{\mu}(t)|.$$

Proof. In view of our assumptions, the convolution (1) exists for all x as the ordinary Lebesgue integral and

$$|L_\mu f(x)-f(x)| \leq igg(\int\limits_0^{\delta_\mu} + \int\limits_{\delta_\mu}^1 + \int\limits_1^\infty igg) |arphi_x(t)\psi_\mu(t)| dt = I_1 + I_2 + I_3, ext{ say}.$$

Clearly,

$$I_1 \leq eta_{\mu} \int\limits_0^{\delta_{\mu}} |arphi_x(t)| dt = eta_{\mu} \delta_{\mu} w_x(\delta_{\mu}; f),$$

$$I_3 \leq \sum_{k=1}^{\infty} \underset{k \leq t \leq k+1}{\operatorname{ess}} \sup_{|\psi_{\mu}(t)|} \int_{k}^{k+1} |\varphi_x(t)| dt \leq 2 \Big(||f||_S + |f(x)| \Big) \gamma_{\mu}.$$

Further, by (3) and partial integration,

$$I_2 \leq \alpha_{\mu} \int\limits_{\delta_{\mu}}^{1} |\varphi_x(t)| t^{-\sigma} dt = \alpha_{\mu} \int_{\delta_{\mu}}^{1} \bigg(\int\limits_{0}^{t} |\varphi_x(u)| du \bigg)' t^{-\sigma} dt$$

$$\leq lpha_{\mu} \bigg\{ w_x(1;f) + \sigma \int\limits_{\delta_{\mu}}^{1} t^{-\sigma} w_x(t;f) dt \bigg\}.$$

Collecting the results and observing that $w_x(1; f) \leq 2(||f||_S + |f(x)|)$ we get (4), immediately.

Remark 1. Assuming that $\bar{w}_x(1;f)<\infty,$ one can easily verify that

$$\int_{\delta_{\mu}}^{1} t^{-\sigma} \bar{w}_{x}(t;f) dt \leq \tau(\sigma) \sum_{k=1}^{m} k^{\sigma-2} \bar{w}_{x}(\frac{1}{k};f),$$

where $m:=[1/\delta_{\mu}],\ \tau(\sigma):=\max\{1,2^{\sigma-2}\}.$ Also, if $\sigma\geq 1$,

$$\begin{split} \bar{w}_{x}(\delta_{\mu};f) &\leq \bar{w}_{x}\left(\frac{1}{m};f\right) \leq \frac{\sigma+1}{m^{\sigma+1}} \sum_{k=1}^{m} k^{\sigma} \bar{w}_{x}\left(\frac{1}{m};f\right) \\ &\leq \frac{\sigma+1}{(m+1)^{\sigma-1}} 2^{\sigma-1} \sum_{k=1}^{m} k^{\sigma-2} \bar{w}_{x}\left(\frac{1}{k};f\right) \\ &\leq 2^{\sigma-1} (\sigma+1) \delta_{\mu}^{\sigma-1} \sum_{k=1}^{m} k^{\sigma-2} \bar{w}_{x}\left(\frac{1}{k};f\right). \end{split}$$

Consequently, under assumptions of Theorem 1 (with $\sigma \geq 1$) we have

$$|L_{\mu}f(x) - f(x)| \leq 2(||f||_{S} + |f(x)|)(\alpha_{\mu} + \gamma_{\mu}) + c_{\mu}(\sigma) \sum_{k=1}^{m} k^{\sigma-2} \bar{w}_{x}(\frac{1}{k}; f),$$

where $c_{\mu}(\sigma)=2^{\sigma-1}(\sigma+1)\beta_{\mu}\delta_{\mu}^{\sigma}+\sigma\tau(\sigma)\alpha_{\mu}$. In the case when $\sigma=1,2$ or 3, a direct calculation shows that the term $2^{\sigma-1}$ in $c_{\mu}(\sigma)$ may be omitted.

