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Approximation of Almost Periodic Functions
by Convolution Type Operators

P. PYCH-TABERSKA and M. TOPOLEWSKA

ABSTRACT. For 57- and S*-almost periodic functions f the convolution
type operators L, f are considered. The rates of convergence of L, f(z) to
f(z) at the Lebesgue or Lebesgue-Denjoy points z of f are estimated.

1. PRELIMINARIES

Let L} (1 < p < 00) be the class of all measurable complex-valued

functions Lebesgue-integrable with p-th power on each finite interval
and let D}, be the set of all complex-valued functions integrable in the
Denjoy-Perron sense on each finite interval. Denote by S? and by §*
the spaces of all functions f € L}, and f € Dj,, which are 5P-almost
periodic and §*-almost periodic, respectively, with the norms

v+l

1/p
Ifilss ;= sup ( / | f(t)l”dt)
—0CvCoo ,
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and

flls- = sup ( sup

—oogv<oo \ 0<u<l

[ o).

Write § = §! and use the symbol B for the space of all complex-valued
functions f almost periodic in the Bohr sense, i.e. uniformly almost
periodic, with the norm

flle == sup [f(w)i.
—ooLv<oo

The theory of Bohr’s and 5P-almost periodic functions is given in [6].
Some properties of 5*-almost periodic functions can be found e.g. in

[7], 8].

Let E be a set of positive numbers, having the accumulation point
at infinity. Introduce the convolution type operators L, (u € E), defined
for functions f € § or f € §* by the improper Denjoy-Perron integral

Lf(z) = (fru,)(z) = [ Fo—ta(t)dt (z € R := (—00,00)), (1)

—+—00

where 1, are measurable (complex-valued) functions satisfying some
additional assumptions. In particular, if f € 5P with some p > 1 and
if v, is Lebesgue-integrable on R (in symbols ¢, € L), then L,f is of

class §7. If f € 57 (p > 1), ¥, € LY, (where 1 =1 - 1) and
o) k1 1/q
[%ullq = E ( / |’/’u(t)|th) < oo,
k=—00 k

then L,f is uniformly almost periodic; the same is also true if f € §,
¥, € LS. (i.e. 1, is measurable and essentially bounded on each finite
interval) and if

o0
bullooi= 3 ess sup [$(t)] < oo.
o kSR
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In the case when f € 5*, the assumptions

[|%ulloo < 00 and var_coct<cootu(t) < oo
imply the uniform almost periodicity of L, f, too (see [8], [9]).

In this paper, letting 4 — oo, we present some estimates for the
rate of convergence of L, f at the Lebesgue or Lebesgue-Denjoy points
z of f. As a measure of deviation of L,f(z) from f(zx) we take the
quantities

h
welhi f)i= 7 [ lestolldt it fe5,
0

wi(hif) = sup o [oatirl if fe s,
0<v<h U1

where h > 0 and ¢.(t) := f(z+t)+ f(x —t) —2f(z). For f € § we also
use the quantity

We(h; f) = Ozgghwx(v;f)-

Clearly, w;(h; f) < oo for all z and A > 0. In view of the well-known
Lebesgue theorem and the fundamental properties of the Denjoy-Perron
integral [5], for almost every z,

hli.rtlll+ wo(h; f) = hlir&_ Dz (h; f) = 0 and hl—lﬂ[)l+ wa(h; f) =0

(we call these = the Lebesgue and the Lebesgue-Denjoy points of f, re-
spectively). Further, @;(h; f) and wj(h; f) are non-decreasing functions
of h on (0, 00), provided they are finite at . The so-called local integral
modulus @.(h; f) (in a slightly different form) was first used in [1j to
obtain the quantitative version of the known Fejér-Lebesgue theorem.

For f € §7 (p > 1) we introduce also the quantities
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# 1/
wnlti D= (3 [lectiPat) 4> 0)

which have the properties similar to that of w,(h; f).

Throughout, the integral part of a real number a is denoted by [a].
The symbol {(s), s > 1, means the well-known Riemann zeta function.

2. MAIN RESULTS

Consider operators L, defined by (1), in which 4, are even measur-
able functions such that ||¢,]le < o0 or ||| < 0o with some ¢ > 1
{clearly, this implies that v, are Lebesgue-integrable on R).

