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On Some Weak Monomorphisms and Weak
Epimorphisms of Pro-HTop:

I. PCP

ABSTRACT. Related to Shape Theory, in a previous paper (6] we studied
weak monomorphisms and weak epimorphisms in the category of pro-groups.
In this note we give some intrinsic characterizations of the weak monomor-
phisms and the weak epimorphisms in pro-HTop” in the case when one of the
two objects of such a morphism is a rudimentary system.

1. INTRODUCTION

If C is a category with zero-objects then a morphism f: A — B
of C is a weak monomorphism if f o « = 0 implies « = 0. A morphism
f: A — B is called a weak epimorphism if 2o f = 0 implies v = 0.

Weakened versions of categorical notions of monomorphism and
epimorphism have proved to be of some interest in pointed homotopy
theory. A study of the comparison between weak monomorphism and
monomorphism in homotopy theory was carried by T.Ganea [3] who, in
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particular, obtained examples of weak monomorphisms which are not
monomorphisms. Examples of homotopy weak monomorphisms which
are not homotopy epimorphisms have been given by J.Roitberg [7]. Cer-
tainly, the study of shape monomorphisms and epimorphisms and their
weakened versions can be interesting (see, for the homotopy case, the
recently papers of E.Dyer & J.Roitberg {2] and J.Dydak [1]). In [6] we
characterized weak monomorphisms and weak epimorphisms in the cat-
egory of pro-groups and we defined the notion of weakly exact sequence
and we studied this notion in the category of pro-groups.

In this note we consider the pro-category of HTop”, the homotopy
category of pointed topologal spaces, and we give some intrinsic charac-
terizations of weak monomorphisms and weak epimorphisms f : X - Y
in pro-HTop*, when X or Y is a rudimentary system. These results can
be interesting {and maybe sufficient) so a shape morphism F: X - Y
between topological spaces X and Y can be given by means of such mor-
phisms f: X — Y in pro-HTop™ (approaching morphisms). The study
of an arbitrary morphism f : X — Y of pro-HTop" is more complicated.

The notions and properties of pro-categories which are used in this
paper are those of the book of S.Mardesi¢ and J.Segal [4].

2. WEAK MONOMORPHISMS IN THE CATEGORY PRO-
HTOP*

The category pro-HTop* is a category with zero objects. A zero-
object is a single point rudimentary system.

If (X, *) is a rudimentary system in pro-HTop* and if Y = ((Ya,*),
g x, A) is an arbitrary object in pro-HTop*, then the morphisms f =
(f») : (X,*) = Y coincide with the morphisms in inv-HTop*, the
category of inverse systems in HTop* [4, p.20]. This means that for each
A € A is given a morphism f5 : (X,*) — (Y, *) in HTop* and for each
pair A < X we have gyx fr = fir.

Lemma 1. For a morphism f : (X,*) - ¥ = ((Ya,%),qan,A)
in pro-HTop*, there ezist an object P = ((Px,*),rxn,A) and two mor-
phismsp = (px,1a): P> Y, h=(hy): (X,*) - P such that for each
A€A:

(i) hx: (X,%) = (P, #) is a pointed homotopy equivalence,
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(i) px 1 (P,*) — (Ya,*) is a pointed fiber map,
(iii) fx = px o ha. '

Proof. The existence for each A € A of a factorization (iii), satisfy-
ing (i) and (ii), is well known [5, p.249]. For a pair A < X in A we define
ran = hyo h;,l, for which is immediate that P = ((Pa, *),7arr, A) is
an inverse system in HTop* and that A = (h)) : (X,+*) — P is a
morphism in pro-HTop*. Also, from the relations g\x o fy = f)._, =
pahy, for = par o by, we deduce that gxxpx & par © rxyr, which shows
that p = (pa,1a) 1 £ — Y a morphism of pro-HTop*.