Let us note that Theorem 1 remains valid for functions f of class S^p with p > 1, because $S^p \subset S$. Nevertheless, in this case, the argumentation similar to that of the proof of Theorem 1 leads to

Theorem 2. Let $f \in S^p$ (p > 1) and let $||\psi_{\mu}||_q < \infty$ for all $\mu \in E$, where q = p/(p-1). Suppose, moreover, that conditions (2) and (3) are satisfied. Then, for every $x \in R$,

$$|L_{\mu}f(x)-f(x)| \leq 2(||f||_{S^{p}}+|f(x)|)(\alpha_{\mu}+\gamma_{\mu,q})$$

$$+\beta_{\mu,q}\delta_{\mu}^{1/p}w_{x}(\delta_{\mu};f)_{p}+\sigma\alpha_{\mu}\int\limits_{\delta_{\mu}}^{1}t^{-\sigma}w_{x}(t;f)_{p}dt,$$

where $0 < \delta_{\mu} \leq 1$,

$$eta_{\mu,q}:=igg(\int\limits_0^{\delta_\mu}|\psi_\mu(t)|^qdtigg)^{1/q},\quad \gamma_{\mu,q}:=\sum_{k=1}^\inftyigg(\int\limits_k^{k+1}|\psi_\mu(t)|^qdtigg)^{1/q}.$$

The corresponding result for almost periodic functions integrable in the Denjoy-Perron sense can be stated as follows.

Theorem 3. Let $||\psi_{\mu}||_{\infty} < \infty$, $\text{var}_{-\infty < t < \infty} \psi_{\mu}(t) < \infty$ for all $\mu \in E$ and let condition (2) be satisfied. Assume, moreover, that ψ_{μ} are absolutely continuous on (0,1] and that

$$|\psi'_{\mu}(t)| \le \alpha^*_{\mu} t^{-\rho} \text{ for a.e. } t \in (0,1] \text{ and all } \mu \in E, \tag{5}$$

 ρ,α_{μ}^{*} being some positive numbers. If $f\in S^{*}$ and if $w_{x}^{*}(1;f)<\infty$ then

$$|L_{\mu}f(x) - f(x)| \le 2(||f||_{S^*} + |f(x)|)\gamma_{\mu}^* + \frac{1}{2}\beta_{\mu}^*\delta_{\mu}^2 w_x^*(\delta_{\mu}; f)$$

$$+\alpha_{\mu}^* \int\limits_{\delta_{\mu}}^1 t^{-\rho+1} w_x^*(t;f) dt,$$

where

$$\beta_\mu^* := \underset{0 < t \leq \delta_\mu}{\operatorname{ess \; sup \; }} |\psi_\mu'(t)|, \quad \gamma_\mu^* := 2\gamma_\mu + \mathrm{var}_{1 \leq t < \infty} \psi_\mu(t),$$

 δ_{μ} and γ_{μ} have the same meaning as in Theorem 1.

Proof. In view of (1) and (2),

$$L_{\mu}f(x)-f(x)=igg(\int\limits_{0}^{1}+\int\limits_{1}^{ o\infty}igg)arphi_{x}(t)\psi_{\mu}(t)dt=J_{1}+J_{2}, ext{ say}.$$

Applying the known inequalities for the Denjoy-Perron integral ([5] p. 45, or [8] p. 187) we obtain

$$\begin{aligned} |J_2| &= \bigg| \sum_{k=1}^{\infty} \int_{k}^{k+1} \varphi_x(t) \psi_{\mu}(t) dt \bigg| \\ &\leq \sum_{k=1}^{\infty} \bigg(\sup_{k \leq t \leq k+1} |\psi_{\mu}(t)| + \operatorname{var}_{k \leq t \leq k+1} \psi_{\mu}(t) \bigg) \max_{k \leq \xi \leq k+1} \bigg| \int_{k}^{\xi} \varphi_x(t) dt \bigg| \\ &\leq 2 \bigg(\gamma_{\mu} + \operatorname{var}_{1 \leq t < \infty} \psi_{\mu}(t) \bigg) (||f||_{S^*} + |f(x)|). \end{aligned}$$

Further, putting

$$\Phi_x(t) := \int\limits_0^t arphi_x(u) du$$

and integrating by parts ([5] p. 42) we get

$$|J_1|=\left|\Phi_x(1)\psi_\mu(1)-\int\limits_0^1\Phi_x(t)\psi_\mu'(t)dt
ight|$$

$$\leq |\Phi_x(1)||\psi_\mu(1)| + \bigg(\int\limits_0^{\delta_\mu} + \int\limits_{\delta_\mu}^1 \bigg)tw_x^*(t;f)|\psi_\mu'(t)|dt.$$

Hence, assumption (5) and the obvious inequalities

$$|\psi_{\mu}(1)| \le \gamma_{\mu}, \ |\Phi_{x}(1)| \le 2(||f||_{S^*} + |f(x)|)$$

give

$$|J_1| \leq 2\gamma_{\mu}(||f||_{S^*} + |f(x)|) + \frac{1}{2}\beta_{\mu}^*\delta_{\mu}^2 w_x^*(\delta_{\mu}; f) + \alpha_{\mu}^* \int_{\delta_{\mu}}^1 t^{-\rho+1} w_x^*(t; f) dt.$$

Collecting the results we get the desired assertion.