Theorem 1. Suppose that ||¢,|jeo < 00,

/ Yu(t)dt =1forall pe E (2)

and that there exist positive numbers o, o, such that

lWu(t)] € a,t™° fora.e. t € (0,1] and all x4 € E. (3)
If f € S, then for every real z,

|Luf(z) = f(=) <20 fAls + [F@))(an + 7,)

- ) (4)
+ Bubuwe(6u; f) + aa#/t_"wm(t;f)dt,

u

where 6, are arbitrary positive numbers not greater than 1 and

o0
By := ess sup |[P,(t)], vu:= ZGSS sup |,(t)|.
0<t<6, =1 k<t<k+1
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Proof. In view of our assumptions, the convolution (1) exists for

all z as the ordinary Lebesgue integral and

5u

L f(z) - 1(@)] < ( [+ / + f)m(tm(mdt =L+ b+, sy,
0 1

Su

Clearly,

Su
L < /6# / l‘P:r:(t)!dt = ﬂu‘suwm(ﬁp;f)’
0

k+1

<Y e s 100l [ tosoldt <2(1ls +15) )
k

=7 k<t<k+ /

Further, by (3) and partial integration,

1 1 t P
b <y [lesloat = [ ( [lestulan) e
3 * o

o

< au{wx(l;f) t+o j t“’wx(t;f)dt}-

M

Collecting the results and observing that w.(1; f) < 2(||f|ls + |f(=)])
we get (4), immediately.

Remark 1. Assuming that w.(1;f) < oo, one can easily verify
that
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1 e
f £ (t; f)dt < T(G)Zk“’@z(%;f),
bp k=1

where m := [1/6,], 7(¢) := max{1,2°"2}. Also, if o > 1,

1 - -
wz(éusf) < w-’E( S mo.+1 Zk
o+1
< d -1 0—2—
—(m+1)a 1 Ek k’

<277 (o + 1)6::'1 Zk"_%ﬁr(%;f).

k=1

Consequently, under assumptions of Theorem 1 (with ¢ > 1) we have

[Luf(@) = £ < 211flls + 17t +7) +eulo) 3 K0 (3 1),
k=1

where ¢,(0) = 2°7 (o + 1)8,87 + o7(0)a,. In the case when o = 1,2
or 3, a direct calculation shows that the term 2°-! in ¢,(o) may be
omitted.

Let us note that Theorem 1 remains valid for functions f of class
5P with p > 1, because S7 C §. Nevertheless, in this case, the argu-
mentation similar to that of the proof of Theorem 1 leads to

Theorem 2. Let f € 57 (p > 1) and let |||, < 00 for all p € E,
where ¢ = p/(p ~1). Suppose, moreover, that conditions (2) and (3) are
satisfied. Then, for every z € R,
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| L f(z) = f(@) <2([|flls» + [f(@)Mew + Vi)

1
+ ﬁ,,,qb'}‘/pwx(ﬁp,;f)p + aa“[t_”wz(t;f)pdt,
by '

where 0 < 6, <1,

k+1

bu 1/q 00 1/q
= (fwnora) ", =3 ( [ wiora)
0 k=1 k

The corresponding result for almost periodic functions integrable in
the Denjoy-Perron sense can be stated as follows.

Theorem 3. Let ||¢hulloo < 00, VAI_ocicoo®Pul(t) < oo for all
i € E and let condition (2) be satisfied. Assume, moreover, that ¢, are

absolutely continuous on (0,1] and that

[, (1) < ajt™ for ae. t € (0,1) and all p € E, (5)
p,a;, being some positive numbers. If f € 5 and if wi(1; f) < co then

ILuf(2) = @] <20|flls- + £ @5 + 58585036, 1)

1
+ a;/t‘"’“w;(t;f)dt,
6“

where
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B :=ess sup [ ()], 7, =27, + vaTi<icoo¥ull),
0<t<S,
6, and 7, have the same meaning as in Theorem 1.

Proof. In view of (1) and (2),

L,f(z)- f(z)= (j + _]m) wz(t)Pu{t)dt = J1 + Ja, say.
0 1

Applying the known inequalities for the Denjoy-Perron integral ([5] p.
45, or (8] p. 187) we obtain

o kil

)RR

k=1 %

| /2| =

su it} + var t max
(|, W0+ varecicurtl®)) , s

M]3

<

ff %(t)dtl
k

&
1]

H

< 2(~m + Varlgt<oo¢u(t))(”f||3* /@)

Further, putting

P2(1) := j¢z(u)du

and integrating by parts ([5] p. 42) we get
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|J1] =

& (0%,(1) - | @x(t)zb:,(t)dtI

< [@z(Dil¥u(D)] + (}+ /1 )tw;(t; RICAGT2
o 5,

Hence, assumption (5) and the obvious inequalities

1%u(] £ 74 1®2(1)] < 211 flls + 1f(z)])

give

1
1 bl * L - *
71 < 20lflls- + 1£@)) + 5A1050 0 1)+ @ [ 1+ wses e,
Su

Collecting the results we get the desired assertion.