Remark 1. It is obvious from Lemma 1 that we can write the
equality f = poh, in the category pro-HTop*, where h is an isomorphism.
Then it is clear that f is a weak monomorphism if and only if p is a weak
monomorphism. We will refer to the morphism p: P — Y as the fibred
factor of the morphism f. -

Remark 2. If P = (p)\,lA) P = ((PA,*) TAMy A) — Y =
((Y»,*),pax,A) is a fibred factor in pro-HTop*, we can consider the fiber
of this morphlsm by the object F = ((F,*), TM,,A), where Fy = p; (%)
and r4, = mw/Fy, for A < A. Then we can define a morphism
i=(ix1a): £ — P, where i) is the inclusion of (F,*) in (P, *).

Definition 1. We will say that the fiber F = ((FA,*),TM,, A)
of the fibered factor p = (pA,IA) 2 = ((Pa#*),7an, A) =
(Y, %), Pans A) is contractible in P if for each A € A there is a A' >
such that i) o 7}, ~ *.

Theorem 1. A morphism f = (fy) : (X,*) — Y is o weak

monomorphism in the category pro-HTop* if and only if the fibre I of
every fibred factor p = P — Y_ is contractible in P.

Proof. By Remark 1 it is sufficient to prove that p is a weak
monomorphism if and only if F is contractible in P.

Suppose that p: P — Y is a weak monomorphism in the category
pro-HTop*. For the morphlsm i: F — P from Remark 2 we have
poi = % and by hypothesis it follows i = *. If *+ = (*,®) then we
have an equivalence (ix,14) ~ {*,®) [4, p.6] which implies that for each
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A € A thereis A > A (and A’ > ®())) such that the following diagram
in HTop* commutes

r'ﬁ(.\).\'
Fa(ny &———— Fx
* l . lf,\,\t
P, —_ B

This implies that iyor),, is pointed null-homotopic, i.e. iyor},, & *.
Thus, F is contractible in P.

Conversely, suppose that the libre F is contractible in P and let 4 =
(ux,®): Z=((Zy,#*), 85, M) = P = ({Py,*),7ax,A) be a morphism,
such that pou = *. But pou = (pyoux,®), with the function® : A - M,
and py o uy ! Zyn) — Py — Y,. This relation implies that each A € A
admits p € M, pu > ®(A) such that py o uj 0 sg(3), ® *, by a pointed
homotopy Hy : Z, x [0,1] — Y,. Then, by the homotopy covering
property of py, there exists a pointed homotopy K : Z, x [0,1] — P,
such that K)(-,0) = uy 0 sg(r), and py o Ky = Hy. Thus we have
ux 0 Sg(nu ~ Ka(,1) and I'm Ky C Fy. By the proof of Lemma 1
and since the index sets are directed, for each A € A we can choose the
indices A’ € A and p,p’ € M such that i) o ryx = * and the following
diagram commutes

Sty Soa)m
Zy — Z“ —_—_— Zq,(,\)
(1) | Lrs(-1) bus
Taat i
F,\' FA _— PA

This means that uxsg(a), = ixranHn(, 1)su, & *, ie. (uy, ®) ~
(*,®') for satisfactory function & : A — M. Thus we obtained u = x,
what finishes the proof of the theorem.

Remark 3. If f: (X,x) — (Y,#) is a pointed continuous map
then f is a weak monomorphism in HTop* if and only if it is a weak
monomorphism in pro-HTop*. Theorem 1 generalizes the usual result
for pointed continuous map [7, Prop. 2.2, (ii)].
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3. WEAK EPIMORPHISMS IN THE CATEGORY PRO-
HTOP*

In this section we consider only morphisms of the form f: X —
(Y,*), where X is an arbitrary inverse system in HTop*. In fact the
morphism f can be represented by a continuous map fy : (Xi,*) —
(Y,#), if X = ((Xax,*),pan,A), and two such maps fy,, f, define the
same morphism f if there is A 2 Ay, Az such that fapa,a = fr,paga in
HTop*.

Lemma 2. For a morphism f : X = ((Xi,*),pax,A) = (¥,*)
there ezist an object M = (M, *),Tax,A),®: A" — A and two mor-
phisms j = (1,8): X - M, h: M — (Y,*), such that for each
AeA:

(i) hy : (My,*) — (Y, *) is a pointed homotopy equivalence,
(ii) jn : (X, *) — (M), %) is a pointed cofiber inclusion map,
(ﬂt) fA = hA Oj,\.