Remark 2. In the same way as in Remark 1, the estimate given in Theorem 3 can be stated in the form

$$|L_{\mu}f(x)-f(x)| \leq 2(||f||_{S^*}+|f(x)|)\gamma_{\mu}^*+c_{\mu}^*(\rho)\sum_{k=1}^m k^{\rho-3}w_x^*(\frac{1}{k};f),$$

where $m = [1/\delta_{\mu}], \ c_{\mu}^{*}(\rho) = 2^{\rho-3}(\rho+1)\beta_{\mu}^{*}\delta_{\mu}^{\rho} + \alpha_{\mu}^{*} \max\{1, 2^{\rho-3}\},$ provided that $\rho \geq 2$.

Now, denoting by Y the space B, S^p $(p \ge 1)$ or S^* , let us define the modulus of smoothness of $f \in Y$ with respect to the norm of Y by

$$\omega_2(h; f)_Y := \sup_{0 \le t \le h} ||f(\cdot + t) + f(\cdot - t) - 2f(\cdot)||_Y \qquad (h \ge 0).$$

Clearly, if $f \in B$ then, for all $x \in R$ and h > 0,

$$w_x(h;f) \leq \omega_2(h;f)_B$$
.

In case $f \in S^p$ we have

$$\sup_{-\infty < v < \infty} \left(\int_{v}^{v+1} (w_x(h;f))^p dx \right)^{1/p} \le \omega_2(h;f)_{S^p} \qquad (h > 0),$$

by the generalized Minkowski inequality. These estimates and Theorem 1 together with Remark 1 lead to the following

Corollary. Let $f \in Y$, where Y = B or S^p $(p \ge 1)$, and let conditions (2), (3) with $\sigma \ge 1$ be satisfied. Then, for all $\mu \in E$,

$$||L_{\mu}f - f||_{Y} \leq 4(\alpha_{\mu} + \gamma_{\mu})||f||_{Y} + c_{\mu}(\sigma) \sum_{k=1}^{m} k^{\sigma-2} \omega_{2}(\frac{1}{k}; f)_{Y},$$

where $m, \alpha_{\mu}, \gamma_{\mu}, c_{\mu}(\sigma)$ have the same meaning as in Theorem 1 and Remark 1.

For almost periodic functions integrable in the Denjoy-Perron sense a direct calculation gives

Theorem 4. Suppose that $f \in S^*$ and that conditions (2) and (5) with $\rho \geq 2$ are satisfied. Then, for all $\mu \in E$,

$$||L_{\mu}f - f||_{S^{*}} \leq 4\gamma_{\mu}^{*}||f||_{S^{*}} + c_{\mu}^{*}(\rho) \sum_{k=1}^{m} k^{\rho-3}\omega_{2}(\frac{1}{k};f)_{S^{*}},$$

where m, γ_{μ}^* and $c_{\mu}^*(\rho)$ have the same meaning as in Theorem 3 and Remark 2.

3. EXAMPLES

I. Let $0 \le \lambda \equiv \lambda(\mu) < \mu$ for $\mu \in E = (0, \infty)$ and let $\Psi_{\lambda,\mu}$ be the continuous functions defined for $t \ne 0$ by the formula

$$\Psi_{\lambda,\mu}(t):=\frac{\left(4\frac{\sin\frac{1}{4}(\mu-\lambda)t\right)^2\sin\frac{1}{2}(\mu+\lambda)t}{\pi(\mu-\lambda)^2t^3}.$$

Denote by $L_{\lambda,\mu}$ the operators (1) with $\psi_{\mu} = \Psi_{\lambda,\mu}$. As in known ([3] p. 256), condition (2) is satisfied. Introducing the auxiliary function $g_z(t) := (\sin zt)/t$ for $t \neq 0$, $g_z(0) = z$, with a positive parameter z, we can write

$$\Psi_{\lambda,\mu}(t) = \frac{1}{\pi}a^{-2}g_a^2(t)g_b(t) \text{ with } a = \frac{\mu - \lambda}{4}, \ b = \frac{\mu + \lambda}{2}.$$