Remark 2. In the same way as in Remark 1, the estimate given
in Theorem 3 can be stated in the form

[Luf(2) — £()] < 2| flls- + 1@ +e5p) S b ~w3 (3 ),

k=1
where m = [1/6,], ¢5(p) = 2°73(p+1)8,6% + o}, max{1,2°~3}, provided
that p > 2.

Now, denoting by Y the space B, 5P (p > 1) or §*, let us define
the modulus of smoothness of f € ¥ with respect to the norm of Y by
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wa(h; fly :== sup |If(-+0)+fC-1)=2fC)ly (h20).
0<t<h

Clearly, if f € B then, forall z € R and h > 0,

wz(h; f) < wa(h; fa.

In case f € 57 we have

vl

s (f (wx(h;f))”dmy/pSwz(h;f)sv (h>0),

by the generalized Minkowski inequality. These estimates and Theorem
1 together with Remark 1 lead to the following

Corollary. Let f € Y, where Y = B or 57 (p > 1), and let
conditions (2), (3) with & > 1 be satisfied. Then, for all z € E,

120 = flly < 4w+ m)lflly + () YK 2n(zif)y

k=1

where m, o, 9,,c.(0) have the same meaning as in Theorem 1 and
Remark 1.

For almost periodic functions integrable in the Denjoy-Perron sense
a direct calculation gives

Theorem 4. Suppose that f € §* and that conditions (2) and (5)
with p > 2 are satisfied. Then, for all u € E,

Luf = Flls- < 4731 0l + €500) D K n (53 ) s

k=1
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where m,v;, and c(p) have the same meaning as in Theorem 3 and
Remark 2.

3. EXAMPLES

I Let 0 £ A= A(p) < pfor p € E = (0,00) and let ¥, , be the
continuous functions defined for ¢ # 0 by the formula

(4sin (p ~ % sin 1 Mt

7r(,u A)2t3

Denote by Ly, the operators (1) with ¢, = ¥, ,. As in known ([3]
p. 256), condition (2) is satisfied. Introducing the auxiliary function
g-(t) 1= (sin 2t)/t for t # 0, g,(0) = z, with a positive parameter z, we
can write

‘I")\"u(t) =

1 - A A
Ui,u(t) = —a~*ga(t)g(t) with a = ey QU e
4
Since
1 2t cos 2t — sin 2t 2z
(01 < 3, Iab(ol = [FERE I < 2 o5
and
' 2 4
lg=()] < 2, lg:()] < 32"t for £ 210,
we have
16 ' 32
IWA,#(t)I = ﬂ'(‘u _ A)ztay I‘PA'#(t)I =~ ’J'r(p, — A)2t3 f()l' > 0
and
3
) < 22, 101 < B  for i 20,
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These inequalities ensure that for every f € §7 (p > 1) or f € 5* the
functions L) ,f are uniformly almost periodic. Moreover, under the
assumption g — A > 1, Theorems 1, 3, 4 apply with o =3, p =3,

1 16 pt+d o 16¢(3)

8, = —— —_——_— < ==
I ,U—A’ a.u W(F_A)z)ﬂ,u_ 2 37#—1r(p_A)2?

e B NP 3204+RKE)

T RN F o Sr( =N BT Tw(p= AF

Assuming additionally that 2 < 8 < 1 for all u > 0, we easily
verify that the right-hand sides of the estimates given in Theorems 1 -
3 and Remarks 1, 2 converge to zero as y — 00, for almost every z. In
particular, setting A(x) = & we get for f € § the result of [3] (Th. 5).
Moreover, from Corollary it follows the estimate of ||La,.f — flise in
terms of the modulus of smoothness of f € §*. Namely,

Eanf — fllse <Z2AHLED,) 0y

(= Ay

146 1 1
+2(1—0 +8) i) ;sz(wk?}f)Sp!

where m = [u — A] (clearly, the right-hand side of this inequality con-
verges to zero as u — oo). Taking into account the integral modulus of

continuity
wi(k; f)se := sup ||f(-+2) = f()lls»
0<i<h

and applying its basic properties, we easily verify that for f € 57 with
w1(1; f)s» # O there holds the relation

Eauf - fllse = O(wl(;—%;f) s.)’
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which is equivalent to Theorem 1 of [3]. Note, that the corresponding
estimates for f € §* follow from Theorem 4.