Proof. Denote by A’ the subset of A such that an index A is in A’
if and only if there is a map fi : (X»,*) — (Y, ) defining f.

The existence for each A € A’ of a factorization (iii) satisfying (i)
and (ii) is well known [5, p.246]. For a pair A < A' in A’ define rayn =
h;l o hy, from which is immediate that M = (My,*),ran,A’) is an
inverse system in HTop* and that all maps hy,A € A’ define the same
morphism 4 : M — (Y,*). Finally, if ® : A" — A is the inclusion
function, then j§ = (4, ®) : X — M is a morphism of pro-HTop".

Remark 4. It is obvious from Lemma 2 that we can write f = hoj,
in the category pro-HTop*, where A is an isomorphism. Then it is clear
that f is a weak epimorphism if and only if j is a weak epimorphism.
. We will refer to the morphism j : X — M as the cofibred factor of the
morphism f. B

Remark 5. Let j = (41,®) : X = ((Xo,%),pan,A) = M =
(M, *),7an, A') be a cofibred factor in pro-HTop*. Then for each
A € A’ we can consider the pointed quotient space M)/X, with the
pointed identification map 75 : My — M,/X,. We can consider the
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inverse system M /X = ((M»/X,,*),7a,A’) and the morphism x =
(mx,1a): M — M/X. For the morphism f: X — (Y,*) we will say
that (Y, ) is contractible in the cofibred factor of f if each X € A’ admits
a A > X such that 7y o ryr = *.

Theorem 2. A morphism f: X — (Y,*) of pro-HTop™ is a weak
eptmorphism if and only if (Y, *) is contractible in every cofibred factor.

Proof. Suppose that f is a weak epimorphism, what is equivalent
to the fact that the morphism j : X — M is a weak epimorphism.
Since r 0 § = %, the hypothesis implies 7 = # in pro HTop*. This
means (my,1a:) ~ (%, ®'), i.e. each A € A’ admits a A’ > X such that
waoryy = * in HTop*. Thus, (Y,*) is contractible in the cofibred factor
j: X— Mof f.

Conversely, suppose that (Y, #) is coniractible in the cofibred factor
of f. It is sufficient to prove that f is a weak epimorphism. For this,
suppose that for a morphism u = (v, ¥): M — Z={(Z,,%),8,u,N)
we have u o j = *. This implies that for each v € N there is a pointed
homotopy H, : u,0jg(,) ~ *. Then, by the pointed homotopy extension
property of the pair (My(,), Xg(,)) there exists a pointed homotopy K, :
Mq;(,,) x[0,1} — Z,, such that Ky(°,0) = 4, and K.,/Kq,(v)x [0, 1] =H,.
Now, if we consider the pointed map ¢, : Myqy = Z,,0, = K,(-,1),
then we have @, /Xy() = K,/Xg@) x {1} = H,(-,1) = *. Therefore,
we can define the pointed map @, : My)/Xwu) — Z,, such that
Py © Ty(,) = @ and the pointed homotopy @, o Fy(,) : My X [0,1) —
My(y/ Xg() — Z., where Fy(,) : Ty(,) 0 Tg(,)x = *, for a convenient
A" > W(v). For this we have Gy(,) 0 Fy() @ @, 0Te()a = * in Top™. On
the other hand K, is 2 pointed homotopy, K, : u,07y()x = ¢, 0Tg()a,
and therefore ¢, 0 Fiy(,)0 K, : u,7y(,)» = *. This proves the equivalence
(4, ¥) ~ (x,¥) for every » € N and therefore u = *, what finishes the
proof of the theorem.

Remark 6. If f: (X,*) — (Y, %) is a pointed continuous map then
fis a weak epimorphism in HTop™* if and only if it is a weak epimorphism
in pro-HTop*. Particularly, Theorem 2 generalizes the usual intrinsic
characterization of a weak epimorphism in HTop"* {7, Prop. 2.2 (i}].
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