Since

$$|g_z(t)| \le \frac{1}{t}, \ |g_z'(t)| = \left|\frac{zt\cos zt - \sin zt}{t^2}\right| \le \frac{2z}{t} \text{ for } t > 0$$

and

$$|g_z(t)| \le z$$
, $|g_z'(t)| \le \frac{2}{3}z^3t$ for $t \ge 0$,

we have

$$|\Psi_{\lambda,\mu}(t)| \le \frac{16}{\pi(\mu-\lambda)^2 t^3}, \ |\Psi'_{\lambda,\mu}(t)| \le \frac{32\mu}{\pi(\mu-\lambda)^2 t^3} \text{ for } t > 0$$

and

$$|\Psi_{\lambda,\mu}(t)| \leq \frac{\mu+\lambda}{2}, \ |\Psi'_{\lambda,\mu}(t)| \leq \frac{(\mu+\lambda)^3 t}{8\pi} \text{ for } t \geq 0.$$

These inequalities ensure that for every $f \in S^p$ $(p \ge 1)$ or $f \in S^*$ the functions $L_{\lambda,\mu}f$ are uniformly almost periodic. Moreover, under the assumption $\mu - \lambda \ge 1$, Theorems 1, 3, 4 apply with $\sigma = 3$, $\rho = 3$,

$$\delta_{\mu} = \frac{1}{\mu - \lambda}, \ \alpha_{\mu} = \frac{16}{\pi(\mu - \lambda)^2}, \ \beta_{\mu} \leq \frac{\mu + \lambda}{2}, \ \gamma_{\mu} \leq \frac{16\zeta(3)}{\pi(\mu - \lambda)^2},$$

$$\alpha_{\mu}^{*} = \frac{32\mu}{\pi(\mu - \lambda)^{2}}, \ \beta_{\mu}^{*} \leq \frac{(\mu + \lambda)^{3}}{8\pi(\mu - \lambda)}, \ \gamma_{\mu}^{*} \leq \frac{32(1 + \mu)\zeta(3)}{\pi(\mu - \lambda)^{2}}.$$

Assuming additionally that $\frac{\lambda}{\mu} \leq \theta < 1$ for all $\mu > 0$, we easily verify that the right-hand sides of the estimates given in Theorems 1-3 and Remarks 1, 2 converge to zero as $\mu \to \infty$, for almost every x. In particular, setting $\lambda(\mu) = \frac{\mu}{2}$ we get for $f \in S$ the result of [3] (Th. 5). Moreover, from Corollary it follows the estimate of $||L_{\lambda,\mu}f - f||_{S^p}$ in terms of the modulus of smoothness of $f \in S^p$. Namely,

$$||L_{\lambda,\mu}f - f||_{S^p} \le \frac{21(1+\zeta(3))}{(\mu-\lambda)^2}||f||_{S^p} +$$

$$+2\left(\frac{1+\theta}{1-\theta}+8\right)\frac{1}{(\mu-\lambda)^2}\sum_{k=1}^m k\omega_2\left(\frac{1}{k};f\right)_{S^p},$$

where $m=[\mu-\lambda]$ (clearly, the right-hand side of this inequality converges to zero as $\mu\to\infty$). Taking into account the integral modulus of continuity

$$\omega_1(h;f)_{S^p} := \sup_{0 \le t \le h} ||f(\cdot + t) - f(\cdot)||_{S^p}$$

and applying its basic properties, we easily verify that for $f \in S^p$ with $\omega_1(1;f)_{S^p} \neq 0$ there holds the relation

$$||L_{\lambda,\mu}f-f||_{S^p}=\mathcal{O}igg(\omega_1\Big(rac{1}{\mu-\lambda};f\Big)_{S^p}igg),$$

which is equivalent to Theorem 1 of [3]. Note, that the corresponding estimates for $f \in S^*$ follow from Theorem 4.

II. The Bernstein integral operators $Q_{\mu} \equiv L_{\mu}$ are defined by (1), in which $\mu \in E = (0, \infty)$, $\psi_{\mu} = G_{\mu}$ are continuous functions on R with values

$$G_{\mu}(t) := rac{c(r)}{\mu^{2r-1}} igg(rac{1}{t} \sin rac{\mu t}{2r}igg)^{2r}, \ c(r) := (2r)^{2r-1} / \int\limits_{-\infty}^{\infty} igg(rac{\sin v}{v}igg)^{2r} dv,$$

for $t \neq 0$, and r is a fixed positive integer (see [4]). It is easy to verify that Theorems 1, 3, 4 are true for $\mu \geq 1$ with