II. The Bernstein integral operators @, = L, are defined by (1),
in which g € E = (0,00), ¥, = G, are continuous functions on R with
values

6utt) = 20 (Len )7, etr) =y ] (22) s,

for t # 0, and 7 is a fixed positive integer (see [4]). It is easy to verify
that Theorems 1, 3, 4 are true for p > 1 with

8,=1/u, o =p=2r,

200 . AL deren)

n= pr=2 Pu = 3iopprtd? T S p2r=2

For almost every z, the right-hand side of the estimate corresponding to
Theorem 1 converges to zero as u — o0, provided that r > 1. The same
relation for the estimate following from Theorem 3 needs the assumption
r> 2.

Note, that for some classes of functions the above results cannot be
essentially improved. To see this, let us fix a point z and let us consider
the class Q. of all functions f € § such that wz(h; f) <hfor0<h <1
In view of Theorem 1, for every f € §2; and every u > 1,

1Quf(z) - (=)

< c(r){?(l ¥ C(2r)) (Ills + 5@ + @) + = 2}ﬁ
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whenever r > 2. On the other hand, the function 7, of peried 2, defined
by nz(t) := [t — =] if |t — z| < 1, belongs to Q, and, for u > 7r,

(=] 1
1Qun=(z) — n2(z)| = /('?r(‘r +1) + n:(z — 1))Gu(t)dt > 2/tG.u(t)dt
0 0
5 mrie 2 5 mrfu £\ 2T
> 260) [ e (G BT S 2e(0) / AR LY [l I
pir—1 or pir—1 T
1/u 1/u
=) eyl
= (7rr)2"(7r T 1)#.
III. Let us suppose that the Fourier series of a function f € S is of
the form

oo T
f(:l:) ~ Z Akefh-’l: with Ay := Tli_]i_noo%/f(t)e_n“dt,
0

k=-o00
0< Ak < Apprif k€N :={1,2,...}, lim M =00, Ag = —Ag,

|Ak| + |A—k} > 0, and let us consider its partial sums
Suf(z):= Y Ae™®  (neN).
g€ Xa

As is known ([6] p. 83 and [2] Lemma 2), S, f can be represented in the
form (1), in which p = n € N and ¢, = D,, where )

2 2 . 1 L1
Dn(t) = mt sin 5(/\,”.1 — /\n)t sin §(An+1 + /\n)t
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fort #0. If Apyq1 — Ay > d > 0, where d is independent of n, then
Theorem 1 gives the estimate

1Sa1(@) = 1@ < 2( 3+ 2)Uslls + 115,

1 (6)
1 4 _
+ Ot + M)uwa(bs 1) + b [ 470wttt
8n

with 8, = d(Ang1 — M)~ L.

Assume that the Fourier series of f € 5 is a lacunary series, i.e.
there exists a positive number § < 1 such that

An
An-l—l
Then inequality (6) holds with d = A1(1 — #). Letting in this inequality
n — oo and observing that 8§, — 0 we easily state that S, f(z) — f(z)
at every Lebesgue point z of the function f. Thus, from (6) it follows
Theorem 2(1°) of [2], in a sharpened form.

<@ forallme N.

If the Fourier exponents of f € S satisfy the conditions

Ant1 — Aq — 00 and —1asn— co,

A1".‘.-+-1

then estimate (6) ensures that S, f(z) — f(z) at a Lebesgue point z of
f, provided that the additional assumption

. 1 A )7
i) (i)
is satisfied (cf. Th. 2(2°) in [2]).
Finally, let us note that at the point z of continuity of f,

wa(h; f) < 2w(w; b f), where w(z;h; f) = sup |f(z +1) - f(2).
: 0<t<h
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In this case it is convenient to estimate the term [, in the proof of
Theorem 1 as follows:

o0
I € 2w(z;6,; )9, where 9, := /|¢u(t)|dt.
0

Hence, inequalities (4) and (6) remain valid with w;(h; f) replaced by
w(z; h; f); the term 8,6, in (4) and the corresponding term Qlﬂ(/\nﬂ +
An)bn in (6) may be replaced by 29, and by

00
)
2/ IDa(t)lde < - + :mgi—ﬁﬂ_i%,
0 T T T Antl T An

respectively. So, inequality (6) in this form contains also Theorem 2(2°)
of {2].
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