$$\delta_{\mu} = 1/\mu, \ \sigma = \rho = 2r,$$

$$\alpha_{\mu} = \frac{c(r)}{\mu^{2r-1}}, \ \beta_{\mu} \le \frac{c(r)}{(2r)^{2r}}, \ \gamma_{\mu} \le \frac{c(r)\zeta(2r)}{\mu^{2r-1}},$$

$$\alpha_{\mu}^* = \frac{2c(r)}{\mu^{2r-2}}, \ \beta_{\mu}^* \le \frac{4c(r)\mu^2}{3(2r)^{2r+1}}, \ \gamma_{\mu}^* \le \frac{4c(r)\zeta(2r)}{\mu^{2r-2}}.$$

For almost every x, the right-hand side of the estimate corresponding to Theorem 1 converges to zero as $\mu \to \infty$, provided that $r \ge 1$. The same relation for the estimate following from Theorem 3 needs the assumption $r \ge 2$.

Note, that for some classes of functions the above results cannot be essentially improved. To see this, let us fix a point x and let us consider the class Ω_x of all functions $f \in S$ such that $w_x(h; f) \leq h$ for $0 < h \leq 1$. In view of Theorem 1, for every $f \in \Omega_x$ and every $\mu \geq 1$,

$$|Q_{\mu}f(x)-f(x)|$$

$$\leq c(r) \bigg\{ 2 \bigg(1 + \zeta(2r) \bigg) \big(||f||_S + |f(x)| \big) + (2r)^{-2r} + \frac{2r}{2r-2} \bigg\} \frac{1}{\mu}$$

whenever $r \geq 2$. On the other hand, the function η_x of period 2, defined by $\eta_x(t) := |t - x|$ if $|t - x| \leq 1$, belongs to Ω_x and, for $\mu \geq \pi r$,

$$|Q_\mu \eta_x(x) - \eta_x(x)| = \int\limits_0^\infty (\eta_x(x+t) + \eta_x(x-t)) G_\mu(t) dt \geq 2 \int\limits_0^1 t G_\mu(t) dt$$

$$\geq \frac{2c(r)}{\mu^{2r-1}} \int\limits_{1/\mu}^{\pi r/\mu} t^{-2r+1} \left(\sin \frac{\mu t}{2r} \right)^{2r} dt \geq \frac{2c(r)}{\mu^{2r-1}} \int\limits_{1/\mu}^{\pi r/\mu} t^{-2r+1} \left(\frac{\mu t}{\pi r} \right)^{2r} dt$$

$$=\frac{c(r)}{(\pi r)^{2r}}(\pi^2 r^2 - 1)\frac{1}{\mu}.$$

III. Let us suppose that the Fourier series of a function $f \in S$ is of the form

$$f(x) \sim \sum_{k=-\infty}^{\infty} A_k e^{i\lambda_k x} \text{ with } A_k := \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) e^{-i\lambda_k t} dt,$$

$$0 < \lambda_k < \lambda_{k+1} \text{ if } k \in N := \{1, 2, \ldots\}, \lim_{k \to \infty} \lambda_k = \infty, \ \lambda_{-k} = -\lambda_k,$$

 $|A_k| + |A_{-k}| > 0$, and let us consider its partial sums

$$S_n f(x) := \sum_{|\lambda_k| \le \lambda_n} A_k e^{i\lambda_k x} \qquad (n \in N).$$

As is known ([6] p. 83 and [2] Lemma 2), $S_n f$ can be represented in the form (1), in which $\mu = n \in N$ and $\psi_{\mu} = D_n$, where

$$D_n(t) := \frac{2}{\pi(\lambda_{n+1} - \lambda_n)} t^{-2} \sin \frac{1}{2} (\lambda_{n+1} - \lambda_n) t \sin \frac{1}{2} (\lambda_{n+1} + \lambda_n) t$$

for $t \neq 0$. If $\lambda_{n+1} - \lambda_n \geq d > 0$, where d is independent of n, then Theorem 1 gives the estimate

$$|S_n f(x) - f(x)| \le 2\left(\frac{\pi}{3} + \frac{2}{\pi}\right)(||f||_S + |f(x)|)\delta_n$$

$$+ \frac{1}{2\pi}(\lambda_{n+1} + \lambda_n)\delta_n w_x(\delta_n; f) + \frac{4}{\pi}\delta_n \int_{\delta_n}^1 t^{-2} w_x(t; f)dt$$

$$(6)$$

with $\delta_n = d(\lambda_{n+1} - \lambda_n)^{-1}$.

Assume that the Fourier series of $f \in S$ is a lacunary series, i.e. there exists a positive number $\theta < 1$ such that

$$\frac{\lambda_n}{\lambda_{n+1}} \le \theta \quad \text{for all } n \in N.$$

Then inequality (6) holds with $d = \lambda_1(1-\theta)$. Letting in this inequality $n \to \infty$ and observing that $\delta_n \to 0$ we easily state that $S_n f(x) \to f(x)$ at every Lebesgue point x of the function f. Thus, from (6) it follows Theorem $2(1^o)$ of [2], in a sharpened form.

If the Fourier exponents of $f \in S$ satisfy the conditions

$$\lambda_{n+1} - \lambda_n \to \infty$$
 and $\frac{\lambda_n}{\lambda_{n+1}} \to 1$ as $n \to \infty$,

then estimate (6) ensures that $S_n f(x) \to f(x)$ at a Lebesgue point x of f, provided that the additional assumption

$$\lim_{n \to \infty} w_x \left(\frac{1}{\lambda_{n+1} - \lambda_n}; f \right) \left(1 - \frac{\lambda_n}{\lambda_{n+1}} \right)^{-1} = 0$$

is satisfied (cf. Th. $2(2^{\circ})$ in [2]).

Finally, let us note that at the point x of continuity of f,

$$w_x(h;f) \le 2\omega(x;h;f), \text{ where } \omega(x;h;f) := \sup_{0 \le t \le h} |f(x+t) - f(x)|.$$

In this case it is convenient to estimate the term I_1 in the proof of Theorem 1 as follows:

$$I_1 \leq 2\omega(x;\delta_\mu;f)artheta_\mu, ext{ where } artheta_\mu := \int\limits_0^\infty |\psi_\mu(t)| dt.$$

Hence, inequalities (4) and (6) remain valid with $w_x(h;f)$ replaced by $\omega(x;h;f)$; the term $\beta_\mu \delta_\mu$ in (4) and the corresponding term $\frac{1}{2\pi}(\lambda_{n+1} + \lambda_n)\delta_n$ in (6) may be replaced by $2\vartheta_\mu$ and by

$$2\int_{0}^{\infty} |D_{n}(t)|dt \leq \frac{4}{\pi} + \frac{2}{\pi} \log \frac{\lambda_{n+1} + \lambda_{n}}{\lambda_{n+1} - \lambda_{n}},$$

respectively. So, inequality (6) in this form contains also Theorem $2(2^{\circ})$ of [2].

References

- [1] Aljančić, S., Bojanic, R. and Tomić, M., On the degree of convergence of Fejér-Lebesgue sums, L'Enseignement Math. 15 (1969), 21-28.
- [2] Bredikhina, E.A., On the convergence of Fourier series of the Stepanov almost periodic functions, Uspekhi Mat. Nauk 19 (6) (1964), 133-137 (in Russian).
- [3] Bredikhina, E.A., On approximation of the Stepanov almost periodic functions, Dokl. Akad. Nauk SSSR 164 (1965), 255-258 (in Russian).
- [4] Bredikhina, E.A., On absolute convergence of Fourier series of almost periodic functions with rare spectrums, Mat. Sbornik 81 (1970), 39-52 (in Russian).
- [5] Chelidze, V.G. and Dzhvarshejshvili, A.G., Theory of Denjoy Integral and Some Its Applications, Tbilisi 1978 (in Russian).
- [6] Levitan, B.M., Almost Periodic Functions, Moscow 1953 (in Russian).
- [7] Pal, B.K. and Mukhopadhyay, S.N., Denjoy-Bochner almost periodic functions, J. Australian Math. Soc., Ser. A 37 (1984), 205-222.

- [8] Pych-Taberska, P., Approximation of almost periodic functions integrable in the Denjoy-Perron sense, in: "Function Spaces" (ed. J. Musielak), Teubner-Texte zur Mathematik 120 (1991), 186-196.
- [9] Pych-Taberska, P., On some almost periodic convolutions, Functiones et Approximatio XX (1992), 65-77.

Faculty of Mathematics and Computer Science A. Mickiewicz University Matejki 48/49 60-769 Poznań, Poland Institute of Mathematics Higher Pedagogical School Chodkiewicza 30 85-064 Bydgoszcz, Poland

Recibido: 25 de Mayo, 1994